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Abstract: In this paper, the secrecy performance of the classic Wyner’s wiretap model over k-µ shadowed fading channels is
studied. More specifically, we derive two analytical expressions for the lower bound of secure outage probability at high signal-
to-noise ratio regime and the probability of strictly positive secrecy capacity over k-µ shadowed fading channels, respectively. As
there exist infinite series in the two derived expressions, we further obtain two simple and explicit approximate expressions for
the lower bound of secure outage probability and the probability of strictly positive secrecy capacity with the aid of the moment
matching method. It is shown that the match between the analytical results and simulations is very excellent for all parameters
under considerations.

1 Introduction

Physical layer security (PLS) has emerged as a promising technique
to provide trustworthiness and reliability for the future wireless com-
munication [1, 2]. Unlike the traditional encryption algorithms, as
well as the conventional security mechanisms with encryption pro-
cessing, the key feature of PLS is to exploit the physical layer
characteristics of wireless channels. Recently, the secure perfor-
mance of communication systems over fading channels has been
studied in the corresponding literatures [3-7]. Authors in [3] defined
the secrecy capacity and characterized the secrecy capacity of a
quasi-static Rayleigh fading channel in terms of outage probability.
The exact closed-form expressions for the secure outage probability
(SOP) and the probability of the strictly positive secrecy capac-
ity (SPSC) of multiple-input multiple-output (MIMO) system over
the Rayleigh fading channels were derived in [4]. Pan et al. [5]
derived the analytical expressions for the exact and asymptotic SOP
over Rician fading channels based on a hybrid visible light com-
munication (VLC)-radio frequency (RF) system model. [6] derived
a simple expression of the secrecy outage probability over Rician
fading channels when the eavesdropper’s location and the channel
state information (CSI) of the main channel were known. In [7],
zhao et al. derived the exact closed-form expressions of the prob-
ability of non-zero secrecy capacity and SOP over Nakagami-m
fading channels. Unfortunately, the channel models investigated in
the aforementioned studies are limited to small scale fading chan-
nels while ignoring the effects of shadowing fading. In practice,
the secure performance suffers from not only small fading, but also
shadowing fading which is a crucial factor of communication system
[8, 9].

In this context, the performances of secure communications over
non-small-scale fading channels and α-µ fading channels were stud-
ied in [10] and [11], respectively. Authors in [12] performed a
secrecy analysis of PLS over generalized-K (GK ) fading chan-
nels using a mixture gamma distribution, where the closed-form
expressions for the average secrecy capacity (ASC), SOP, and SPSC
were derived. The work of [12] was extended to the case of single-
input multiple-output (SIMO) system where the exact ASC, SOP

and SPSC of SIMO systems over GK fading channels were investi-
gated in [13]. As a general composite channel model, theGK model
encompasses Nakagami-mmultipath fading and Gamma shadowing
fading and can characterize the fluctuations of homogeneous scat-
tering environments [14]. However, the channel model is incapable
of characterizing the fluctuations of inhomogeneous scattering envi-
ronments. To this end, a new composite channel model referred to
k-µ shadowed model was proposed in [15], which can capture ran-
domly fluctuations for the general line of sight (LOS) propagation
scenario. Moreover, the k-µ shadowed model can be reduced to the
specific model such as Rician and Gamma shadowing fading, one-
side Gaussian, Rayleigh, Nakagami-m, Rician and k-µ multipath
fading based on different parameter settings. Recently, a few studies
have been carried out based on k-µ shadowed fading channels. [16]
derived approximate expressions for outage probability and channel
capacity when the desired signals and interference signals both expe-
rience k-µ shadowed fading. The analytic expression of the ergodic
capacity over k-µ shadowed fading was presented in [17]. Authors
in [18] investigated the effective rate of multiple-input single-output
(MISO) systems over independent and identically distributed (i.i.d.)
k-µ shadowed fading channels. The performance of energy detection
over k-µ shadowed fading was analysed in [19]. To the best of the
authors’ knowledge, the performance of the physical layer security
over k-µ shadowed fading channels has not been presented in the
open technical literature, which motivates us to develop this treatise.

