
Nonlocal and multipoint boundary value problems
for linear evolution equations

By Beatrice Pelloni and David Andrew Smith

We derive the solution representation for a large class of nonlocal bound-
ary value problems for linear evolution PDEs with constant coefficients
in one space variable. The prototypical such PDE is the heat equation,
for which problems of this form model physical phenomena in chemistry
and for which we formulate and prove a full result. We also consider the
third order case, which is much less studied and has been shown by the
authors to have very different structural properties in general.

The nonlocal conditions we consider can be reformulated as multipoint
conditions, and then an explicit representation for the solution of the
problem is obtained by an application of the Fokas transform method.
The analysis is carried out under the assumption that the problem being
solved is well posed, i.e. that it admits a unique solution. For the second
order case, we also give criteria that guarantee well-posedness.

1. Introduction

In a variety of applications of PDE models, classical boundary conditions
imposed at the boundary of the domain are not representative of the par-
ticular phenomenon, and it is necessary to consider nonlocal boundary
conditions. A particular example of such nonlocal conditions are multi-
point conditions relating the value of the solution at the boundary points
with the values at some interior points. A simple example of this is given
in [1], where motivation from physical applications, particularly in chem-
istry, can also be found. Early work on three-point boundary conditions
was done in [2, 3], though these works focus on the analysis and prov-
ing existence of a solution of possibly nonlinear ODEs of second order.
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Indeed, most existing results are limited to the second order case, either
linear or nonlinear, although some third order results are presented in [4].
Related important developments have focused on solving PDEs, linear
and nonlinear, on networks, including linear networks [5].

A wide class of more general nonlocal problems can be shown to be
equivalent to multipoint problems, see section 2.1 below. This class in-
cludes problems in which one or more boundary conditions is replaced by
a nonlocal condition specifying the integral of the solution on a certain
subinterval of the spatial domain. For a heat conduction problem, this
may represent conservation of the internal energy on a subinterval of the
spatial domain [6]. For a diffusion problem, the integral may represent
the total mass of a certain chemical within a given region, which could be
easily measured using a photometer [7]. A number of other applications
for similar second order problems are described in [8, 9].

In this paper, we make use of the Fokas transform (also known in the
literature as the unified transform) to give a general solution to multipoint
boundary value problems for linear PDEs of arbitrary order of the form

qt + a(−i∂x)nq = 0, x ∈ (0, 1), t > 0. (1.1)

We assume here that n > 2 (the special case n = 1 will be considered
elsewhere). The coefficient a is assumed to satisfy the restriction (2.4)
below, which essentially ensures that the Cauchy initial value problem for
the PDE is well posed on t > 0. The choice of equations with only the
term of highest order spatial derivative may seem special. However, the
analysis of these particular PDEs captures the essential features of the
solution also for the case of constant coefficient linear PDEs with lower
order terms, see for example [10] for a full discussion and justification of
this claim.

A typical multipoint boundary value problem is the one studied in [1]:

Find the function q(x, t), x ∈ (0, 1), t > 0 such that qt = qxx, and q
satisfies the given (sufficiently smooth) initial condition q(x, 0) = q0(x)
and the additional conditions

q(0, t) = c0 q

(
1

2
, t

)
+ d0(t) and q(1, t) = c1 q

(
1

2
, t

)
+ d1(t). (1.2)

We give a more comprehensive solution than provided in previous pa-
pers to a more general form of this problem, for a PDE of arbitrary order
and multipoint conditions linking an arbitrary number of interior points
η1, . . . , ηm−1 ∈ (0, 1), with η0 = 0 and ηm = 1. Our most complete result
is theorem 5.4 for the heat equation, but the majority of the analysis
is carried out in much greater generality. In particular, we prove the
following theorem.
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Theorem 1.1: Suppose q(x, t) is the solution of initial-(m + 1) point
value problem of order n defined below in (2.2).

Then q(x, t) admits the integral representation (see equation (4.6))

2πq(x, t) =

∫ ∞
−∞

eiλx−aλ
ntq̂0(λ) dλ−

∫
∂DR∩C+

eiλx−aλ
nt
n−1∑
k=0

f0
k (λ;T ) dλ

−
∫
∂DR∩C−

eiλ(x−1)−aλnt
n−1∑
k=0

fmk (λ;T ) dλ.

In the above expression, q̂0 is defined by (3.5) and DR is given by (3.7).
The terms involving the functions f rk are obtained as the solution of linear
system (4.12). In the particular case n = 2 (respectively, n = 3), the
solution of this system is provided by lemma 5.1 (respectively, lemma 6.1).

The paper is organised as follows. In section 2, we formulate the
general multipoint condition, and we show how a large class of nonlocal
conditions can be reformulated as multipoint conditions, so fall within
the scope of the present work. In section 3, we give a concise introduction
to the Fokas transform in general, and then in section 4 we apply it to
the general multipoint boundary problem formulated in section 2. By
the end of section 4, the first two claims of theorem 1.1 are established.
In sections 5 and 6, we study in detail the second and third order case
respectively, both in general and for specific examples. In particular, in
section 5 we state and prove theorem 5.4. The appendices contain proofs
of the lemmata that conclude theorem 1.1.

2. Formulation of the problem

Let m,n ∈ N be independent,

0 = η0 < η1 < η2 < . . . < ηm = 1, (2.1)

and

brk j ∈ C for k, j ∈ {0, . . . , n− 1}, r ∈ {0, . . . ,m}.

Consider the initial-multipoint value problem

[∂t + a(−i∂x)n]q(x, t) = 0 (x, t) ∈ (0, 1)× (0, T ), (2.2a)

q(x, 0) = q0(x) x ∈ [0, 1], (2.2b)

n−1∑
k=0

m∑
r=0

brk j∂
k
xq(ηr, t) = gj(t) t ∈ [0, T ], j ∈ {0, 1, . . . , n− 1},

(2.2c)
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where we assume gj ∈ C∞[0, T ] with T > 0 a fixed constant, and that the
initial datum is compatible with the multipoint data in the sense that

q0 ∈ Cn[0, 1] and

n−1∑
k=0

m∑
r=0

brk j∂
k
xq0(ηr) = gj(0). (2.3)

We always assume that the coefficient a satisfies

a ∈

{
{eiθ : θ ∈ [0, π]} if n even,

{i,−i} if n odd.
(2.4)

Assuming that a solution q ∈ Cn(0, 1) exists and is unique, we give a
representation of this solution by an application of the Fokas transform
approach. The Fokas transform is an integral transform flexible enough
to allow us to derive a general and effective representation of the solution
of any such boundary value problem.

The explicit solution representation we derive can be used to justify a
posteriori the existence and uniqueness assumption.

2.1. Nonlocal boundary conditions

The multipoint boundary condition (2.2c) is actually a rather general
nonlocal condition. We first illustrate this observation with an example.

Consider the initial-nonlocal value problem

[∂t − ∂2
x]q(x, t) = 0 (x, t) ∈ (0, 1)× (0, T ), (2.5a)

q(x, 0) = q0(x) x ∈ [0, 1], (2.5b)∫ 1

2

0
q(x, t) dx = 0 t ∈ [0, T ], (2.5c)∫ 1

1

2

(1− x)q(x, t) dx = 0 t ∈ [0, T ], (2.5d)

which can be seen as a generalization of a problem studied by Mantzavi-
nos [11]. We claim that problem (2.5) is equivalent to an initial multipoint
value problem belonging to class (2.2). To wit, differentiate both nonlocal
conditions (2.5c)–(2.5d) with respect to t, and apply (2.5a), to obtain

∫ 1

2

0
∂2
xq(x, t) dx = 0,

∫ 1

1

2

(1− x)∂2
xq(x, t) dx = 0, (2.6)
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respectively. Integrating (by parts in the latter), one obtains the multi-
point conditions

∂xq

(
1

2
, t

)
− ∂xq(0, t) = 0 t ∈ [0, T ], (2.7a)

1

2
∂xq

(
1

2
, t

)
− q(1, t) + q

(
1

2
, t

)
= 0 t ∈ [0, T ]. (2.7b)

In general, suppose J ∈ {−1, . . . , n − 1}, and consider problem (2.2),
but with (2.2c) replaced by the multipoint and nonlocal conditions

n−1∑
k=0

m∑
r=0

brk j∂
k
xq(ηr, t) = gj(t) t ∈ [0, T ], j ∈ {0, 1, . . . , J},

(2.8a)

n−1∑
k=0

m∑
r=1

∫ ηr

ηr−1

brk jx
kq(x, t) dx = gj(t) t ∈ [0, T ], j ∈ {J + 1, . . . , n− 1}.

(2.8b)

Proposition 2.1: The initial-nonlocal value problem (2.2a), (2.2b), (2.8),
with q0 a compatible initial datum in the sense that q0 ∈ Cn[0, 1],

∀ j ∈ {0, . . . , J},
n−1∑
k=0

m∑
r=0

brk j∂
k
xq0(ηr) = gj(0), (2.9a)

∀ j ∈ {J + 1, . . . , n− 1},
n−1∑
k=0

m∑
r=1

∫ ηr

ηr−1

brk jx
kq0(x) dx = gj(0), (2.9b)

is equivalent to an initial multipoint value problem of the form (2.2).

Proof: We show first that each of the nonlocal conditions implies a
multipoint condition. For each j ∈ {J + 1, . . . , n − 1}, differentiating
nonlocal condition (2.8b) with respect to t, and applying the PDE (2.2a)
yields

n−1∑
k=0

m∑
r=1

∫ ηr

ηr−1

brk jx
k∂nx q(x, t) dx =

in

a

d

dt
gj(t). (2.10)
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Integrating by parts k + 1 times, the left hand side is equal to

n−1∑
k=0

m∑
r=1

k∑
p=0

(−1)pbrk j

[
ηk−pr ∂n−p−1

x q(ηr, t)− ηk−pr−1∂
n−p−1
x q(ηr−1, t)

]

=

n−1∑
k=0

m∑
r=0

k∑
p=0

(−1)pb̃r pk j∂
n−p−1
x q(ηr, t),

where

b̃r pk j = ηk−pr

(
brk j − br+1

k j

)
,

defining bm+1
k j = 0 = b0k j for notational convenience. Finally, we rewrite

the operator

n−1∑
k=0

k∑
p=0

(−1)pb̃r pk j∂
n−p−1
x in the form

n−1∑
k=0

b̂rk j∂
k
x

by defining

b̂rk j =

n−1∑
`=n−1−k

(−1)n−1−`ηk+`+1−n
r

(
brk j − br+1

k j

)
.

We have shown that each nonlocal condition (2.8b) implies a correspond-
ing multipoint condition

n−1∑
k=0

m∑
r=0

b̂rk j∂
k
xq(ηr, t) =

in

a

d

dt
gj(t) t ∈ [0, T ], j ∈ {J + 1, . . . , n− 1}.

Evaluating at t = 0 implies compatibility of q0 in the sense of equa-
tion (2.3) with b̂ replacing b.

