
Computing Conference 2018

10-12 July 2018 | London, UK

1 | P a g e

A New Framework for Personal Name

Disambiguation

L.Georgieva and S. Buatongkue

School of Mathematical and Computer Sciences

Heriot Watt University

Edinburgh, UK, EH14 4AS

Email: L. Georgieva@hw.ac.uk, sb369@hw.ac.uk

Abstract— In this paper we study the problem of personal

name disambiguation (NED). We develop a framework to

address the three challenges in personal name disambiguation: (i)

identification of referential ambiguity, (ii) identification of lexical

ambiguity, and (iii) predicting the NIL value, that is the value

when a named entity cannot be mapped to a knowledge base.

Our framework includes extractor, searcher and disambiguator.

Experimental results evaluated on real-world data sets, show that

our framework and algorithm provide accuracy in personal

name linking up to 92%, which is higher than the accuracy of

previously developed algorithms.

Keywords—personal name disambiguation, data cleaning,

lexical ambiguity, knowledge bases, context free grammar,

similarity metrics.

I. INTRODUCTION

Correct personal name identification of a unique personal

name is an important task in many areas including search

engines, information retrieval, and machine translation [9, 13,

14]. A large amount of data on the internet refers to names,

including not only personal names but also names of locations,

books, songs, films. Background knowledge, such as

occupation, age, or nationality is usually required to

disambiguate and identify a particular person by name.

Personal name disambiguation (NED) is the task of matching

the entity in a document to its comparable entry in a large

knowledge base (e.g., Wikipedia) and is also known as name

entity linking. There are three challenges in personal name

disambiguation: (i) referential ambiguity, (ii) lexical

ambiguity, and (iii) predicting the NIL value.

We briefly describe the challenges next.

(i) Referential ambiguity or name variations means that

different names may refer to the same person. Typically, a

personal name (in English) consists of three parts: given name,

middle name and family name, e.g., George Walker Bush.

There are a variety of styles to represent English personal

names, including: nicknames, pen names, alias names, short

names, or abbreviations. For example the same person George

Walker Bush can be referred to as: President Bush, Dubya

Bush, George W. Bush, and 43rd President of the United

States. Personal alias names can be used as personal names

and their syntax can be completely different from the real

name such as The Governor which can be used to refer to

Arnold Schwarzenegger.

 A single name can be represented in multiple patterns. For

example, in the case when the family name is preceded by a

preposition (de, da, di, von), an article (le and la) or both (du,

des, del, de la, della) the name can be abbreviated in different

ways and represented in different formats in different context.

It is standardly recommended that de following a first name or

title such as Professor, Mr. Dr. is not used with the name

alone. When the last name has only one syllable, de is usually

retained. The preposition also remains, in the form of d', when

it elides with the last name also beginning with a vowel.

For example, the personal name Prof Philippe De Wilde can

be represented in different formats in different context, i.e.

1. Prof Philippe D. Wilde

2. Prof P. D. Wilde

3. Prof P. De Wilde

4. Wilde, Philippe De, Professor

5. P D’Wilde, etc.

(ii) Lexical ambiguity. The issue of lexical ambiguity means

that a single name may refer to multiple persons [8]. For

example, the name Chris Martin can refer to any of the

following four persons:

1. Chris Martin (born 1977), the English front-man of

Coldplay.

2. Chris Martin (artist) (born 1954), American painter.

3. Chris William Martin (born 1975), Canadian actor.

4. Chris Martin (footballer, born 1988), Scottish striker

for Derby County.

5.

(iii) Predicting the NIL value. The issue of predicting the

NIL value refers to names which cannot be matched to a

personal name.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Heriot Watt Pure

https://core.ac.uk/display/287499782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Georgieva@hw.ac.uk
mailto:sb369@hw.ac.uk

Computing Conference 2018

10-12 July 2018 | London, UK

2 | P a g e

II. OUR APPROACH

In this paper, we propose a new approach that can be used to

both identify and disambiguate personal names. We use a

combination of context free grammar (CFG) models and Jaro-

Winkler similarity metric in order to generate a set of

candidate entities. Our model uses CFG to transform the

variations in mention name to a unique format. A CFG has the

following advantages:

(i) it is flexible for personal name variations because it can

capture multiple name formats;

 (ii) it can be used to solve the misleading problem in text

similarity measurement (including alternatives to Jaro-

Winkler, e.g. edit distance or cosine similarity) when the same

person is represented using highly different textually (e.g., Bill

Gates and William Gates) by transforming the nickname Bill

to the given name William;

(iii) CFG is different from other transformation tools because

it allows us to understand the internal structure of personal

name.