Motivated by the above discussion, in this study, we investigate
the secrecy performance over the k-µ shadowed fading channels.
The analytical expressions of the SOP lower bound and exact SPSC
for the classic Wyner’s wiretap model are derived. However, the
derived expressions contain infinite series, which makes challenge to
analyze the influence of fading parameters on system performance.
To solve this problem, the approximate expressions of the asymp-
totic lower bound of SOP and the asymptotic SPSC are derived
with the aid of a moment matching method. Two explicit asymp-
totic expressions are easy to be numerically evaluated because they
provide a unified form in terms of well-known Gamma function and
Meijer G-function. Moreover, our theoretical analysis is confirmed
by Monte-Carlo simulation results.
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Fig. 1: System model

The remainder of this paper is organised as follows: In Section 2,
we introduce the system model and the statistics for the k-µ shad-
owed distribution. Section 3 derives the exact analytical expressions
for the lower bound of the SOP and the SPSC over the k-µ shadowed
fading channels based on the classic Wyner’s wiretap model, respec-
tively. In Section 4, we provide asymptotic expressions of the lower
bound of SOP and SPSC by using the moment matching method.
Section 5 showcases numerical results according to the Monte-Carlo
simulations to validate the correctness of our analyses. Finally, the
paper is concluded in Section 6.

2 System model and statistics for the k-µ
shadowed distribution

2.1 System Model

In this subsection, the classic Wyner’s wiretap model consisting of
three entities is considered: a legitimate transmitter (S), a legitimate
receiver (D), and an eavesdropper (E). As shown in Fig. 1, the com-
munication occurs over the main channel between S and D, while E
is able to intercept the signal from the eavesdropper channels. We
have the following assumption that both the main and eavesdropper
channels experience independent and non-identical k-µ shadowed
fading. Two channels are block fading channels where the channels
vary independently from one block to another while remaining con-
stant during a block period. Additionally, it is assumed that S has the
perfect CSI of both main and eavesdropper channels. In practice, it
is very difficult to obtain perfect CSI, which is obtained by channel
estimation.This problem will be as our future research content. The
received signals at the receiver (D and E) can be written as

yi = hix+ n, i ∈ {D,E} (1)

where hi denotes the k-µ shadowed fading channels between the
transmitter and the single receiver, i ∈ {D,E}means the parameter
belongs to the main channel or the eavesdropper channel; x is the
transmitted signal; n represents the additive white Gaussian noise
having zero mean and fixed variance σ2

n.

2.2 Statistics for The k-µ Shadowed Distribution

In the following, the main and eavesdropper channels undergo inde-
pendent and non-identical k-µ shadowed fading, and the probability
density function (PDF) of the SNR over k-µ shadowed fading
channels is given as [15]

fi(γ) =
µi
µimi

mi(1 + ki)
µi

Γ(µi)(µiki +mi)
miΩi

µi
γµi−1

× exp

(
−µi(1 + ki)

Ωi
γ

)
×1F1

(
mi, µi;

µ2
i ki(1 + ki)

(µiki +mi)Ωi
γ

)
, i ∈ {D,E}

(2)

where Ωi = E[γi] is the average SNR at D or E, ki, µi and mi
are channel’s parameters of D or E with the meanings of the ratio
between the total power of the dominant components and the total
power of the scattered waves, the number of clusters, and the shaping
parameter of the Nakagami-m random variable (RV), respectively.
Γ(·) and 1F1(·) are the Gamma function [20, Eq. (8.310.1)] and the
confluent hypergeometric function[20, Eq. (9.14.1)], respectively.

Then, the cumulative distribution function (CDF) of k-µ shad-
owed distribution of SNR is given as [15]

Fi(γ) =
µi
µi−1mi

mi(1 + ki)
µi

Γ(µi)(µiki +mi)
miΩi

µi
γµi

× Φ2 (µi −mi,mi, µi + 1 ;

−µi(1 + ki)γ

Ωi
,−µimi(1 + ki)γ

(µiki +mi)Ωi

)
, i ∈ {D,E}

(3)

where Φ2(·) is the confluent multivariate hypergeometric function
[20].

3 Analyses for secure outage probability and
probability of strictly positive secrecy capacity

In this section, the exact analytical closed-form expressions for the
lower bound of the SOP and the SPSC over k-µ shadowed fading
channels are derived in the following theorems, respectively.

3.1 SOP Analysis

As an important performance metric to characterize wireless com-
munications, SOP is the probability that the instantaneous secrecy
capacity is smaller than the target rate [3, 21], which is defined as

Pout(RS) = P (CS ≤ RS) (4)

where CS = Cm − Cw , CS is the instantaneous secrecy capacity
for the wireless fading channels; Cm and Cw denote the capacity
of the main channel and the eavesdropper channel, respectively; RS
represents a target secrecy rate.