The converse argument, beginning at

n−1∑
k=0

m∑
r=0

b̂rk j∂
k
xq(ηr, t) =

in

a
γj(t),

allows us to rewrite the left side as the left side of equation (2.10). Ap-
plying the PDE to the integrand, integrating in time from 0 to t implies

n−1∑
k=0

m∑
r=1

∫ ηr

ηr−1

brk jx
kq(x, t) dx−Γj(t) =

n−1∑
k=0

m∑
r=1

∫ ηr

ηr−1

brk jx
kq0(x) dx−Γj(0),

for any choice of antiderivative Γj of γj . Selecting the particular Γj for
which the right hand side evaluates to 0 (equivalently, compatibility con-
dition (2.9b) holds) yields nonlocal condition (2.8b). �
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It is clear from the proof that, in place of one or more nonlocal con-
ditions of the form (2.8b), one may specify nonlocal conditions of the
form

n−1∑
k=0

m∑
r=1

∫ ηr

ηr−1

brk j∂
k
xq(x, t) dx = gj(t) t ∈ [0, T ]. (2.11)

3. The Fokas transform

The Fokas transform is an integral transform method for solving linear
and integrable nonlinear PDE with constant coefficients. Originally mo-
tivated by the quest to extend the inverse scattering transform to the
case of boundary value problems (see [12]), this method has evolved into
a powerful and more general methodology for deriving an effective inte-
gral representation for a variety of linear boundary value problems in two
variables.

Around the turn of the century, the Fokas transform method was devel-
oped for linear half-line (one point) and finite interval (two point) initial-
boundary value problems [13, 14, 15, 16, 17, 18, 19]. An important recent
advance is the generalization of the method to interface problems on a
variety of domains [20, 21, 5, 22, 23].

The application of this methodology for a linear PDE of the form (1.1)
always yields an integral representation over a complex contour, and a
relation linking all initial and boundary values, called in the literature the
global relation. The heart of the solution procedure is the exploitation of
the global relation to characterise the representation in terms of only the
given data—the resulting mapping is called the generalised Dirichlet to
Neumann map.

Below, we summarise the ingredients of the method in general [17], and
then turn to the class of problems considered in this paper and derive the
associated Dirichlet to Neumann map.

3.1. Formal solution representation via Green’s Theorem

We consider the PDE (1.1) for (x, t) ∈ Ω = (0, 1)×(0, T ), where T denotes
a fixed positive constant, and a satisfies the constraint (2.4).

Let

A(x, t, λ) = e−iλx+aλntq(x, t), B(x, t, λ) = e−iλx+aλnt
n−1∑
k=0

ck(λ)∂kxq(x, t),

(3.1)
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where the coefficient polynomials ck(λ) are defined by the identity

n−1∑
k=0

ck(λ)∂kx = ia
λn − `n

λ− `

∣∣∣∣
`=−i∂x

.

The PDE (1.1) can be written in the divergence form

At −Bx = 0.

Using the two-dimensional Green’s theorem, we obtain∫
∂Ω̃

[Adx+B dt] = 0, (3.2)

where ∂Ω̃ denotes the oriented boundary of any simply connected domain
Ω̃ ⊂ Ω. For Ω̃ = (0, 1)× (0, t), this equation yields

−
∫ 1

0
A(x, 0, λ) dx+

∫ t

0
B(0, s, λ) ds−

∫ t

0
B(1, s, λ) ds

+

∫ 1

0
A(x, t, λ) dx = 0. (3.3)

Using (3.1), we write this expression as

∫ 1

0
e−iλxq(x, 0) dx− eaλ

nt

∫ 1

0
e−iλxq(x, t) dx

=

∫ t

0
eaλ

ns
n−1∑
k=0

ck(λ)∂kxq(0, s) ds−
∫ t

0
e−iλ+aλns

n−1∑
k=0

ck(λ)∂kxq(1, s) ds,

(3.4)

for t > 0.
We use the notation

q̂0(λ) =

∫ 1

0
e−iλxq(x, 0) dx, q̂(t, λ) =

∫ 1

0
e−iλxq(x, t) dx, (3.5)

for 0 < t < T . We assume that q(x, 0) and the boundary values ∂kxq(0, t),
∂kxq(1, t) are sufficiently regular functions, and that they are compatible
at the corners of Ω.
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Inverting the Fourier transform in (3.4) for q(x, t), we obtain the im-
plicit representation

q(x, t) =
1

2π

∫ ∞
−∞

eiλx−aλ
nt

[
q̂0(λ)−

∫ t

0
eaλ

ns
n−1∑
k=0

ck(λ)∂kxq(0, s)] ds

+ e−iλ
∫ t

0
eaλ

ns
n−1∑
k=0

ck(λ)∂kxq(1, s) ds

]
dλ, (3.6)

valid for (x, t) ∈ Ω.
Defining C± = {λ ∈ C : ± Im(λ) > 0}, and the domain

DR = {λ ∈ C : |λ| > R, Re(aλn) < 0}, (3.7)

we note that

• eiλx, with x ∈ [0, 1], is analytic and bounded for λ ∈ C+;

• eiλ(x−1), with x ∈ [0, 1], is analytic and bounded for λ ∈ C−;

• eaλ
nt, with t > 0, is analytic and bounded for λ ∈ DR for any R > 0.

A straightforward application of Cauchy’s theorem and Jordan’s
lemma [24] allows us to deform contours and write (3.6) as

q(x, t) =
1

2π

[∫ ∞
−∞

eiλx−aλ
ntq̂0(λ) dλ

−
∫
∂D+

R

eiλx−aλ
nt

∫ t

0
eaλ

ns
n−1∑
k=0

ck(λ)∂kxq(0, s) ds dλ

−
∫
∂D−

R

eiλ(x−1)−aλnt

∫ t

0
eaλ

ns
n−1∑
k=0

ck(λ)∂kxq(1, s) ds dλ

]
, (3.8)

with

D±R = DR ∩ C±. (3.9)

Finally, for η = 0, 1 and τ ∈ [t, T ], analyticity and boundedness of

∫ τ

t
eaλ

ns
n−1∑
k=0

ck(λ)∂kxq(η, s) ds
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for λ ∈ DR permits us to extend the limits of the inner integrals from
(0, t) to (0, τ), obtaining

q(x, t) =
1

2π

[∫ ∞
−∞

eiλx−aλ
ntq̂0(λ) dλ

−
∫
∂D+

R

eiλx−aλ
nt

∫ τ

0
eaλ

ns
n−1∑
k=0

ck(λ)∂kxq(0, s) ds dλ

−
∫
∂D−

R

eiλ(x−1)−aλnt

∫ τ

0
eaλ

ns
n−1∑
k=0

ck(λ)∂kxq(1, s) dsdλ

]
. (3.10)

3.2. The global relation

Equation (3.2) can be viewed either as an implicit representation of the
solution (as we derived above), or as the starting point for determining the
unknown boundary values. To illustrate the latter, let Ω̃ = (ζ, η)× (0, τ)
where 0 6 ζ < η 6 1. Then write equation (3.2) in the form of the
following global relation:

e−iλζ
∫ τ

0
eaλ

ns
n−1∑
k=0

ck(λ)∂kxq(ζ, s) ds−e−iλη
∫ τ

0
eaλ

ns
n−1∑
k=0

ck(λ)∂kxq(η, s) ds

=

∫ η

ζ
e−iλxq(x, 0) dx− eaλ

nτ

∫ η

ζ
e−iλxq(x, τ) dx. (3.11)

The particular global relation depends on the specific choice of the domain
Ω̃, but it is important to stress that we view this as a relation between the
various boundary values of the solution. This point of view is justified a
posteriori by the general property that, because of their specific analyt-
icity properties, the terms involving the unknown solution values at time
τ (i.e. terms involving q(x, τ)) will not contribute to the final solution
representation.

Remark 3.1. An alternate derivation of the above identities, which more
closely follows the classical Fourier transform method for linear evolution
equations on the full line, proceeds as follows. Restricting q to the spatial
interval (ζ, η) and applying the Fourier transform to partial differential
equation (2.2a) yields

d

dt

∫ η

ζ
e−iλxq(x, t) dx =

∫ η

ζ
e−iλx∂xxq(x, t) dx.

Integrating by parts twice on the left hand side produces certain bound-
ary terms and the spatial Fourier transform of the restricted q. Solving
the resulting ODE for the spatial Fourier transform of the restricted q
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on temporal interval (0, t), we obtain equation (3.2) without having to
apply Green’s theorem. The solution representation (3.10) and global
relation (3.11) follow as above.

4. The implementation of the Fokas transform method for
multipoint value problems

Notation For λ ∈ C and k ∈ {0, . . . , n − 1}, we denote a primitive
nth root of unity

α = e2πi/n, (4.1)

an exponential function

Er(λ) = e−iληr , r ∈ {0, . . . ,m}, (4.2)

the Fourier transform of the initial datum, restricted to (ηr−1, ηr)

q̂r0(λ) =

∫ ηr

ηr−1

e−iλxq0(x) dx, r ∈ {1, . . . ,m}, (4.3)

the Fourier transform of the solution at time τ , restricted to (ηr−1, ηr)

q̂rτ (λ) =

∫ ηr

ηr−1

e−iλxq(x, τ) dx, r ∈ {1, . . . ,m}, (4.4)

a time transform of the value of ∂kxq at x = ηr

f rk (λ) = f rk (λ; τ) = ck(λ)

∫ τ

0
eaλ

ns∂kxq(ηr, s) ds, r ∈ {0, . . . ,m}, (4.5)

for τ ∈ [0, T ]. For convenience of notation, we usually suppress the explicit
τ -dependence of f rk .

The implicit integral representation of the solution By implementing
the steps of the Fokas transform method outlined in the previous section,
we find that the solution q(x, t) can be represented as

2πq(x, t) =

∫ ∞
−∞

eiλx−aλ
ntq̂0(λ) dλ−

∫
∂D+

R

eiλx−aλ
nt
n−1∑
k=0

f0
k (λ; τ) dλ

−
∫
∂D−

R

eiλ(x−1)−aλnt
n−1∑
k=0

fmk (λ; τ) dλ, (4.6)
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for x ∈ (0, 1), t ∈ (0, T ), and this representation holds for any choice of
τ ∈ (t, T ] and any R > 0 (see equation (3.10)).

This representation depends on the Fourier transform of the ini-
tial datum q0(x) and on transforms of the boundary values (and their
derivatives) at x = 0 and x = 1, namely ∂kxq(0, τ) and ∂kxq(1, τ),
k ∈ {0, . . . , n−1}, which are not explicitly known. Hence this is a implicit
representation of the solution. The main question is how to characterise
these unknown functions in terms of the known data of the problem.