The similarity metric Jaro-Winkler, which we use, was

originally designed to deal with typographical errors [21].

Studies which compare the Jaro-Winkler metric to alterative

metrics, including Levenshtein, Q-gram, Smith-Waterman,

and TF-IDF show that it has a good performance in personal

name matching [20].

We introduce a new algorithm: Simple Partial Tree Matching

(SPTM) for personal name disambiguation. SPTM is an entity

coherence method, and is developed under the assumption that

personal names mentioned in a single web page have the same

conceptualization or are related. SPTM performs an ambiguity

name evaluation and selects the best personal name entity for

each ambiguity occurrence using the following three steps:

1. We first generate an individual concept to each personal

name entity base on designed occupation taxonomy

architecture.

2. The identified personal names which have the same root

node are merged to create the comparison tree. The

comparison tree which has the maximum number of nodes is

considered first.

3. We rank the candidate entities by comparing the

similarity between each candidate entity concept and the

comparison tree. The similarity score is calculated from the

number of matching nodes and their weights. We give

different weights to different hierarchical levels. The nodes

which have the same level are ranked as having equal weight.

The candidate entity which has the highest score is selected.

The structure of this paper is as follows. In Section 3. we

introduce the knowledge bases Wikipedia, YAGO, Freebase

and DBPedia, which we have use for experimental evaluation

of our results. In Section 4, we design the taxonomy and

introduce personal name transformation which uses context

free grammar. The algorithm which uses simple partial tree

matching is given next in Section 5. The experimental results

and conclusion are in Section 6.

III. KNOWLEDGE BASES

We design new ontology architecture of professional

categories by integrating web directories and the YAGO

ontology [12] to create occupation taxonomy. In the

knowledge base, classes and entities are the main components

that playing a key role in presenting entity conceptualization.

Conventionally, class is the hierarchy of the elements that are

used for grouping similar entities together.

Consider, for example, Wikipedia [17], which is a free

multilingual Web-based encyclopedia. It is built

collaboratively by volunteers and each Wikipedia article is

usually addressing a single topic only. Each topic has been

manually allocated to at least one category in Wikipedia.

Categories in Wikipedia are the group of articles that have a

similar subject.

We can see a box containing the categories to which an

article belongs at the bottom of a page. For example, the page

about Elton John is in the categories:

 Elton John,

 1947 births,

 20th-century composers,

 20th-century English male actors,

 20th-century English singers and 59 more.

The top of Wikipedia categories is:

Portal:Contents/Portals.

Wikipedia classifies the contents into 12 main category

portals including General reference, Culture and the arts,

Geography and places, Health and fitness, History and events,

Mathematics and logic, Natural and physical sciences, People

and self, Philosophy and thinking, Religion and belief systems,

Society and social sciences, Technology and applied sciences.

Wikipedia also divides people by the following broad

categories:

1. By association e.g., by educational institution or by

company, where they currently work.

2. By ethnicity, gender, religion, sexuality, disability,

medical or psychological conditions.

3. By the person’s name.

4. By nationality and occupation

5. By place, the place of birth or notable residence. e.g.

people living in New York.

6. By year, people are categorized by their year of

birth and their year of death.

Computing Conference 2018

10-12 July 2018 | London, UK

3 | P a g e

Wikipedia categories are organized in hierarchical

structure. However, categories are not arranged in a strict

hierarchy or tree of categories because each article can be

assigned to more than one category, and each category can be

assigned to more than one parent category. The hierarchy of

categories reflects the thematic structure only. For example,

the name Zidane is in the super-category Football in France,

but Zidane is a personal name.

 Wikipedia deals with personal name ambiguity in

categories by using various kinds of attributes to make the

names unique. It uses either a single feature or combinations

of features to distinguish between people who have the same

name: occupation, date of birth, nationality, place of

residence.

The significant feature in personal name disambiguation in

Wikipedia is occupation. e.g.

 Chris Brown (composer).

 Nationality and occupation e.g., Chris Brown

(Canadian musician).

 Place of residence and occupation e.g., Chris Brown

(California politician).

 Occupation and date of birth e.g., Chris Brown

(footballer, born 1992).