Theorem 1. For k-µ shadowed fading channels, the closed-form
expression for the lower bound of the SOP is given as

SOPL =
aµD

D

µDΓ(µD)bmD

D Γ(cE)

×
∞∑

p,q=0

(cD)p(mD)pb
d−mE

E

(µD + 1)p+qp!q!bD
qap+q+µD

E

× (−aD)p+qΘp+q+µDG1,2
2,2

[
kEµE
mE

∣∣∣1+mE−µE ,1−d
0,1−µE

]
(5)

where ai =
µi(1+ki)

Ωi
, bi = µiki+mi

mi
, ci = µi −mi, d = p+ q +

µD + µE , and Θ = exp(Cth), Cth is the target secrecy capacity
threshold, G(·) is the Meijer G-function [20, Eq. (9.301)], and (·)!
is the factorial operation.

Proof: The detailed proof is provided in Appendix �

3.2 SPSC Analysis

In this subsection, we consider another benchmark, SPSC, which
is the probability of existence of strictly positive secrecy capacity
[3, 21]. In secure communications, SPSC is an essential metric to
characterize the system performance, which is defined as

Pout = P (CS > 0) (6)
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Theorem 2. For k-µ shadowed fading channels, the closed-form
expression for SPSC is given as

SPSC = 1−
aµD

D

µDΓ(µD)bmD

D Γ(cE)

×
∞∑

p,q=0

(cD)p(mD)pb
d−mE

E

(µD + 1)p+qp!q!bD
qap+q+µD

E

(−aD)p+q

×G1,2
2,2

[
kEµE
mE

∣∣∣1+mE−µE ,1−d
0,1−µE

]
(7)

Proof: According to (6), SPSC can be obtained as

SPSC = P {CS(γD, γE) > 0}
= 1− P {ln(1 + γD)− ln(1 + γE) ≤ 0}
= 1− P {γD ≤ γE}

= 1−
∫∞
0
FD(γE)fE(γE)dγE

= 1−
aµD

D aµE

E

µDΓ(µD)bmD

D bmE

E Γ(cE)

×
∞∑

p,q=0

(cD)p(mD)p
(µD + 1)p+qp!q!bD

q (−aD)p+q

×
∫∞
0
γE

d−1G1,0
0,1

[
aE
bE

γE

∣∣∣−0 ]
×G1,1

1,2

[
aEkEµE
bEmE

γE

∣∣∣1+mE−µE

0,1−µE

]
dγE

(8)

Using (A.14), we can derive SPSC as (7) after some simplifica-
tions. �

Obviously, the exact analytical expressions for the lower bound
of the SOP and the SPSC over k-µ shadowed fading channels can be
efficiently evaluated by standard mathematical software, e.g. MAT-
LAB and/or MATHEMATICA. However, the analytical expressions
both involve an infinite series which is adverse to the analysis. To
handle this problem, we further provide two simple and explicit
approximate expressions for the probability of the SOP and the
SPSC over k-µ shadowed fading channels by employing the moment
matching method in the following section.

4 Approximate secure outage probability and
probability of strictly positive secrecy capacity

In this section, we perform the approximate analysis by employing
the moment matching method, where this approximate method is
adopted for the following reasons:

(1) Gamma distribution is friendlier and mathematically tractable,
which is extensively used to approximate many types of fading chan-
nels [14, 16, 18, 22];

(2) Some research contributions have shown that κ− µ shad-
owed distribution can be effectively approximated by the Gamma
distribution [16, 18].

Based on the moment matching method, the PDF of squared k-µ
shadowed RV is expressed as

fi(γ) =
1

Γ(∆i)

(
Ωi
∆i

)−∆i

γ∆i−1 exp

(
−∆i

Ωi
γ

)
(9)

where ∆i =
miµi(1+ki)

2

mi+µiki2+2miki
.

According to the theory of probability, the CDF of squared k-µ
shadowed RV is derived as

Fi(γ) =
1

Γ(∆i)
Υ

(
∆i,−

∆i

Ωi
γ

)
(10)

where Υ(α, x) =
∫x

0
e−ttα−1dt is the lower incomplete Gamma

function [20, Eq. (8.350.1)].