4.1. The global relation

Using the above notation, we consider the global relation in each of
the rectangles (x, t) ∈ Ω̃r = [ηr−1, ηr] × [0, τ ], r ∈ {1, . . . ,m}, λ ∈ C.
This yields a set of m global relations. By evaluating each relation at
λ, αλ, . . . , αn−1λ, and using the fact that f rk (αλ) = αn−1−kf rk (λ), we ob-
tain the following system of mn equations:

n−1∑
k=0

α(n−1−k)p
[
Er−1(αpλ)f r−1

k (λ)− Er(αpλ)f rk (λ)
]

= q̂r0(αpλ)− eaλ
nτ q̂rτ (αpλ). (4.7)

Explicitly, for each p ∈ {0, 1, . . . , n − 1} we have the following system of
m equations:

n−1∑
k=0

α(n−1−k)p
[
f0
k (λ)− E1(αpλ)f1

k (λ)
]

= q̂1
0(αpλ)− eaλ

nτ q̂1
τ (αpλ)

n−1∑
k=0

α(n−1−k)p
[
E1(αpλ)f1

k (λ)− E2(αpλ)f2
k (λ)

]
= q̂2

0(αpλ)− eaλ
nτ q̂2

τ (αpλ)

...

n−1∑
k=0

α(n−1−k)p
[
Em−1(αpλ)fm−1

k (λ)− Em(αpλ)fmk (λ)
]

= q̂m0 (αpλ)− eaλ
nτ q̂mτ (αpλ).

For the moment, we ignore the terms involving the functions q̂rτ ; in-
deed, as we mentioned already, they will not contribute to the solu-
tion representation we eventually derive. We then have a system of mn
equations for the (m + 1)n unknown functions f rk , k ∈ {0, . . . , n − 1},
r ∈ {0, . . . ,m}. Using the data of the problem, namely the multipoint
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conditions (2.2c), the number of equations increases to (m+1)n, the same
as the number of unknowns.

In the next section, we explicitly formulate this (m+ 1)n dimensional
system.

4.2. Formulation of the generalised Dirichlet-to-Neumann map

Applying the time transform to the multipoint conditions (2.2c), we ob-
tain, for τ ∈ [0, T ] and j ∈ {0, . . . , n− 1},

n−1∑
k=0

m∑
r=0

brk j
(−a)

inck(λ)
f rk (λ; τ) =

−a
in

∫ τ

0
eaλ

nsgj(s) ds. (4.8)

The coefficient (−a/in) has the property that (−a/incn−1(λ)) = 1, and
is included to simplify sightly some of the expressions below. Combining
these n relations with the set of nm global relations we have a system
of (m + 1)n equations, involving the (m + 1)n unknowns f rk (λ; τ), r ∈
{0, . . . ,m}, k ∈ {0, . . . , n− 1}.

Set

hj(λ) = hj(λ; τ) :=
a

−in

∫ τ

0
eaλ

nsgj(s) ds. (4.9)

The functions hj(λ) are the transforms of the known data of the problem.
The unknowns are collected in the (m + 1)n-dimensional vector F given
by

F = F (λ)

= (f0
0 (λ), . . . , f0

n−1(λ), f1
0 (λ), . . . , f1

n−1(λ), . . . , fm0 (λ), . . . , fmn−1(λ)).

In an effort to simplify notation we often suppress the λ-dependence of
F and related objects. For such vectors, we use the following notational
convention:

F =
( r=0,1,...,m︷ ︸︸ ︷
f r0 (λ), . . . , f rn−1(λ)

)
(4.10)

In terms of these functions, equations (4.7) and (4.8), can be expressed
as the linear system

FB =
(
h0(λ), . . . , hn−1(λ),

r=1,2,...,m︷ ︸︸ ︷
−q̂r0(λ),−q̂r0(αλ), . . . ,−q̂r0(αn−1λ)

)
+ eaλ

nτ
(

0, . . . , 0,

r=1,2,...,m︷ ︸︸ ︷
q̂rτ (λ), q̂rτ (αλ), . . . , q̂rτ (αn−1λ)

)
, (4.11a)
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where the vectors on the right hand side are also (m + 1)n-dimensional,
and are written by convention following the same ordering as F given
in (4.10). The (m+ 1)n× (m+ 1)n matrix B is defined by

B =



b0 −e0 0 · · · 0 0
b1 e1 −e1 · · · 0 0
b2 0 e2 · · · 0 0
...

...
...

. . .
...

...
bm−1 0 0 · · · em−1 −em−1

bm 0 0 · · · 0 em

 , (4.11b)

with n× n blocks

br =


br0 0

1
(iλ)n−1 br0 1

1
(iλ)n−1 · · · br0n−1

1
(iλ)n−1

br1 0
1

(iλ)n−2 br1 1
1

(iλ)n−2 · · · br1n−1
1

(iλ)n−2

...
...

. . .
...

brn−1 0 brn−1 1 · · · brn−1n−1

 , (4.11c)

er =


Er(λ) Er(αλ)αn−1 · · · Er(α

(n−1)λ)α(n−1)(n−1)

Er(λ) Er(αλ)αn−2 · · · Er(α
(n−1)λ)α(n−1)(n−2)

...
...

. . .
...

Er(λ) Er(αλ) · · · Er(α
(n−1)λ)α(n−1)

 . (4.11d)

Exploiting the Vandermonde-like structure of er, we rewrite the system
as


r=0,1,...,m︷ ︸︸ ︷

Er(λ)

n−1∑
k=0

f rk (λ), Er(αλ)

n−1∑
k=0

αn−1−kf rk (λ), . . . , Er(α
n−1λ)

n−1∑
k=0

α(n−1)(n−1−k)f rk (λ)

 A

=
(
h0(λ), . . . , hn−1(λ),

r=1,2,...,m︷ ︸︸ ︷
−q̂r0(λ),−q̂r0(αλ), . . . ,−q̂r0(αn−1λ)

)
+ eaλ

nτ
(

0, . . . , 0,

r=1,2,...,m︷ ︸︸ ︷
q̂rτ (λ), q̂rτ (αλ), . . . , q̂rτ (αn−1λ)

)
, (4.12a)

where

A =



β0 −I 0 · · · 0 0
β1 I −I · · · 0 0
β2 0 I · · · 0 0
...

...
...

. . .
...

...
βm−1 0 0 · · · I −I
βm 0 0 · · · 0 I

 , (4.12b)
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that is A is an (m+ 1)× (m+ 1) block matrix, with each block being an
n× n matrix. The block I is the n× n identity matrix and the block βr

is defined by

βr =


Er(−λ)

∑n−1
j=0 b

r
j 0

n(iλ)n−1−j · · · Er(−λ)
∑n−1

j=0 b
r
j n−1

n(iλ)n−1−j

Er(−αλ)
∑n−1

j=0 α
j+1brj 0

n(iλ)n−1−j · · · Er(−αλ)
∑n−1

j=0 α
j+1brj n−1

n(iλ)n−1−j

...
...

Er(−αn−1λ)
∑n−1

j=0 α
(n−1)(j+1)brj 0

n(iλ)n−1−j · · · Er(−αn−1λ)
∑n−1

j=0 α
(n−1)(j+1)brj n−1

n(iλ)n−1−j

 .

(4.12c)
This system, in addition to being simpler, has the convenient property

that the quantities which must be substituted into equation (4.6),

n−1∑
k=0

f0
k (λ) and Em(λ)

n−1∑
k=0

fmk (λ) = e−iλ
n−1∑
k=0

fmk (λ), (4.13)

are precisely the 1st and (mn + 1)st unknown quantities. These two un-
knowns are the only ones for which we need explicit expressions.

4.3. Explicit expression for the generalised Dirichlet-to-Neumann map

To obtain the Dirichlet-to-Neumann map, we must solve the system
(4.12). However, any solution of this linear system, i.e. any expression
for f rk (λ) obtained by solving it (assuming the system is uniquely solv-
able), must necessarily depend also upon the unknown functions q̂rτ (λ),
which are the Fourier transform of the solution at the time t = τ .

An important feature of the Fokas transform approach is that the con-
tribution of such terms can usually be proved to vanish. Indeed, for well-
posed boundary value problems for the PDE (1.1), it can be proved that
any term involving the unknown functions q̂rτ (λ) is bounded and analytic
inside the specific contour along which the term is integrated. Therefore
these terms do not contribute to the solution representation. Indeed, the
condition that the contribution of these terms can be eliminated is pre-
cisely the condition characterizing the class of boundary conditions that
yield a well posed problem [16].

It is crucial for our purposes that the same property hold in the case
of multipoint boundary value problems. Indeed, we need to establish the
following results:

(a) Characterise the class of multipoint boundary conditions that yield
a solution of the system (4.12) with analyticity properties that imply
that the contribution of any term involving the unknown functions
q̂rτ (λ) is bounded and analytic inside D±R .
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(b) Solve the system explicitly for the conditions as in part (a).

We will not give the full characterisation in part (a), but rather assume
that the multipoint conditions we have are admissible in the sense of [15,
16], i.e. they yield a well posed problem which admits a unique solution.
We will however present a discussion and some specific criteria for well-
posedness.

Part (b) is theoretically straightforward, as the solution of the linear
system is simply given by an application of Cramer’s rule. However,
deriving an explicit formula via Cramer’s rule is not straightforward, due
to the size and complexity of the matrix A.

If m = 1, then the Dirichlet-to-Neumann map (4.12) is 2n × 2n, but
a simpler n × n formulation has been found by exploiting the adjoint
boundary conditions [25], or by directly reducing the 2n×2n system [18].
It is expected that similar approaches may be applied for m > 1, but it
is not necessary to do so in order to achieve (b) in some generality.

We must mention here another important issue. The determinant
detA = ∆(λ) is in general an exponential polynomial function of the
complex parameter λ, therefore it will have countably many zeros λj ∈ C.
The location of these zeros depends on the particular multipoint condi-
tions, but can be estimated asymptotically using general results in com-
plex analysis [26]. In certain cases, for example when the operator is
self-adjoint, it is possible to deform the contour integral solution repre-
sentation (4.6) onto small circular contours about these zeros of ∆, and,
via a residue calculation, obtain a series representation of the solution to
the initial-multipoint value problem. However, we emphasize that, even
for m = 1, it is known that it is not always possible to obtain such a series
representation [25, 10]. We leave the study of the criteria that guarantee
the existence of such alternative series solutions to a subsequent paper.

In what follows we analyse this system for the case of second and
third order, i.e. n = 2 or 3, and derive explicit formulae for the solution.
The second order case appears most commonly in the literature, and has
direct applications [1]. We include consideration of the third order case
as the solution generally has a very different behaviour. Heuristically,
this is due to the effect of the boundary conditions destroying the self-
adjoint structure of the spatial operator, as discussed in [27]. Indeed,
for third order problems, the operator may be degenerate irregular (in
the sense of [28, 29]), yet yield well-posed problems. The spectral theory
associated with such problems is strikingly different to that for Birkhoff-
regular problems [25]. Such degenerate-irregular well-posed problems do
not occur for n = 2.

In parallel with the situation for two-point initial-boundary value prob-
lems, we expect that n = 2 and n = 3 are typical of even and odd order



Nonlocal and multipoint boundary value problems 17

multipoint problems, and the higher order cases add technical challenges
but no new mathematical properties.