YAGO [12] is ontology, which is part of YAGO-NAGA

project that developed at Max Planck Institute for Informatics.

YAGO stores information in the form of RDF triples SPO,

where S is a subject, P is a property, and O is an object. A

triple of SPO is called a fact. For example,

Arnold_Schwarzenegger(S)

actedIn(P)

The Terminator(O)

is a fact in YAGO. YAGO collects individual entities and

their categories from Wikipedia info-boxes and links to the

clean taxonomy of WordNet [16]. YAGO contains 365,372

classes, 2,648,387 entities, and 104 relations [12].

Taxonomies in YAGO are well-formed and meaningful.

For example, the YAGO instance Zenedide Zidande is a

soccer player and he is a person.

ZenedideZidande→instanceO f

→SoccerPlayer→subclassO f →Person

Fig. 1 YAGO structure

The YAGO [12] structure includes of three major parts:

classes (concepts, entity types), a set of individual entities, and

literals (names, phrases). Figure 1 shows an excerpt of the

YAGO knowledge base.

Classes in YAGO are used for grouping similarly entities

together and are derived from two main sources: WordNet

[16] and Wikipedia [17]. YAGO allows each class to be a

subclass of one or multiple classes (YAGO taxonomy) except

the root class.

The parent class of YAGO hierarchy is Entity. The

relationship subclassOf is used to map between superclass and

subclass.

Words that have multiple meanings (ambiguous words)

could be assigned to several synsets. YAGO considers only

nouns and the relationship among synsets (super-subordinate

or hyperonymy, hyponymy) to organize taxonomy classes and

establish class from the synsets and to link to Wikipedia

categories.

The lower classes from Wikipedia categories are mapped to

the higher classes from Wordnet by determining the most

frequent sense of the head word inWordNet. YAGO allows

only the conceptual categories to be a class. The conceptual

category is a category that has the head of word in a form of

plural. YAGO analyses the head of category name through

shallow noun phrase parsing. Most categories in YAGO

are derived from Wikipedia. The depth 4-10 contain 90%

of the categories.

A set of individual entities consist of instances such as people,

building, or country. YAGO groups entities into six classes:

 people,

 groups(e.g., music bands, football clubs, universities,

or companies),

 artifacts (e.g., buildings, paintings, books, music

 songs, or albums),

 events (e.g., wars, sports competitions like Olympics,

or world championship tournaments),

 locations, and other.

Computing Conference 2018

10-12 July 2018 | London, UK

4 | P a g e

Each individual entity could be an instance at least one class

and connected to its class via relation type.

YAGO deals with ambiguity and synonymy by mapping an

alternative name via a relation. The quotes are used to

distinguish literals from the entities. The alternative names are

derived from Wikipedia redirect pages. The taxonomies in

YAGO are merged Wikipedia categories with the concepts

from WordNet. In our experiments, we used YAGO, as it

provides multiple levels of taxonomy hierarchy.

Freebase [18] is a knowledge base using graph technology to

store data. Freebase contains more than 800,000 personal

entities and more than 2,000 occupations. Freebase structure

includes data describing domains, types, properties, and

topics. Freebase contains more than 39 million topics about

real-world entities such as people, places, and organizations.

For example, Bob Dylan, Hotel California (song), and love are

the topics in Freebase.

Type in Freebase is a set or a category of topics. Each topic

can be mapped into one or multiple types. A fit set of

properties are used to form a type.

For example, the Football player type may consists of a set of

various properties such as Number of Career Goals, Matches

played, or Position(s).

Domain is a group of related types that is the highest layer in

freebase structure e.g., Soccer means the Soccer domain. We

can map among topic, type, property, and domain in the form

of

subject:predicate:object.

Taxonomy in Freebase has more depths. However, it has

thematic categories e.g.,

Milla Jovovich type Film/actor.

This fact means Milla Jovovich is an actor and the actor class

is assigned to domain Film but Film is not a person.

DBpedia [19] knowledge base is a multilingual knowledge

base by integrating structured data from Wikipedia and

maintained by the DBpedia user community. DBpedia has its

own ontology. The DBpedia ontology contains 320 classes

and 1,650 properties with a maximal depth of five [15].

DBpedia classifies a person by occupation and most of

occupation classes have only one depth. DBpedia is well-

organized but the hierarchy level is not deep enough for

crating personal name concepts. We handle this problem by

designing a new architecture for occupation taxonomy.