Theorem 3. For k-µ shadowed fading channels, the approximate
expression for the lower bound of SOP is given as

SOPL =
1

Γ(∆D)Γ(∆E)
G1,2

2,2

[
ΩE∆D

ΩD∆E
Θ
∣∣∣1,1−∆E

∆D,0

]
(11)

Proof: SOP can be presented as

SOP = Pr {CS(γD, γE) ≤ Cth}
= P {γD ≤ γEΘ + Θ− 1}

=

∫∞
0
FD(ΘγE + Θ− 1)fE(γE)dγE

=
Ω−∆E

E

Γ(∆D)Γ(∆E)∆−∆E

E

∫∞
0
γE

∆E−1 exp(−∆E

ΩE
γE)

×Υ(∆D,
∆D(ΘγE + Θ− 1)

ΩD
)dγE

(12)
For Υ(∆D,

∆D(ΘγE+Θ−1)
ΩD

), Θ = exp(Cth) is a finite value.
As disscussed in Section 3, we can obtain

Υ(∆D,
∆D(ΘγE + Θ− 1)

ΩD
) ≈ Υ(∆D,

∆DΘγE
ΩD

), γE →∞
(13)

Then, using (A.11) , the lower bound of SOP can be given by

SOPL = P {γD ≤ ΘγE}

=
Ω−∆E

E

Γ(∆D)Γ(∆E)∆−∆E

E

∫∞
0
γE

∆E−1 exp(−∆E

ΩE
γE)

×Υ(∆D,
∆DΘγE

ΩD
)dγE

(14)
The integral in (14) contains a power function, an exponential

function and a lower incomplete gamma function. Using [23, Eq.
(11)] and the integral in [24, Eq. (8.4.16.1)], we can rewrite the
exponential function and the lower incomplete gamma function in
the form of MeijerG-function as

exp(−∆E

ΩE
γE) = G1,0

0,1

[
∆E

ΩE
γE

∣∣∣−0 ] (15)

Υ(∆D,
∆DΘγE

ΩD
) = G1,1

1,2

[
∆DΘγE

ΩD

∣∣∣1∆D,0

]
(16)

Then, by substituting (15) and (16) into (14), and utilizing (A.14) ,
we can finally derive the approximate expression for the lower bound
of SOP as

SOPL = P {γD ≤ ΘγE}

=
Ω−∆E

E

Γ(∆D)Γ(∆E)∆−∆E

E

∫∞
0
γE

∆E−1G1,0
0.1

[
∆E

ΩE
γE

∣∣∣−0 ]
×G1,1

1,2

[
∆DΘγE

ΩD

∣∣∣1∆D,0

]
dγE

=
1

Γ(∆D)Γ(∆E)
G1,2

2,2

[
ΩE∆D

ΩD∆E
Θ
∣∣∣1,1−∆E

∆D,0

]
(17)
�
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Fig. 2: SOP with changing (kD, kE) versus λ, (kD, kE) =
{(0.5, 2) , (2, 2) , (10, 2)}

Theorem 4. For k-µ shadowed fading channels, the approximate
expression for the SPSC is given as

SPSC = 1− 1

Γ(∆D)Γ(∆E)
G1,2

2,2

[
ΩE∆D

ΩD∆E

∣∣∣1,1−∆E

∆D,0

]
(18)

Proof: Referring to (8), SPSC can be obtained as

SPSC = P {CS(γD, γE) > 0}
= 1− P {γD ≤ γE}

= 1−
∫∞
0
FD(γE)fE(γE)dγE

= 1−
Ω−∆E

E

Γ(∆D)Γ(∆E)∆−∆E

E

∫∞
0
γE

∆E−1

×G1,0
0.1

[
∆E

ΩE
γE

∣∣∣−0 ]G1,1
1,2

[
∆DγE

ΩD

∣∣∣1∆D,0

]
dγE

(19)

In (19), the integral consists of three terms: a power function and
two exponential functions. As suggested by (A.14), we can finally
derive the expression of (18) after some algebraic operations. �

5 Numerical results

In this section, the proposed analytical derivations are validated
against the simulation results, and the effects of various channel
parameters on the secrecy performance are discussed. According
to Eq. (2), the k-µ shadowed RVs are generated in 105 realiza-
tions. These random RVs are used to obtain the simulation results
of the SOP and SPSC. Unless other specified, we have the follow-
ing assumption: Cth = 1dB, ΩD = λΩE , SOP simulation: ΩE =
20dB, SPSC simulation: ΩE = 1dB, where λ represents the ratio of
the received SNR between the main and the eavesdropper channels.