5. The case n = 2: PDEs of second order

In this section, we solve system (4.12) explicitly. Exploiting the linearity,
we can separate the contributions to the solution of the terms hj , q̂

r
0, and

q̂rτ . This is particularly convenient for the practical purpose of obtain-
ing an effective integral representation from equation (3.6). Indeed, we
will show that the terms involving q̂rτ do not contribute to the solution
representation.

5.1. The Dirichlet to Neumann map

In the case n = 2, the linear system (4.12) has dimension 2(m + 1) and
may be expressed as

( r=0,1,...,m︷ ︸︸ ︷
Er(λ)[f r0 (λ) + f r1 (λ)], Er(−λ)[−f r0 (λ) + f r1 (λ)]

)
A

=
(
h0(λ), h1(λ),

r=1,2,...,m︷ ︸︸ ︷
−q̂r0(λ),−q̂r0(−λ)

)
+ eaλ

nτ
(

0, 0,

r=1,2,...,m︷ ︸︸ ︷
q̂rτ (λ), q̂rτ (−λ)

)
,

(5.1a)

where

A =



B0
0 0 B0

0 1 −1 0 0 0 · · · 0 0 0 0
B0

1 0 B0
1 1 0 −1 0 0 · · · 0 0 0 0

B1
0 0 B1

0 1 1 0 −1 0 · · · 0 0 0 0
B1

1 0 B1
1 1 0 1 0 −1 · · · 0 0 0 0

B2
0 0 B2

0 1 0 0 1 0 · · · 0 0 0 0
B2

1 0 B2
1 1 0 0 0 1 · · · 0 0 0 0

...
...

...
...

...
...

. . .
...

...
...

...
Bm−1

0 0 Bm−1
0 1 0 0 0 0 · · · 1 0 −1 0

Bm−1
1 0 Bm−1

1 1 0 0 0 0 · · · 0 1 0 −1
Bm

0 0 Bm
0 1 0 0 0 0 · · · 0 0 1 0

Bm
1 0 Bm

1 1 0 0 0 0 · · · 0 0 0 1



,

(5.1b)



18 B. Pelloni and D. A. Smith

and, for k ∈ {0, 1}, r ∈ {0, . . . ,m},

Br
0 k(λ) =

1

2
Er(−λ)

[
br0 k

1

iλ
+ br1 k

]
,

Br
1 k(λ) =

1

2
Er(λ)

[
−br0 k

1

iλ
+ br1 k

]
= Br

0 k(−λ).

(5.1c)

So A is the matrix with 1 on the diagonal, −1 on the second super-
diagonal, and 0 elsewhere, with the first two columns replaced as shown.

Lemma 5.1: (a) The linear system

(x0, X0, x1, X1, . . . , xm, Xm)A = (0, 0, y1, Y1, y2, Y2, . . . , ym, Ym), (5.2)

with A given by equation (5.1b) has solution

xr(λ) =
1

∆(λ)

[
m∑

j,k=0

[
Bj

0 0B
k
1 1 −Bk

1 0B
j
0 1

]{ 1 if j<r
0 if j=r
−1 if j>r

} max{j,r}∑
l=min{j,r}+1

yl(λ)

+
1

2

m∑
j,k=0

[
Bj

1 0B
k
1 1 −Bk

1 0B
j
1 1

]{ 1 if j<k
0 if j=k
−1 if j>k

} max{j,k}∑
l=min{j,k}+1

Yl(λ)

]
, (5.3)

and

Xr(λ) =
1

∆(λ)

[
m∑

j,k=0

[
Bj

0 0B
k
1 1 −Bk

1 0B
j
0 1

]{ 1 if k<r
0 if k=r
−1 if k>r

} max{k,r}∑
l=min{k,r}+1

Yl(λ)

− 1

2

m∑
j,k=0

[
Bj

0 0B
k
0 1 −Bk

0 0B
j
0 1

]{ 1 if j<k
0 if j=k
−1 if j>k

} max{j,k}∑
l=min{j,k}+1

yl(λ)

]
, (5.4)

where

∆(λ) =

m∑
j,k=0

[
Bj

0 0B
k
1 1 −Bk

1 0B
j
0 1

]
. (5.5)

(b) The linear system

(x0, X0, x1, X1, . . . , xm, Xm)A = (h0, h1, 0, . . . , 0), (5.6)

with A given by equation (5.1b) has the (r-independent) solution

xr(λ) =
1

∆(λ)

m∑
j=0

(
Bj

1 1h0 −Bj
1 0h1

)
, (5.7)

Xr(λ) =
1

∆(λ)

m∑
j=0

(
Bj

0 0h1 −Bj
0 1h0

)
, (5.8)
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where ∆(λ) is given by equation (5.5).

We use lemma 5.1, whose proof is presented in appendix A, to solve
linear system (5.1), and substitute the solution into

2πq(x, t) =

∫
R

eiλx−aλ
2tq̂r0(λ) dλ−

∫
∂D+

R

eiλx−aλ
2t
[
f0

0 (λ) + f0
1 (λ)

]
dλ

−
∫
∂D−

R

eiλx−aλ
2te−iλ [fm0 (λ) + fm1 (λ)] dλ, (5.9)

which is equation (4.6) for the particular value n = 2. Explicitly, we find
that the relevant data correspond to x0 and xm and (for the homogenous
system, g0 = g1 = 0) are given by

f0
0 (λ) + f0

1 (λ) =
1

∆(λ)

[
m∑
j=1

m∑
k=0

[
Bj

0 0B
k
1 1 −Bk

1 0B
j
0 1

] j∑
l=1

q̂l0(λ)

−1

2

m∑
j,k=0

[
Bj

1 0B
k
1 1 −Bk

1 0B
j
1 1

]{ 1 if j<k
0 if j=k
−1 if j>k

} max{j,k}∑
l=min{j,k}+1

q̂l0(−λ)

]
+Z+(λ),

(5.10a)

and

e−iλ [fm0 (λ) + fm1 (λ)] =
−1

∆(λ)

[
m−1∑
j=0

m∑
k=0

[
Bj

0 0B
k
1 1 −Bk

1 0B
j
0 1

] m∑
l=j+1

q̂l0(λ)

+
1

2

m∑
j,k=0

[
Bj

1 0B
k
1 1 −Bk

1 0B
j
1 1

]{ 1 if j<k
0 if j=k
−1 if j>k

} max{j,k}∑
l=min{j,k}+1

q̂l0(−λ)

]
+Z−(λ).

(5.10b)

In this expression, Z± represents terms with q̂r0 replaced by −q̂rτ . However,
as we show in the next section, these terms are analytic and have sufficient
decay inside D±R to guarantee, using Jordan’s lemma, that they do not
contribute to the integral representation of the solution. It follows that,
when the corresponding integral from equation (4.6) is applied to both
sides of one of equations (5.10), the term involving Z± may be dropped
and the equality remains true.

5.2. The role of analyticity and an effective solution representation

The solution given above does not provide an effective representation of
the solution. Indeed, we have ignored the terms involving the Fourier
transform of the solution at time τ , denoted by q̂rτ . In this section, we
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show that the contribution of the terms involving q̂rτ vanishes from the
solution representation.

The following lemma, whose proof is presented in appendix B, provides
the essential asymptotic result upon which we rely.

Lemma 5.2: For θ ∈ (0, π2 ), define

C±θ := {λ ∈ C : θ 6 arg(±λ) 6 π − θ}. (5.11)

(a) Suppose the multipoint conditions are such that δ+(λ) is not identi-
cally zero, where

δ+(λ) := B0
0 0B

m
1 1−Bm

1 0B
0
0 1 =

1

4
Em(λ) det

(
b00 0

1
iλ + b01 0 b00 1

1
iλ + b01 1

−bm0 0
1
iλ + bm1 0 −bm0 1

1
iλ + bm1 1

)
.

(5.12)
Then, for all θ, as λ → ∞ from within C+

θ away from zeros of ∆, the
solution of system (5.2), with yr = q̂rτ (λ) and Yr = q̂rτ (−λ) is

x0(λ) =
γ+(λ)

δ+(λ)
+O(λ−1), (5.13)

where

γ+(λ) =
−1

2λ2
Em(λ) det

(
g0(τ) g1(τ)
bm1 0 bm1 1

)
. (5.14)

(b) Suppose the multipoint conditions are such that δ−(λ) is not identi-
cally zero, where

δ−(λ) : = Bm
0 0B

0
1 1 −B0

1 0B
m
0 1 (5.15)

=
1

4
Em(−λ) det

(
bm0 0

1
iλ + b01 0 bm0 1

1
iλ + b01 1

−b00 0
1
iλ + bm1 0 −b00 1

1
iλ + bm1 1

)
= −δ+(−λ).

Then, for all θ, as λ → ∞ from within C−θ away from zeros of ∆, the
solution of system (5.2), with yr = q̂rτ (λ) and Yr = q̂rτ (−λ) is

xm(λ) =
γ−(λ)

δ−(λ)
+O(Em(λ)λ−1), (5.16)

where

γ−(λ) =
−1

2λ2
det

(
g0(τ) g1(τ)
b01 0 b01 1

)
. (5.17)

It is an immediate corollary of lemma 5.2 that the classical (homoge-
neous or inhomogeneous) Dirichlet, Neumann, and Robin boundary con-
ditions for m = 1 have x0(λ) = O(λ−1) in C+

θ and xm(λ) = O(Em(λ)λ−1)
in C−θ . Indeed:

1. Dirichlet bm1 0 = bm1 1 = b01 0 = b01 1 = 0, so γ± = 0.
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2. Neumann δ+(λ) = ±Em(λ)/4, so δ+ dominates γ+. Similarly,
δ−(λ) = ±Em(−λ)/4, so δ−(λ)Em(λ) dominates γ−

3. Robin δ±(λ) has a nonzero O(Em(±λ)) term, so δ+ dominates γ+,
and δ−(λ)Em(λ) dominates γ−.

We now give a few multipoint examples for which the same asymptotic
behaviour holds:

4. If the multipoint conditions are all order 0, then br1 j = 0 for all

j ∈ {0, 1, . . . , n − 1} and for all r ∈ {0, 1, . . . ,m}. Hence γ± = 0,
so x0(λ) is O(λ−1) and xm(λ) is O(Em(λ)λ−1). Hence, by proposi-
tion 5.3 the Dirichlet initial-multipoint value problem for the
heat equation is uniquely solvable by this method.

5. Similarly, Neumann and Robin initial-multipoint value problems, each
defined in the natural way, are uniquely solvable.

6. Consider an initial-multipoint value problem (2.2) with m > 1 and
multipoint conditions

q(0, t) +

m−1∑
r=1

[br0 0 + br1 0∂x] q(ηr, t) + β∂xq(1, t) = g0(t) t ∈ [0, T ],

m−1∑
r=1

[br0 1 + br1 1∂x] q(ηr, t) + q(1, t) = g1(t) t ∈ [0, T ].

In particular, 
b00 0 b00 1

b01 0 b01 1

bm0 0 bm0 1

bm1 0 bm1 1

 =


1 0
0 0
0 1
β 0

 ,

so

δ+(λ) =
1

4
Em(λ) det

(
1
iλ 0
β −1

iλ

)
=

1

4λ2
Em(λ).