 None of the existing knowledge base ontologies is suitable to

establish unambiguous personal name concept. Wikipedia

categories and Freebase categories are dirty, not well-formed,

and bound to a thematic structure. YAGO knowledge base has

combined WordNet classes as a backbone and is also

connected to Wikipedia categories.

Occupation is an important feature for disambiguation in

existing approaches. In our work we argue that using the

personal name for disambiguation, as well similarity

measures, provides better results.

IV. DISAMBIGUATION ALGORITHM

We define extractor as a task for detecting entity name that are

mentioned in a document. Searcher is a task for generating a

set of candidate knowledge base entities to each mention name

in a document. Disambiguator is a task for selecting a best

entity to a mention name when the name is ambiguity.

In order to handle the dirty data in Wikipedia and YAGO in

our experimental results, we introduce a new occupation

taxonomy architecture based on Web directories and YAGO

ontology. Our occupation architecture consists of four layers:

Person, Web directory classes, YAGO-WordNet classes, and

YAGO-Wikipedia classes.

We use two-steps approach to ensure that our occupation

taxonomy is clean, well-formed, and semantically sound.

Firstly, we handle the thematic domain problem by changing

the context in Web directories before mapping them to our

occupation taxonomy (e.g. Arts to Artists). Secondly, we

evaluate the whole name in Wikipedia category before

mapping it into WordNet class.

 SPTM performs an ambiguity name test and selects best

personal name entity for each ambiguity mention using three

steps:

1. We generate an individual concept to each personal

name entity base on our occupation taxonomy

architecture.

2. The identification of personal names which have the

same root node are merged to create the comparison

tree. The comparison tree which has the maximum

number of nodes will be considered first.

3. We rank the candidate entities by comparing the

similarity between each candidate entity concept and

comparison tree.

The similarity score is calculated from the number of

matching nodes and their weights. We give different weights

to different hierarchical levels. The nodes which have the

same level are having equal weight. The candidate entity

which has the highest score is selected.

Our approach can return NIL value when we cannot generate

the candidate entity to a mentioned name or the

conceptualization of identification person differs from other

identification person in a web page. We can predict the

Computing Conference 2018

10-12 July 2018 | London, UK

5 | P a g e

possible persons for the NIL value by attaching NIL value and

an occupation that has maximum occurrence among

conceptualization of identification person in a web page using

BingAPI.

We improve the searcher performance by transforming the

mentions of variation name formats to a unique format. We

boost up the the disambiguator performance by solving two

problems in NED:

1) Detecting context similarity that is requiring exact

words overlap between the two compared documents and

2) Identifying dirty data in Wikipedia categories and

YAGO.

II. FRAMEWORK

We use the facts in YAGO knowledge base to design our

personal name catalogue, occupation taxonomy, and personal

name concepts. Each fact consists of three parts: subject,

property, and object. The advantage of this structure is that it

completely separates the catalogue into two parts: information

for a searcher component and the information for a

disambiguator component.

The first part is personal name surfaces form that stores the

collection of referent terms for each person. The personal

surface form is established from facts that have the property

means, where subject is the reference term and object is

personal name entity.

Our architecture contains four layers and is based on YAGO

ontology and Web directories.

 Layer 0 is a root node to define that an entity is

assigned under this layer is a person.

 Layer 1 is derived from Web directories that are used

to distinguish person name in a big picture.

 Layer 2 is derived from WordNet in YAGO.

 Layer 3 is derived from Wikipedia categories in

YAGO.

The conceptualization in each personal name entity is created

from this architecture. Our results show that occupation

taxonomy is the useful feature to distinguish people

unambiguously, when their names are ambiguous: only 0.06%

of different people with the same name, have the same

careers, whereas (4.84 %) of people share both name and

professional category.

III. PERSONAL NAME TRANSFORMATION WITH CONTEXT

FREE GRAMMAR(CFG)

Data on the internet is heterogeneous; it originates from

multiple sources and lacks uniform representation. Personal

names that appear on the internet can be variations (giving rise

to referential ambiguity). Therefore, the exact match lookup

over personal surface form that is used, for example in [1] is

insufficient to detect candidate entity.

To deal with referential ambiguity problem, we introduce a

context free grammar framework to transform multiple

formats of personal name to a unique format. This framework

is based on [6] and consists of three components: grammar

rules, predicates, and actions. We create sixteen CFG rules to

handle referential ambiguity problem (e.g., different order,

nick name, alternative name).