In Figs. 2 and 3, the approximate lower bound of the SOP in (11)
and approximate SPSC in (18) are compared with the simulation
results versus λ for parameters (kD, kE), respectively. The specific
parameters are set as follows: µD = µE = 2, mD = mE = 1. It
is clearly shown that the simulation results sufficiently match with
analysis results, A higher λ causes a smaller SOP and a bigger
SPSC since a higher λ represents that the quality of main chan-
nel outperforms the one of eavesdropper channel. In addition, when
λ > −2dB, SOP increases and SPSC decreases while kD increas-
ing, because k is the ratio between the total power of the dominant
components and the total power of the scattered waves. Finally,
we can observe that small kD is beneficial to enhance the secrecy
performance of the considered system.
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Fig. 3: SPSC with changing (kD, kE) versus λ, (kD, kE) =
{(10, 2) , (2, 2) , (0.5, 2)}
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Fig. 4: SOP with changing (µD, µE) versus λ, (µD, µE) =
{(10, 2) , (2, 2) , (1, 2)}
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Fig. 5: SPSC with changing (µD, µE) versus λ, (µD, µE) =
{(1, 2) , (2, 2) , (10, 2)}

Figs. 4 and 5 compare the approximate analysis results with the
simulations of SOP and SPSC versus λ for different parameters
(µD, µE). In this simulation, the parameters are set as follows:
kD = kE = 2, mD = mE = 1. The figures illustrate that the sim-
ulated and analytical curves are closely matched for all parameters
under consideration. Furthermore, when λ > −2dB, we observe that
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Fig. 6: SOP with changing (mD,mE) versus λ, (mD,mE) =
{(10, 1) , (3, 1) , (1, 1)}
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Fig. 7: SPSC with changing (mD,mE) versus λ, (mD,mE) =
{(1, 1) , (3, 1) , (10, 1)}

large value of µD yields lower SOP and higher SPSC, which means
that large µD is beneficial for enhancing SOP and SPSC, since µ is
the number of clusters.

In Figs. 6 and 7, we compare simulation and approximate analy-
sis results of the SOP and SPSC over k-µ shadowed fading channels
versus λ for different parameters (mD,mE). The parameter sets are
given as follows: kD = kE = 2, µD = µE = 2. The close match
between analysis and simulation results verifies the correctness of
our proposed analytical models. Moreover, we can see that SOP
decreases and SPSC increases by increasing mD with λ > −2dB,
where m is the shaping parameter of Nakagami-m RV. Finally, we
can observe that large mD is helpful in improving the performance
of PLS.

6 Conclusion

In this paper, we investigate the secrecy performance of the classic
Wyner’s wiretap model over k-µ shadowed channels. The closed-
form expressions for the SOP lower bound followed by high SNR
analysis and the exact SPSC are derived. However, the derived
expressions involve infinite series which is a challenge to further
analysis. In order to solve this problem, we obtain two simple and
explicit approximate expressions for the lower bound of the SOP
and the SPSC by using a moment matching method. Finally, the
asymptotic expressions are validated through the simulation results.
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9 Appendix

In this section, the proof of theorem 1 is given.
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Proof: Based on the definition in (4), SOP can be provided as

SOP = P {CS(γD, γE) ≤ Cth}
= P {ln(1 + γD)− ln(1 + γE) ≤ Cth}

= P

{
1 + γD
1 + γE

≤ Θ

}
= P {γD ≤ γEΘ + Θ− 1}

=

∫∞
0

∫ΘγE+Θ−1

0
fD(γD)dγDfE(γE)dγE

=

∫∞
0
FD(ΘγE + Θ− 1)fE(γE)dγE

(A.1)

According to [25], we can obtain the following formula as

pFq
(
x
∣∣∣apbq ) =

Γ(bq)

Γ(ap)
G1,p
p,q+1

[
−x
∣∣∣1−ap0,1−bq

]
(A.2)

Employing the following identity [24, Eq. (7.11.1.2)],

1F1 (a, b;x) = ex1F1 (b− a, b;−x) (A.3)

and after some algebraic manipulations, the confluent hypergeomet-
ric function in (2) can be rewritten as

1F1

(
mi, µi;

µ2
i ki(1 + ki)

(µiki +mi)Ωi
γ

)
= exp(

aikiµi
bimi

γ)
Γ(µi)

Γ(ci)

×G1,1
1,2

[
aikiµi
bimi

γ
∣∣∣1+mi−µi

0,1−µi

]
(A.4)

Then, (2) can be rewritten as

fi(γ) =
ai
µi

bi
miΓ(ci)

γµi−1 exp(−ai
bi
γ)