It is immediate that γ−(λ) = 0. But we would need to show that
γ+(λ) = 0 in order to conclude x0(λ) = O(λ−1). However

γ+(λ) =
1

2λ2
Em(λ)βg1(τ).

Hence, provided the second multipoint condition is homogeneous (or
provided it is at least possible to find τ ∈ [t, T ] such that g1(τ) = 0),
we have that x0(λ) = O(λ−1).
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7. For general inhomogeneous data, it is still possible to show that unique
solvability holds, using an adaptation of the “extension of spatial
domain” argument in [15].

A full classification of the multipoint conditions that yield this asymp-
totic behaviour is beyond the scope of this paper. However, we indicate
in the next proposition how an x0(λ) = O(λ−1), xm(λ) = O(Em(λ)λ−1)
result from lemma 5.2 implies that the contribution of q̂rτ vanishes from
the solution representation.

Proposition 5.3: Suppose that the solution of system (5.2), with yr =
q̂rτ (λ) and Yr = q̂rτ (−λ) satisfies both

x0(λ) = O(λ−1) as λ→∞ from within D+
R (5.18)

xm(λ) = O(Em(λ)λ−1) as λ→∞ from within D−R (5.19)

and also Re(a) > 0. Then, provided R > 0 is chosen sufficiently large,
and for all τ ∈ [t, T ],

0 =

∫
∂D+

R

eiλx+aλ2(τ−t)x0(λ) dλ, (5.20)

0 =

∫
∂D−

R

eiλx+aλ2(τ−t)xm(λ) dλ. (5.21)

Proof: The result follows immediately from Jordan’s lemma, provided

it can be shown that x0 and xm are analytic on D+
R and D−R , respectively.

The functions x0 and xm are defined as ratios of entire functions, hence
they are analytic except at zeros of their (shared) denominator, ∆(λ).
The function λ2∆(λ) is an exponential polynomial with pure-imaginary
(hence, in particular, collinear) exponents and has exactly the same non-
zero zeros as ∆(λ). By [26], the zeros of λ2∆(λ) lie within a pair of
logarithmic strips about the positive and negative real axes. Therefore,
provided Re(a) > 0, it is possible to choose R > 0 sufficiently large that
DR is disjoint from those logarithmic strips. �

As an immediate corollary of proposition 5.3, we obtain that the terms
involving the unknown function q̂rτ do not contribute to the solution rep-
resentation. This proves the following theorem.

Theorem 5.4 (Heat equation): For n = 2, a = 1, multipoint coefficients
brk j that satisfy the criteria of proposition 5.3, and sufficiently smooth
data, applying the method described above to the initial-multipoint value
problem (2.2) yields an effective integral representation of the solution.
Indeed, for R sufficiently large, the solution may be represented using
equation (4.6), in which the values specified in equations (5.10), with
Z± = 0, are substituted for the sums of spectral functions.
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Proposition 5.3 relies crucially upon two criteria:

(i) in the 1st solution of system (5.1), all terms involving q̂rτ are O(λ−1)

as λ → ∞ from within D+
R , and in the (mn + 1)st solution of sys-

tem (5.1), all terms involving q̂rτ are O(Em(λ)λ−1) as λ → ∞ from

within D−R ,
(ii) there exists R > 0 such that DR contains no zeros of ∆.

The principal tool for determining the validity of criterion (i) is lemma 5.2.
As noted in the proof of proposition 5.3, criterion (ii) holds provided
Re(a) > 0. We briefly investigate the consequences of failure of either of
criteria (i) or (ii).

Criterion (ii) is clearly violated if a = ±i, i.e. if the partial differential
equation (2.2a) is the linear Schrödinger equation iqt + qxx = 0. It is
possible to weaken (ii) to allow zeros of ∆ on R ⊂ ∂D, but in order to
exploit this weakening, a more careful analysis of the location of zeros
of ∆ is necessary. It is even possible to allow infinitely many zeros of ∆
in the interior of DR, provided they are sufficiently asymptotically close
to the boundary. This precise condition will be described in forthcoming
work for two-point problems, and the multipoint equivalent is similar.
However it is not possible to discard condition (ii) entirely.

In order to decide criterion (i) for the linear Schrödinger equation, it
would also be necessary to extend lemma 5.2 to analyse λ → ∞ from
within C±, as part of ∂DR lies along R if a = ±i. Now suppose that
criterion (i) is false. If ∆ = 0, then A is not full rank, which means that
the multipoint conditions are not linearly independent (by an extension
of the argument in [30, section 2.2.1.4]), and the problem is certainly ill-
posed. Even if ∆ 6= 0 the Jordan’s lemma argument fails in at least one
of C±. So it appears that (i) is necessary to obtain an effective integral
representation, at least via this method.

5.3. Example: the 3-point problem (1.2)

Consider the problem, studied by Bastys, Ivanauskas, and Sapagovas,
with m = 2, η1 = 1

2 and multipoint conditions

q(0, t)− c0q(
1
2 , t) = h0(t), q(1, t)− c1q(

1
2 , t) = h1(t). (5.22)

These conditions correspond to the choice

b00 0 = 1, b10 0 = −c0, b10 1 = −c1, b20 1 = 1, brk j = 0 otherwise.
(5.23)

In their paper [1], the authors find an explicit expression for the solution
using an ad-hoc method based on separation of variables and Green’s

functions. For their approach, they require that |c0+c1|
2 6= 1.
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Applying the general steps above, we find that in this case the matrix
A is given by

A =



1
2iλE0(−λ) 0 −1 0 0 0
−1
2iλE0(λ) 0 0 −1 0 0
−c0
2iλE1(−λ) −c1

2iλE1(−λ) 1 0 −1 0
c0
2iλE1(λ) c1

2iλE1(λ) 0 1 0 −1
0 1

2iλE2(−λ) 0 0 1 0
0 −1

2iλE2(λ) 0 0 0 1

 , (5.24)

and the determinant ∆ is

∆(λ) =
i sin(λ/2)

λ2

[
c0 + c1

2
− cos(λ/2)

]
, λ 6= 0. (5.25)

The zeros of ∆(λ) are

λn =
(2n+ 1)π

2
, µn = 2 arccos

(
c0 + c1

2

)
+ 2nπ, n ∈ Z. (5.26)

Using the code at [31], the solution is plotted in figures 1, for several
choices of (c0, c1) with homogenous multipoint conditions and consistent
initial datum.

Remark 5.5. The values such that |c0+c1|
2 = 1 correspond to the transition

point between real and complex eigenvalues, but also yield the only case in
which the eigenvalues are nonsimple. The multiplicity of the eigenvalues
is the reason that the Green’s function approach of [1] fails for this case.
However there is no impediment to using the approach we present.

Remark 5.6. As suggested by the eigenvalues (5.26) and demonstrated by
figures 1, the relaxation time of the system increases as the multipoint
conditions approach criticality (c0 + c1 → 2−), but the steady state solu-
tion may be a little surprising for “Dirichlet-like” multipoint conditions.
However, Neumann boundary values may be considered as appropriate
limits of Dirichlet-like multipoint conditions which, in view of the below
comparison, justifies the phenomenon.

By the usual arguments (see, for example, [32, §2.1.4]), the steady
state solution must be a linear function Q(x) = Ax+B, and it is readily
seen that the multipoint conditions imply

A = 2B

(
c0 − 1

c0

)
, A = 2B

(
c1 − 1

2− c1

)
.

If c0 + c1 6= 2, it follows immediately that A = B = 0, and the steady
state solution is identically zero. However, if c0 +c1 = 2 then this method
is insufficient to yield the steady state solution.

This is a manifestation of the effect seen for the classical insulation
(homogeneous Neumann) boundary conditions, arising in both cases from
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(a) Classical Dirichlet boundary
conditions

(b) Subcritical multipoint condi-
tions

(c) Critical multipoint conditions
(d) Supercritical multipoint condi-
tions

Figure 1: Solution of the 3-point problem (1.2) with initial datum a sum
of two box functions, demonstrating the effects of sub/super/critical mul-
tipoint conditions on the qualitative behaviour of the solution
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the presence of an eigenvalue at 0. For the classical insulation case, after
applying the boundary conditions, A is known to be zero, but B is free.
The usual approach is to either

(a) appeal to the physics of the problem: by the first law of thermody-
namics, the constant steady state temperature must be the mean of
the initial temperature profile, or

(b) because v(x, t) = q(x, t)−Q(x)→ 0 as t→∞ and v(x, 0) = q0(x)−
Q(x), and all eigenfunctions but the first decay as t → ∞, it must
be that q0 −Q is orthogonal to the first eigenfunction; this yields a
new equation for the unknown constant function Q.

In our method, the contour deformation and residue calculation argument
described in [30, 18, 33] may be used to find the contribution of the
eigenfunction with eigenvalue at 0, in terms of the Fourier transform of
the initial datum. This approach is equivalent to (b). It is not known
whether there is a method equivalent to (a) for this problem; it is not
clear that the system should conserve energy.

In the supercritical case c0 + c1 > 2, the existence of a negative eigen-
value causes the solution to blow up in the long time limit, rather than
approach the Q(x) = 0 steady state solution.

6. The case n = 3: PDEs of third order

6.1. Dirichlet-to-Neumann map

In the case n = 3, the linear system (4.12) may be expressed as

( r=0,1,...,m︷ ︸︸ ︷
Er(λ)

2∑
k=0

f rk (λ), Er(αλ)

2∑
k=0

α2−kf rk (λ), Er(α
2λ)

2∑
k=0

α2(2−k)f rk (λ)

)
A

=
(
h0(λ), h1(λ), h2(λ),

r=1,2,...,m︷ ︸︸ ︷
−q̂r0(λ),−q̂r0(αλ),−q̂r0(α2λ)

)
+ eaλ

nτ q̂rτ

(
0, 0, 0,

r=1,2,...,m︷ ︸︸ ︷
q̂rτ (λ), q̂rτ (αλ), q̂rτ (α2λ)

)
, (6.1a)
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where

A =



B0
0 0 B0

0 1 B0
0 2 −1 0 0 0 0 0 · · · 0 0 0

B0
1 0 B0

1 1 B0
1 2 0 −1 0 0 0 0 · · · 0 0 0

B0
2 0 B0

2 1 B0
2 2 0 0 −1 0 0 0 · · · 0 0 0

B1
0 0 B1

0 1 B1
0 2 1 0 0 −1 0 0 · · · 0 0 0

B1
1 0 B1

1 1 B1
1 2 0 1 0 0 −1 0 · · · 0 0 0

B1
2 0 B1

2 1 B1
2 2 0 0 1 0 0 −1 · · · 0 0 0

B2
0 0 B2

0 1 B2
0 2 0 0 0 1 0 0 · · · 0 0 0

B2
1 0 B2

1 1 B2
1 2 0 0 0 0 1 0 · · · 0 0 0

B2
2 0 B2

2 1 B2
2 2 0 0 0 0 0 1 · · · 0 0 0

...
...

...
...

...
...

...
...

...
. . .

...
...