The rules are given below.

R1 NAME → PS 1 NAME 2

 PS= 1.value;Name = 2.value

R2 NAME → GN 1 MN 2 FN 3

 GN = 1.value; MN = 2.value; FN = 3.value

R3 NAME → GN 1 FN 2

 GN = 1.value; FN = 2.value

R4 NAME → FN 1 ”,” 2 MN 3

 GN = 2.value; MN = 3.value; FN = 1.value

R5 NAME → FN 1 ”,”

 GN = 2.value; FN = 1.value

R6 NAME → AN 1 AN = 1.value

R7 GN → G GN(I,G) value = G

R8 GN → N NN(I,N,G) value = G

R9 MN → M value = M

R10 GN → Letters 1 Letters = 1.value

R11 MN → Letters 1 Letters = 1.value

R12 FN → F FN(I,F) value = F

R13 AN → A AN(I,A) value = Personal name

R14 PS → P Prefix(I,P)

R15 PS → S Suffix(I,S)

R16 Letters → L value = L

R1 is used to separate a title from personal name. For

example, given an input ’George W. Bush,Jr’, R1 produces

two outputs including PS = Jr and PN = George W. Bush.

 R2-R6 are used to define the location of GN (given name) ,

MN (middle name) , FN (family name), and/or AN

(alternative name) in the sequence of personal name tokens

and use a space between a token for segmentation. For

example, given an input George W. Bush, R2 produces three

outputs including GN = George, MN = W., and FN = Bush.

R7 is used to transform GN to the given name that may be

matched with a given name in the personal name dictionary.

For example, given an input George, R7 pro-duces an output

GN = George.

 R8 is used to transform GN where GN is a nick name to a

given name that may be matched with a nickname in the

personal name dictionary. For example, given an input Bill

and R8 produces two given names including GN = William

and Willis.

Computing Conference 2018

10-12 July 2018 | London, UK

6 | P a g e

 R9 is used to transform MN to the middle name. We do not

match the variable M over our personal name dictionary. The

output in this rule is returned the original token.

R10-R11 are used to evaluate that GN or MN is an initial

letter.

 R12 is used to transform FN to the family name that may

be matched with a fam-ily name in the personal name

dictionary. For example, given an input Bush, R12 produces

an output FN = Bush.

 R13 is used to transform AN where AN is an alternative

name to the personal name that may be matched with an

alternative name in the personal name dictionary. For

example, given an input 43rd President of the United States,

R13 produce an output AN = George W. Bush.

 R14 is used to remove prefix that will be matched over the

prefixes in our personal name dictionary.

 R15 is used to remove suffix that will be matched over the

suffixes in our personal name dictionary.

 R16 is used transform Letters to an initial letter. We do not

match this token to our personal name dictionary so, the

original token is returned.

A personal name transformation with CFG rules has the

advantage by boosting the precision and recall in generating a

set of candidate entities in each mention. The experimental

results show that the framework can solve the problem of

referential ambiguity by transform names variations to a

unique form. Furthermore, the CFG framework using with

Jaro-Winkler metric can boost up the performance in text

similarity measurement. A complete overview of our

framework is given in Fig. 2.

Fig. 2 Personal Name Transformation Framework

IV. NEW ALGORITHM FOR PERSONAL NAME

DISAMBIGUATION WITH SIMPLE PARTIAL TREE MATCHING

(SPTM)

 Our algorithm uses only personal names mention within a

web document to disambiguate ambiguity names. We assume

that personal names that have appeared within a single web

page have the same conceptualization or they are related

(spouse or child). We used the layer 1(e.g., Entertainers and

Artists, Sportsman, and Politician) to be a root node for

grouping people together. People who have the same concepts

mean they have the same root node but the child nodes may be

different.

SPTM uses the two tree-matching, computing the similarity

score between a candidate conceptual tree and a comparison

tree. The depth of node in a tree is used to assign a weighting

score to a node (deeper depth higher weight). The comparison

tree is created by joining the nodes of identifying the personal

name mentions trees which have the same root node. The

comparison trees which have the maximum number of nodes

will be selected first. The similarity score is calculated from

the total matching node multiplied by the total of weighting

score plus the related score (the candidate that associated with

defining mention will have 100 score). The candidate who has

the highest score is selected.