×G1,1
1,2

[
aikiµi
bimi

γ
∣∣∣1+mi−µi

0,1−µi

] (A.5)

Substituting the following identity [20, Eq. (9.261.2)] into (3),

Φ2 (α, β, γ;x, y) =

∞∑
p,q=0

(α)p(β)p
(γ)p+qp!q!

xpyq (A.6)

the CDF of k-µ shadowed distribution can be simplified as

Fi(γ) =
ai
µi

µiΓ(µi)bi
mi

∞∑
p,q=0

(ci)p(mi)p
(µi + 1)p+qp!q!bi

q

× (−ai)p+qγp+q+µi

(A.7)

Then, substituting (A.5) and (A.7) into (A.1), SOP can be further
expressed as

SOP =
aµD

D aµE

E

µDΓ(µD)bmD

D bmE

E Γ(cE)

×
∞∑

p,q=0

(cD)p(mD)p
(µD + 1)p+qp!q!bD

q (−aD)p+q

×
∫∞
0

(ΘγE + Θ− 1)p+q+µDγE
µE−1 exp(−aE

bE
γE)

×G1,1
1,2

[
aEkEµE
bEmE

γE

∣∣∣1+mE−µE

0,1−µE

]
dγE

(A.8)
The integral term contained in (A.8) is more complex, which

will cause difficulty in integral operation. Considering that Θ =

exp(Cth) is a finite value, we utilize the similar method adopted
in [26], with the assumption of γE →∞, the following formula can
be obtained as

(ΘγE + Θ− 1)p+q+µD ≈ (ΘγE)p+q+µD (A.9)

Then, by using the following inequality [21, Eq. (6)],

SOP = P {γD ≤ ΘγE + Θ− 1}

≥ SOPL = P {γD ≤ ΘγE}
(A.10)

the lower bound of SOP can be given by

SOPL = P {γD ≤ ΘγE}

=
aµD

D aµE

E

µDΓ(µD)bmD

D bmE

E Γ(cE)

×
∞∑

p,q=0

(cD)p(mD)q
(µD + 1)p+qp!q!bD

q

× (−aD)p+qΘp+q+µD

∫∞
0
γE

d−1

× exp(−aE
bE

γE)G1,1
1,2

[
aEkEµE
bEmE

γE

∣∣∣1+mE−µE

0,1−µE

]
dγE

(A.11)
Here, the remaining task is to calculate the integral in the (A.11).

The integrand contains a power function, an exponential function
and a lower incomplete gamma function. Using [23, Eq. (11)], we
can rewrite the exponential function in the form of Meijer G-function
as

exp(−aE
bE

γE) = G1,0
0,1

[
aE
bE

γE

∣∣∣−0 ] (A.12)

So the integral in Eq. (A.11) is transformed into∫∞
0
γE

d−1G1,0
0,1

[
aE
bE

γE

∣∣∣−0 ]
×G1,1

1,2

[
aEkEµE
bEmE

γE

∣∣∣1+mE−µE

0,1−µE

]
dγE

(A.13)

With the aid of the identity [23, Eq. (21)], setting the parameters:
l = 1 and k = 1, we can obtain:∫∞

0
xα−1Gs,tu,v

[
σx

∣∣∣∣ (cu)
(dv)

]
Gm,np,q

[
ωx

∣∣∣∣ (ap)
(bq)

]
dx

= σ−αGm+t,n+s
p+v,q+u

[
ω

σ

∣∣∣∣ ∆(1, a1), . . . ,∆(1, an),
∆(1, b1), . . . ,∆(1, bm),

∆(1, 1− α− d1) . . . ,∆(1, 1− α− dv),
∆(1, 1− α− c1), . . . ,∆(1, 1− α− cu),

∆(1, an+1), . . . ,∆(1, ap)
∆(1, bm+1), . . . ,∆(1, aq)

]
= σ−αGm+t,n+s

p+v,q+u

[
ω

σ

∣∣∣∣ a1, . . . , an,
b1, . . . , bm,

1− α− d1, . . . , 1− α− dv, an+1, . . . , ap
1− α− c1, . . . , 1− α− cu, bm+1, . . . , aq

]

(A.14)

where ∆(k, a) = a
k ,

a+1
k , ..., a+k+1

k is defined in [23], and thus we
can derive the identity: ∆(1, a) = a. Then, making use of (A.13)
and (A.14), the integral in (A.11) can be solved. Finally, after some
simple manipulations, we can derive the desired result as (5). �
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