...
Bm

0 0 Bm
0 1 Bm

0 2 0 0 0 0 0 0 · · · 1 0 0
Bm

1 0 Bm
1 1 Bm

1 2 0 0 0 0 0 0 · · · 0 1 0
Bm

2 0 Bm
2 1 Bm

2 2 0 0 0 0 0 0 · · · 0 0 1



,

(6.1b)
and, for k ∈ {0, 1, 2}, r ∈ {0, . . . ,m},

Br
0 k(λ) =

1

3
Er(−λ)

[
−
br0 k
λ2

+
br1 k
iλ

+ br2 k

]
, (6.1c)

Br
1 k(λ) =

1

3
Er(−αλ)

[
−
αbr0 k
λ2

+
α2br1 k
iλ

+ br2 k

]
= Br

0 k(αλ), (6.1d)

Br
2 k(λ) =

1

3
Er(−α2λ)

[
−
α2br0 k
λ2

+
αbr1 k
iλ

+ br2 k

]
= Br

0 k(α
2λ). (6.1e)

So A is the matrix with 1 on the diagonal, −1 on the third super-diagonal,
and 0 elsewhere, with the first three columns replaced as shown.

In the following lemma, the index s is understood to be an element of
the group Z3 = {0, 1, 2} of integers modulo 3. The proof is presented in
appendix A.

Lemma 6.1: (a) The linear system

( r=0,1,...,m︷ ︸︸ ︷
xr0, x

r
1, x

r
2

)
A =

(
0, 0, 0,

r=1,2,...,m︷ ︸︸ ︷
yr0, y

r
1, y

r
2

)
, (6.2)



28 B. Pelloni and D. A. Smith

with A given by equation (6.1b) has solution

xrs =
1

∆(λ)

[
m∑

j0,j1,j2=0

D(j0, j1, j2)L(js, r, s)

+
1

2

m∑
j0,j1,j2=0

Ds s+1(j0, j1, j2)L(js, js+1, s+ 1)

+
1

2

m∑
j0,j1,j2=0

Ds s+2(j0, j1, j2)L(js, js+2, s+ 2)

]
, (6.3)

where

∆(λ) =

m∑
j0,j1,j2=0

D(j0, j1, j2), (6.4)

L(j1, j2, s) =

{
1 if j1<j2
0 if j1=j2
−1 if j1>j2

} max{j1,j2}∑
k=min{j1,j2}+1

yks (λ), (6.5)

D(j0, j1, j2) = det

Bj0
0 0 Bj0

0 1 Bj0
0 2

Bj1
1 0 Bj1

1 1 Bj1
1 2

Bj2
2 0 Bj2

2 1 Bj2
2 2

 , (6.6)

and Ds p(j0, j1, j2) is the matrix D(j0, j1, j2) with the row (Bjs
s 0, B

js
s 1, B

js
s 2)

replaced by (Bjs
p 0, B

js
p 1, B

js
p 2).

(b) The linear system

( r=0,1,...,m︷ ︸︸ ︷
xr0, x

r
1, x

r
2

)
A =

(
h0, h1, h2,

r=1,2,...,m︷ ︸︸ ︷
0, 0, 0

)
, (6.7)

with A given by equation (6.1b) has solution

xrs(λ) =
1

∆(λ)

m∑
j0,j1=0

(
hsCs+1 s+2

s+1 s+2(j0, j1) + hs+1Cs+1 s+2
s+2 s (j0, j1)

+hs+2Cs+1 s+2
s s+1 (j0, j1)

)
, (6.8)

where ∆(λ) is given by equation (6.4), and C are the boundary coefficient
minors

Cu vp q (j0, j1) = det

(
Bj0
u p Bj0

u q

Bj1
v p Bj1

v q

)
. (6.9)

Rather than deriving general conditions analogous to the ones found in
section 5.2, that guarantee that the terms involving the unknown function
q̂rτ (λ), we will now compute an explicit example.
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6.2. An explicit example: a 3-point case for n = 3

Consider the initial-multipoint value problem for the PDE qt + qxxx = 0
(n = 3, a = −i) obtained by setting m = 2, η1 = 1

2 and prescribing the
three multipoint conditions

q(0, t)− cq(1
2 , t) = 0, q(1, t) = 0, qx(1, t) = 0. (6.10)

This example is not motivated by any application of which we are aware,
but it is a natural third order analogue of the example considered in
section 5.3. In addition, these particular conditions are the simplest gen-
eralization of the boundary conditions q(0, t) = q(1, t) = qx(1, t) = 0,
which are known to destroy the self-adjoint structure of the spatial oper-
ator. Hence they are interesting from the purely mathematical point of
view, and for this reason we include this as our example.

The given conditions correspond to the choice



b00 0 b00 1 b00 2

b01 0 b01 1 b01 2

b02 0 b02 1 b02 2

b10 0 b10 1 b10 2

b11 0 b11 1 b11 2

b12 0 b12 1 b12 2

b20 0 b20 1 b20 2

b21 0 b21 1 b21 2

b22 0 b22 1 b22 2


=



1 0 0
0 0 0
0 0 0
−c 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0


,



B0
0 0 B0

0 1 B0
0 2

B0
1 0 B0

1 1 B0
1 2

B0
2 0 B0

2 1 B0
2 2

B1
0 0 B1

0 1 B1
0 2

B1
1 0 B1

1 1 B1
1 2

B1
2 0 B1

2 1 B1
2 2

B2
0 0 B2

0 1 B2
0 2

B2
1 0 B2

1 1 B2
1 2

B2
2 0 B2

2 1 B2
2 2


=



−1
3λ2 0 0
−α
3λ2 0 0
−α2

3λ2 0 0
c

3λ2 eiλ/2 0 0
αc
3λ2 eiαλ/2 0 0
α2c
3λ2 eiα

2λ/2 0 0
0 −1

3λ2 eiλ 1
3iλeiλ

0 −α
3λ2 eiαλ α2

3iλeiαλ

0 −α2

3λ2 eiα
2λ α

3iλeiα
2λ


.

It follows that

∆(λ) =
α2 − α
27iλ5

2∑
k=0

αk
(

e−iα
kλ − ce−iαkλ/2

)
,
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and, applying lemma 6.1(a) with yrs(λ) = q̂rτ (αsλ),

x0
0(λ) =

α2 − α
27iλ5∆(λ)

[
− ce−iλ/2q̂1

τ (λ)

−
{
α
(

e−iαλ − ce−iαλ/2
)

+ α2
(

e−iα
2λ − ce−iα2λ/2

)} (
q̂1
τ (λ) + q̂2

τ (λ)
)

+ e−iλ
{
α
(
q̂1
τ (αλ) +

(
1− ceiαλ/2

)
q̂2
τ (αλ)

)
+ α2

(
q̂1
τ (α2λ) +

(
1− ceiα2λ/2

)
q̂2
τ (α2λ)

)}]
,

and

x2
0(λ) =

α2 − α
27iλ5∆(λ)

e−iλ
2∑

k=0

αk
(
q̂1
τ (αkλ) +

(
1− ceiαkλ/2

)
q̂2
τ (αkλ)

)
.

From here, a simple asymptotic analysis yields

x0
0(λ) = O(λ−1) as λ→∞ from within D+

R ,

x2
0(λ) = O(e−iλλ−1) as λ→∞ from within D−R .

This asymptotic result plays the role of lemma 5.2, which enables a Jor-
dan’s lemma argument of the type found in the proof of proposition 5.3.
In this case, the theory of zeros of exponential sums [26] immediately
yields that, for R > 0 sufficiently large, ∆ has no zeros in DR. Thus the
terms involving q̂rτ make no contribution to the solution representation.

Remark 6.2. We stress that the above result holds if and only if a = −i;
if and only if the partial differential equation is

qt + qxxx = 0.

Choosing a = i with the same multipoint conditions specifies an ill-posed
problem. This is in accordance with the results of [10], in which the
above example is studied for c = 0, and it is shown that the problem is
well-posed for a = −i only.

7. Conclusions

We have derived explicit formulae for the solution of a large class of
nonlocal boundary value problems, by formulating them as multipoint
value problems and generalising the machinery of the Fokas transform to
multipoint value problems. While we have derived the set-up for linear
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PDEs of arbitrary order, the formulae have been derived explicitly for
PDEs of order n = 2 and n = 3.

Even though the general expression is quite cumbersome, the deriva-
tion is algorithmic, and the final result fully explicit. In specific examples,
it is possible to simply apply these formulae to find a general expression
for the solution. This expression is always in the form of a uniformly
convergent integral that can be evaluated numerically in a very efficient
manner by numerical complex integration, taking advantage of the ana-
lyticity properties of the solution to select an integration contour of fast
decay, as done in [34, 33].

We have studied also some specific examples of second and third order
problems, and given criteria that guarantee that the solution representa-
tion depends effectively only on the given data of the problem, at least
for n = 2. The full characterisation of multipoint conditions that yield
well posed problems, and the analysis of the cases when the integral rep-
resentation is equivalent to a series representation, are left for a future
publication.

Appendix A. Appendix: Proof of Lemma 5.1 and Lemma 6.1

A.1. Linear system for n = 2

Proof of lemma 5.1(a) A constructive proof may be obtained via Cramer’s
rule, Laplace’s formula and lemma A.1. However the argument is some-
what complex. Instead, we present a direct verification of the validity of
the solution. It must be shown that, for each r ∈ {1, . . . ,m},

xr − xr−1 = yr, (A.1)

Xr −Xr−1 = Yr, (A.2)

and that, for each s ∈ {0, 1},

∆(λ)

m∑
r=0

(Br
0 sxr(λ) +Br

1 sXr(λ)) = 0, (A.3)

with xr, Xr defined by equations (5.3) and (5.4).
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Fixing r ∈ {1, . . . ,m}, it is immediate that

xr − xr−1 =
1

∆(λ)

m∑
j,k=0

[
Bj

0 0B
k
1 1 −Bk

1 0B
j
0 1

]
({

1 if j<r
0 if j=r
−1 if j>r

} max{j,r}∑
l=min{j,r}+1

yl(λ)−
{

1 if j<r−1
0 if j=r−1
−1 if j>r−1

} max{j,r−1}∑
l=min{j,r−1}+1

yl(λ)

)
.

(A.4)

Note that the latter term in expression (5.3) is independent of r, so the
corresponding terms from xr−1 and xr cancel. A case-by-case (j < r −
1, j = r − 1, j = r, j > r) evaluation yields that the parenthetical
quantity in equation (A.4) evaluates to yr(λ) for all j. A substitution
of representation (5.5) for ∆(λ), and cancellation, completes the proof of
equation (A.1). The proof of equation (A.2) is very similar.