We observed two conditions before using SPTM. First,

every node in the tree is unique ,and it can occur once in each

tree. Secondly, the multiple levels in tree hierarchy will be

flatten into two levels, the first level is a root node and the

second level is a set of child nodes. These child nodes under

the root node are arranged flowing down, start from left to

right, one level at a time. Each node contains two important

pieces of information : its content and its depth. Figure 3

shows how to remove the level and sort the child nodes. The

original tree has four levels after flattening, all child nodes are

compacted into one level using top-down

Fig 3. An original tree (a) and a flattened tree (b).

The personal name concept of identifying mentioned names in

each web page are next used to construct the comparison tree.

Given a set T of identifying personal name concepts, all nodes

Computing Conference 2018

10-12 July 2018 | London, UK

7 | P a g e

in T are be merged into comparison tree if their root nodes are

equal. The duplicate nodes are removed and the unique nodes

are arranged in ascending order. Fig. 4 shows how to create

comparison tree. We start with 3 initial trees; all of them have

only two levels. The root node in each tree is matched first;

the trees can be merged only if their root nodes are equal. In

this example, trees T1 and T2 are merged because they have

the same root node A and created the new tree that call

comparison tree (Tc). All nodes in two trees are merged and

sorted in ascending order.

Fig. 4. Building the comparison tree.

SPTM algorithm consists of three steps: comparison tree

selecting, two tree matching, and similarity score calculating

as follows. First, the comparison tree is selected. The section

criterion requires that the comparison tree that has the

maximum number of members first. If the member of

members of two comparison trees is equal, the comparison

tree that has the highest nodes is selected and the algorithm

proceeds to Step 2: matching tee. The matching tree consists

of two steps: matching the root node and matching the

children nodes. In Step 3, the similarity score between the

comparison tree and the candidate tree is calculated. Figure 5

gives an example of SPTM algorithm. The two trees Tc and

T1 have the same root node A. This means that the two trees

have the same concept and can be matched. The matching

nodes are {A, A1,A11}.

Our model predicts the NIL value under two conditions: (i) we

cannot generate a candidate entity for a mentioned name. (ii)

an mapping entity has a different ancestor node and/or

distantly related to the existing identifying entities in a Web

document. This is different from existing approaches. For

example, in [2] the NIL value is detected by creating one

entity calling out to predict NIL value when the similarity

score lower than a fix threshold. In [7] a SVM ranker is used

to predict the NIL value. The NIL value is then returned if a

set of candidate entity is empty or a candidate entity does not

in the top of Google returning values.

Fig. 5 Matching in SPTM

V. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the framework for

linking a mentioned name to a real world entity, we measure

the performance of the system into two criteria:

1. The searcher performance of generating candidate

entities.

2. The disambiguator performance of entity linking.

We used two data sets that provided personal names, their

alternative names and their professional categories: YAGO

version 2.3.0 and our data catalogue, in which we collected

web documents from three websites:

1. http://www.today.com

2. https://uk.yahoo.com

3. http://www.msn.com/en-gb/

 Our catalogue contained 107,058 persons, 332 profession

categories including Person (a root category), 105,604

personal concepts, 145,638 personal surface forms, and 4,203

personal relations. The evaluating data sets contained 992

mention names, 119 referential ambiguity names, and 114

lexical ambiguity names.

The experimental results demonstrated that our proposed

approach achieved excellent performance over real-world data

sets. The system takes a single web-page as an input. It

produces the identifiable person for each mentioned name in a

web page or returns the NIL value if the mentioned name does

not match any personal name in a knowledge base. For a NIL

value, the system passes a mentioned name and the occupation

Computing Conference 2018

10-12 July 2018 | London, UK

8 | P a g e

that has a maximum number of co-occurrence from the

identifiable personal names via BingAPI to produce a top ten

links of possible persons.

The system is developed using Apache/2.4.12 (Ubuntu),

PHP Version 5.6.11-1ubuntu3.1, and mySQL 5.6.28-

0ubuntu0.15.10.1. The personal name matching has one active

actors and two cooperating system API.

The effectiveness of our proposed model is empirically

validated through experimental assessments with real-world

data sets. In our data set only 18 personal names are identified

as NIL, which amounts to 0.13% of all values. The overall

quality of data transformation is extremely high, the

framework returned the NIL value in less than 1% of all cases.