With s = 0, the left hand side of equation (A.3) expands to

m∑
r,j,k=0

Br
0 0

[
Bj

0 0B
k
1 1 −Bk

1 0B
j
0 1

]{ 1 if j<r
0 if j=r
−1 if j>r

} max{j,r}∑
l=min{j,r}+1

yl(λ)

− 1

2

m∑
r,j,k=0

Br
1 0

[
Bj

0 0B
k
0 1 −Bk

0 0B
j
0 1

]{ 1 if j<k
0 if j=k
−1 if j>k

} max{j,k}∑
l=min{j,k}+1

yl(λ)

+

m∑
r,j,k=0

Br
1 0

[
Bj

0 0B
k
1 1 −Bk

1 0B
j
0 1

]{ 1 if k<r
0 if k=r
−1 if k>r

} max{k,r}∑
l=min{k,r}+1

Yl(λ)

+
1

2

m∑
r,j,k=0

Br
0 0

[
Bj

1 0B
k
1 1 −Bk

1 0B
j
1 1

]{ 1 if j<k
0 if j=k
−1 if j>k

} max{j,k}∑
l=min{j,k}+1

Yl(λ).

(A.5)

Informed by the fact that yl, Yl are linearly independent, we aim to show
that the third and fourth terms of expression (A.5) cancel. Adding and

subtracting Bj
1 0B

k
1 0B

r
0 1, it holds that

Br
0 0

[
Bj

1 0B
k
1 1 −Bk

1 0B
j
1 1

]
= Bj

1 0

[
Br

0 0B
k
1 1 −Bk

1 0B
r
0 1

]
−Bk

1 0

[
Br

0 0B
j
1 1 −B

j
1 0B

r
0 1

]
. (A.6)
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Hence the fourth term of expression (A.5) is equal to

1

2

(
m∑

r,j,k=0

Bj
1 0

[
Br

0 0B
k
1 1 −Bk

1 0B
r
0 1

]{ 1 if j<k
0 if j=k
−1 if j>k

} max{j,k}∑
l=min{j,k}+1

Yl(λ)

−
m∑

r,j,k=0

Bk
1 0

[
Br

0 0B
j
1 1 −B

j
1 0B

r
0 1

]{ 1 if j<k
0 if j=k
−1 if j>k

} max{j,k}∑
l=min{j,k}+1

Yl(λ)

)
.

(A.7)

Applying the permutation (j, r, k) 7→ (r, j, k) to the indices in the first
sum of expression (A.7), and the permutation (k, r, j) 7→ (r, j, k) to the
indices in the second sum of expression (A.7), we obtain

1

2

(
m∑

r,j,k=0

Br
1 0

[
Bj

0 0B
k
1 1 −Bk

1 0B
j
0 1

]{ 1 if r<k
0 if r=k
−1 if r>k

} max{r,k}∑
l=min{r,k}+1

Yl(λ)

−
m∑

r,j,k=0

Br
1 0

[
Bj

0 0B
k
1 1 −Bk

1 0B
j
0 1

]{ 1 if k<r
0 if k=r
−1 if k>r

} max{k,r}∑
l=min{k,r}+1

Yl(λ)

)
,

(A.8)

which, by {
1 if r<k
0 if r=k
−1 if r>k

}
= −

{
1 if k<r
0 if k=r
−1 if k>r

}
,

is equal to

−
m∑

r,j,k=0

Br
1 0

[
Bj

0 0B
k
1 1 −Bk

1 0B
j
0 1

]{ 1 if k<r
0 if k=r
−1 if k>r

} max{k,r}∑
l=min{k,r}+1

Yl(λ).

Hence the third and fourth terms of expression (A.5) cancel. Similarly,
the first and second terms in (A.5) cancel. This completes the proof of
equation (A.3) for s = 0. A similar argument yields equation (A.3) for
s = 1. �

Proof of lemma 5.1(b) The definitions (5.7), (5.8) of xr and Xr are
independent of r, so they must satisfy xr − xr−1 = 0 = Xr − Xr−1. A
simple evaluation establishes that

m∑
r=0

(Br
0 0xr +Br

1 0Xr) = h0,

m∑
r=0

(Br
0 1xr +Br

1 1Xr) = h1.

�
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A.2. Linear system for n = 3

Proof of lemma 6.1(a) We begin by noting some useful identities. Eval-
uating the definition (6.5) of L, at each of js < r − 1, js = r − 1, js = r,
and js > r,

L(js, r, s)− L(js, r − 1, s) = yrs . (A.9)

It is also immediately apparent from the definition that

L(j1, j2, s) = −L(j2, j1, s). (A.10)

By a row swap, the boundary coefficient minors have the property

Cu vp q (j0, j1) = −Cv up q (j1, j0). (A.11)

Expanding in minors, for any s, p ∈ Z3,

D(j0, j1, j2) = Bjs
s pCs+1 s+2

p+1 p+2(js+1, js+2) +B
js+1

s+1 pC
s+2 s
p+1 p+2(js+2, js)

+B
js+2

s+2 pC
s s+1
p+1 p+2(js, js+1), (A.12a)

Ds s+1(j0, j1, j2) = Bjs
s pCs s+2

p+1 p+2(js+1, js+2) +Bjs+1
s p Cs+2 s

p+1 p+2(js+2, js)

+B
js+2

s+2 pC
s s
p+1 p+2(js, js+1), (A.12b)

Ds s+2(j0, j1, j2) = Bjs
s pCs+1 s

p+1 p+2(js+1, js+2) +B
js+1

s+1 pC
s s
p+1 p+2(js+2, js)

+Bjs+2
s p Cs s+1

p+1 p+2(js, js+1). (A.12c)

We must establish both

xrs − xr−1
s = yrs ∀ r ∈ {1, 2, . . . ,m}, s ∈ Z3, (A.13)

and

2∆(λ)

m∑
r=0

2∑
s=0

Br
s px

r
s = 0 ∀ p ∈ Z3. (A.14)

Note that, in the definition (6.3) of xrs, the second and third triple-sums
are independent of r. Therefore they cancel in the difference xrs − xr−1

s .
Hence

xrs − xr−1
s =

1

∆(λ)

m∑
j0,j1,j2=0

D(j0, j1, j2)[L(js, r, s)− L(js, r − 1, s)]

=
1

∆(λ)
∆(λ)yrs ,

by equation (A.9). Hence (A.13) holds.
Substituting the definition of xrs, expanding the sum over s, collating

terms with like numbers in the final argument of L, and re-expressing as
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a sum over s, the left hand side of equation (A.14) may be expressed as

2∑
s=0

[
2

m∑
r,j0,j1,j2=0

Br
s pD(j0, j1, j2)L(js, r, s)

+

m∑
r,j0,j1,j2=0

Br
s+2 pDs s+2(j0, j1, j2)L(js+2, js, s)

+

m∑
r,j0,j1,j2=0

Br
s+1 pDs s+1(j0, j1, j2)L(js+1, js, s)

]

Using equations (A.12) to expand the determinants D in their minors,
the bracket evaluates to

2

m∑
r,j0,j1,j2=0

Br
s pB

js
s pCs+1 s+2

p+1 p+2(js+1, js+2)L(js, r, s)

+ 2

m∑
r,j0,j1,j2=0

Br
s pB

js+1

s+1 pC
s+2 s
p+1 p+2(js+2, js)L(js, r, s)

+ 2

m∑
r,j0,j1,j2=0

Br
s pB

js+2

s+2 pC
s s+1
p+1 p+2(js, js+1)L(js, r, s)

+

m∑
r,j0,j1,j2=0

Br
s+2 pB

js
s pCs+1 s

p+1 p+2(js+1, js+2)L(js+2, js, s)

+

m∑
r,j0,j1,j2=0

Br
s+2 pB

js+1

s+1 pC
s s
p+1 p+2(js+2, js)L(js+2, js, s)

+

m∑
r,j0,j1,j2=0

Br
s+2 pB

js+2
s p Cs s+1

p+1 p+2(js, js+1)L(js+2, js, s)

+

m∑
r,j0,j1,j2=0

Br
s+1 pB

js
s pCs s+2

p+1 p+2(js+1, js+2)L(js+1, js, s)

+

m∑
r,j0,j1,j2=0

Br
s+1 pB

js+1
s p Cs+2 s

p+1 p+2(js+2, js)L(js+1, js, s)

+

m∑
r,j0,j1,j2=0

Br
s+1 pB

js+2

s+2 pC
s s
p+1 p+2(js, js+1)L(js+1, js, s) (A.15)

In the first line of expression (A.15) there are two identical quadruple-
sums. We switch the roles of indices r ↔ js in one of these sums and see
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that the summand evaluates to

(summand of other sum in line 1)
L(r, js, s)

L(js, r, s)
.

Hence, by equation (A.10), the two quadruple-sums in the first line cancel.
In line 5, we apply the map (r, js, js+1, js+2) 7→ (js+2, js+1, r, js), and

equation (A.10) to see that the sum on line 5 cancels with the sum on
line 9.

In line 4, we apply the map (r, js, js+1, js+2) 7→ (js+2, r, js+1, js),
and equation (A.11). In line 6, we apply the map (r, js, js+1, js+2) 7→
(js+2, js, js+1, r), and equation (A.10). Hence line 3 cancels with lines 4
and 6.

In line 7, we apply the map (r, js, js+1, js+2) 7→ (js+1, r, js, js+2),
and equation (A.11). In line 8, we apply the map (r, js, js+1, js+2) 7→
(js+1, js, r, js+2), and equation (A.10). Hence line 2 cancels with lines 7
and 8.

We have established that expression (A.15) evaluates to 0, so (A.14)
holds. �

Proof of lemma 6.1(b) By definition (6.8), xrs is independent of r, so
xrs − xr−1

s = 0. For each p ∈ Z3, we expand

m∑
r=0

2∑
s=0

Br
s px

r
s =

1

∆

m∑
r,j0,j1=0

[
2∑
s=0

Br
s phsCs+1 s+2

s+1 s+2(j0, j1)

+

2∑
s=0

Br
s phs+1Cs+1 s+2

s+2 s (j0, j1) +

2∑
s=0

Br
s phs+2Cs+1 s+2

s s+1 (j0, j1)

]
.

As {s, s + 1, s + 2} = {0, 1, 2} = {p, p + 1, p + 2} are all representations
of Z3, we reindex the sums over s as

∑p+2
s=p on the right hand side. Then

the bracket evaluates to

hp

(
Br
p pC

p+1 p+2
p+1 p+2(j0, j1) +Br

p+1 pC
p+2 p
p+1 p+2(j0, j1) +Br

p+2 pC
p p+1
p+1 p+2(j0, j1)

)
+ hp+1

(
Br
p+1 pC

p+2 p
p+2 p(j0, j1) +Br

p+2 pC
p p+1
p+2 p(j0, j1) +Br

p pC
p+1 p+2
p+2 p (j0, j1)

)
+hp+2

(
Br
p+2 pC

p p+1
p p+1(j0, j1)+Br

p pC
p+1 p+2
p p+1 (j0, j1)+Br

p+1 pC
p+2 p
p p+1(j0, j1)

)
.

(A.16)

As each term in expression (A.16) is summed over r, j0, j1 separately, we
can cyclically permute the indices (r, j0, j1) 7→ (j0, j1, r) in the second
term on each line of (A.16), and (r, j0, j1) 7→ (j1, r, j0) in the third term
on each line of (A.16). It is then immediate from the definition of C, that
the first line of (A.16) evalutes to hpD(r, j0, j1). However, the second and
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third lines of (A.16) evaluate to

hp+1 det

B
r
p+1 p Br

p+1 p+2 Br
p+1 p

Bj0
p+2 p Bj0

p+2 p+2 Bj0
p+2 p

Bj1
p p Bj1

p p+2 Bj1
p p


+ hp+2 det

B
r
p+2 p Br

p+2 p Br
p+2 p+1

Bj0
p p Bj0

p p Bj0
p p+1

Bj1
p+1 p Bj1

p+1 p Bj1
p+1+1 p

 = 0.

Hence

m∑
r=0

2∑
s=0

Br
s px

r
s =

hp
∆

m∑
r,j0,j1=0

D(r, j0, j1) = hp.

�

A.3. Determinant lemma

The following lemma is useful in finding the solution of linear sys-
tem (4.12). Although it is not used in the above presented proofs of
lemma 5.1 or lemma 6.1, the authors found it helpful for the original
derivation of those results. It is presented here to facilitate the extension
of lemma 5.1 or lemma 6.1 to arbitrary spatial order n.

Lemma A.1: Let n ∈ N, d ∈ N∪{0} and s ∈ Z. Define the d× d matrix
M = M(n, d, s) by

Mj k = δj−s k − δj−s k−n
in terms of the Kronecker δ. Then

detM =


1 if s = 0,

(−1)d if s = n,

(−1)ds if n|d and 1 6 s 6 n− 1,

0 otherwise.

Proof: If s < 0 (s > n) then M is upper (lower) triangular with 0 along
the diagonal, so has determinant 0. If s = 0 (s = n) then M is upper
(lower) triangular with 1 (−1) along the diagonal, so has determinant 1
((−1)d). It remains only to confirm the result holds for 1 6 s 6 n− 1.

Note that, provided 1 6 s 6 n− 1,

detM(n, n, s) = det
[
(δj−s k − δj−s k−n)nj,k=1

]
= det

[
(δj k)

n−s
j,k=1 − (δj k)

n
j,k=n−s+1

]
(−1)(n−1)s,
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after (n− 1)s row swaps. Hence

detM(n, n, s) = (−1)s(−1)(n−1)s = (−1)ns. (A.17)

If d = 0 then n|d and, by convention, detM = 1 = (−1)0s. Suppose
n > d and 1 6 s 6 d. Then row s of M is given by

(Ms k)
d
k=1 = (δ0 k − δ0 k−n)dk=1 = (0)dk=1,

as 0 < k and 0 > d − n > k − n. Hence detM = 0. Now suppose n > d
and d 6 s 6 n− 1. Then row d of M is given by

(Md k)
d
k=1 = (δd−s k − δd−s k−n)dk=1 = (0)dk=1,

as d − s 6 0 < k and k − n 6 d − n < d − s. Hence detM = 0. So the
result holds for 1 6 s 6 n − 1 with 0 6 d 6 n − 1. Next we provide an
inductive step of size n on d.

Fix some n ∈ N, d ∈ N ∪ {0} and 1 6 s 6 n− 1 and suppose

detM(n, d, s) =

{
(−1)ds if n|d,
0 otherwise.

(A.18)

Now consider the matrix

M(n, d+ n, s) =

(
M(n, n, s) A

B M(n, d, s)

)
,

where

Aj k = −δj−s k, Bj k = δj−s k−n.

As the the first s rows of A are 0, the first s rows of M(n, d+ n, s) have
their only nonzero entry in columns n − s + 1, . . . , n. As the first n − s
columns of B are 0, the first n − s columns of M(n, d + n, s) have their
only nonzero entry in rows s+ 1, . . . , n. Hence

detM(n, d+ n, s) = detM(n, n, s) detM(n, d, s),

so, by equations (A.17) and (A.18),

detM(n, d+ n, s) =

{
(−1)(d+n)s if n|d, equivalently n|(d+ n),

0 otherwise.

Hence, by induction, the result holds for all n, d, and s. �
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Appendix B. Appendix: Proof of Lemma 5.2

Proof of lemma 5.2 We present a full proof of (a). The proof of (b) is
entirely analogous. If λ ∈ C+, then

|Em(λ)| > . . . > |E0(λ)| = 1 = |E0(−λ)| > . . . > |Em(−λ)|. (B.1)

Hence, as λ→∞ from within C+
θ ,

∆(λ) = δ+(λ) +O (Em−1(λ)) .

It is immediate from the definition of Br
j k that

δ+(λ) = Em(λ)
[
k0 + k1λ

−1 + k2λ
−2
]
,

for some coefficients k0, k1, k2 ∈ C, of which we have assumed not all are
zero. Therefore, any term in x0(λ)∆(λ) which is O(Em(λ)λ−3) certainly
corresponds to a term of x0(λ) that is O(λ−1), which may be ignored. The
remainder of the proof establishes that the dominant term in x0(λ)∆(λ)
is γ+(λ).

Integrating by parts thrice, and applying the Riemann-Lebesgue
lemma to control the remainder,

q̂rτ (λ) =

∫ ηr

ηr−1

e−iλxq(x, τ) dx

=

[
e−iλx

(
i

λ
q(x, τ) +

1

λ2
qx(x, τ)

)]x=ηr

x=ηr−1

+O
(
Er(λ)λ−3

)
= Er(λ)

[
λ−1iq(ηr, τ) + λ−2qx(ηr, τ)

]
+O

(
Er(λ)λ−3

)
, (B.2a)

q̂rτ (−λ) = Er−1(−λ)
[
λ−1iq(ηr−1, τ)− λ−2qx(ηr−1, τ)

]
+O

(
Er−1(λ)λ−3

)
. (B.2b)

By asymptotic expansions (B.2) and (B.1), all dominant terms must be
among those listed below

x0(λ)∆(λ) =

 m∑
j=1

[
Bj

0 0B
m
1 1 −Bm

1 0B
j
0 1

]
(−1)q̂jτ (λ)

+

m∑
j,k=0

1

2

[
Bj

1 0B
k
1 1 −Bk

1 0B
j
1 1

]{ 1 if j<k
0 if j=k
−1 if j>k

} max{j,k}∑
l=min{j,k}+1

q̂lτ (−λ)


+O

(
Em−1(λ)λ−1

)
(B.3)
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The first term is dominant in the sum over l, and the double sum over
j, k can be rewritten

m−1∑
j=0

m∑
k=j+1

det

(
Bj

1 0 Bj
1 1

Bk
1 0 Bk

1 1

)
q̂j+1
τ (−λ),

whose dominant terms occur for k = m. Expanding the determinant, this
sum evaluates to

1

4

m−1∑
j=0

Ej(λ)Em(λ) det

(
−bj0 0

1
iλ + bj1 0 −bj0 1

1
iλ + bj1 1

B0 B1

)
× Ej(−λ)

[
λ−1iq(ηj , τ)− λ−2qx(ηj , τ)

]
+O

(
Em(λ)λ−3

)
, (B.4)

where

B0 := −bm0 0

1

iλ
+ bm1 0 and B1 := −bm0 1

1

iλ
+ bm1 1

are defined for notational convenience. Similarly, the first sum in equa-
tion (B.3) can be expanded to

−1

4

m∑
j=1

Ej(−λ)Em(λ) det

(
bj0 0

1
iλ + bj1 0 bj0 1

1
iλ + bj1 1

B0 B1

)
× Ej(λ)

[
λ−1iq(ηj , τ) + λ−2qx(ηj , τ)

]
+O

(
Em(λ)λ−3

)
.

Exploiting linearity of the determinants in their top rows, and after some
judicious cancellation, we arrive at

x0(λ)∆(λ) =
−1

2
Em(λ)λ−2

×
m−1∑
j=1

(
det

(
bj0 0 bj0 1
B0 B1

)
q(ηj , τ) + det

(
bj1 0 bj1 1
B0 B1

)
qx(ηj , τ)

)
+

1

4
Em(λ) det

(
−b00 0

1
iλ + b01 0 −b00 1

1
iλ + b01 1

B0 B1

)
×
[
λ−1iq(ηj , τ)− λ−2qx(ηj , τ)

]
− 1

4
Em(λ) det

(
bm0 0

1
iλ + bm1 0 bm0 1

1
iλ + bm1 1

B0 B1

)
×
[
λ−1iq(ηj , τ) + λ−2qx(ηj , τ)

]
+O

(
Em(λ)λ−3

)
. (B.5)
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Discarding O
(
Em(λ)λ−3

)
terms, the lower rows of the determinants

in the second line of equation (B.5) may be replaced by (bm1 0, b
m
1 1). As

1

4
Em(λ) det

(
−b00 0

1
iλ + b01 0 −b00 1

1
iλ + b01 1

B0 B1

)
= δ+(λ)− 1

2iλ
Em(λ) det

(
b00 0 b00 1

bm1 0 bm1 1

)
+O

(
Em(λ)λ−2

)
,

the third and fourth lines of equation (B.5) can be replaced by

−1

2
Em(λ)λ−2 det

(
b00 0 b00 1

bm1 0 bm1 1

)
q(ηj , τ) +O

(
δ+(λ)λ−1

)
.

Moreover, Em(λ)λ−3 = O(δ+(λ)λ−1), so the new error term O(δ+(λ)λ−1)
includes the previous error term O(Em(λ)λ−3). The matrix whose deter-
minant is calculated in the fifth line of equation (B.5) has linearly depen-
dent O(1) and O(λ−1) components of its entries, so it may be replaced
by a simpler determinant, which is a constant multiple of λ−1. So the
three to six of equation (B.5) simplify to the additional terms j = 0 and
j = m in the first sum on the second line of equation (B.5) (plus lower
order terms). That is

x0(λ)∆(λ) =
−1

2
Em(λ)λ−2

×

 m∑
j=0

det

(
bj0 0 bj0 1
bm1 0 bm1 1

)
q(ηj , τ) +

m−1∑
j=1

det

(
bj1 0 bj1 1
bm1 0 bm1 1

)
qx(ηj , τ)


+O

(
δ+(λ)λ−1

)
. (B.6)

Note that

det

(
bm1 0 bm1 1

bm1 0 bm1 1

)
= 0,

so the upper limit of the latter sum in equation (B.6) may be increased
to m. Further,

Em(λ) det

(
b01 0 b01 1

bm1 0 bm1 1

)
= 4δ+(λ) +O

(
Em(λ)λ−1

)
,
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so the lower limit of the latter sum in equation (B.6) may be reduced to
0, and

x0(λ)∆(λ) =
−1

2λ2
Em(λ)

×
m∑
j=0

[
det

(
bj0 0 bj0 1
bm1 0 bm1 1

)
q(ηj , τ) + det

(
bj1 0 bj1 1
bm1 0 bm1 1

)
qx(ηj , τ)

]
+O

(
δ+(λ)λ−1

)
.

Finally, exploiting linearity of the determinants in their first rows, and
applying the multipoint conditions (2.2c),

x0(λ)∆(λ) = γ+(λ) +O
(
δ+(λ)λ−1

)
.

�
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