Subsequent analysis of the returned NIL values revealed that

all of the 18 returned NIL values are alternative names.

We evaluated two text similarity functions: Jaro-Winkler

and cosine similarity on 168 alias names of 25 personal

names. PNTF combined with Jaro-Winkler produced the

highest accuracy but shows smaller number of improvement

in PNTF with cosine similarity methods.

Searcher’s performance: The candidate count is 1.6, i.e one

mention name have average 1.6 candidate entities. This is not

too high and is reducing the workload for disambiguator. The

candidate precision and recall are both over 80%. This means

the searcher has high performance in generating candidate

entities. The performance in NIL value returning is also very

high, it is nealy 100%.

 Disambiguator’s performance. The percentage score for

overall linkable score was 91.82%. The effectiveness in

handling lexical ambiguity is 72.07%. This study produced the

precision result in entity linking similar to Cucerzan [1] that

obtained precision of 91.40%. Most of the incorrect in lexical

ambiguity is a result of short name mentioning. From 114

lexical ambiguity mentions, 42 mentions are short names (e.g.,

Timberlake, Ronaldo, Fernando and the system returns the

correct answers only in 42.86% of such cases. Remarkable is

that the accuracy improves to 85.95% if the lexical ambiguity

is a full name.

VI. RELATED WORK

Frameworks that use extractor, searcher, and disambiguator

have been previously proposed. For example studies

presented in [1, 2, 3] focused on precision targets for the

disambiguator, whereas [4] determined that the searcher

component is more important and has a much stronger effect

on performance than the disambiguator task because of the

potential for referential ambiguity in personal names.

Most real word data is dirty, incomplete, or imprecisely

formatted [5] and as a result, we cannot use exact matched

lookup over a knowledge base to process a set of candidate

entities for a mentioned personal name as it is done in [1, 2].

For example. exact-matched lookup, when the formatting is

different will produce dissimilarity: e.g. Barack Obama and

Barak Obama will be dissimilar, even though they are the

same personal name. We use a technique similar to the one

introduced in [6] as a pre-processing step, intended to

transform personal name variations to a uniform

representation. Alternative techniques exist. For example, [4]

this problem was solved by using uniform weight scheme

score to rank the candidate names. The candidate which has

the highest score is selected. However, this method suffers

when a context can be both the given name and the last name

because the scores are equal. To circumvent this, in our work,

a regular grammar in personal name structure is used for

segmentation the components in personal name (the location

of first name, middle name, or last name) and these

components are matched directly to the personal name

dictionary.

Methods proposed for the disambiguator task in [1, 2, 3, 7,

9, 10, 11, 13, 14] handle lexical ambiguity in different ways.

Those methods can be divided broadly into two types: context

similarity methods and combining methods. The first one is

textual similarity method called a bag of word or context

similarity. Context similarity uses the terms around the entity

mention and the Wikipedia page that related with entity to

measure similarity between two entities. The limitation in

context similarity method is requiring exact word overlap

between the two compared texts, which may become an over

strict constraint because of flexible usage in natural language.

The empirical results demonstrated that our framework is

effectiveness in personal name linking. Hence the effective in

short name linking indicates that only personal name con-

cepts are insufficient for mapping a short name ambiguity to

the real-world entity. There-fore, in our future work we would

like to improve the performance in short name ambiguity. We

plan to mine the evidences across the document that

introduced in [21] using the connection between persons.

.

VII. CONCLUSION

In this paper we describe a framework for personal name

disambiguation which consists of extractor, searcher and

disambiguator and achieves a high percentage of correct

disambiguation. The extractor component uses Alchemy API

that uses to extract personal name from a web document. This

tool has overall good ability to extract the personal names that

are mentioned within a web-page. The searcher component

contains two main functions: personal name transformation

and candidate generator and combines three components:

personal name transformation with context free grammar

rules, personal surface form, and text similarity function.

REFERENCES

[1] Curcezan, S. Large-scale named entity disambiguation based on

Wikipedia data. In Proceedings EMNLP-CoNLL, pages 708–716, 2007.

Computing Conference 2018

10-12 July 2018 | London, UK

9 | P a g e

[2] Bunescu, R. and Pasca, M. Using encyclopedic knowledge for named
entity disambiguation. In Proceedings of EACL, pages 9–16, 2006.

[3] Shen, W., Wang, J., Luo, P., and Wang, M. Linden: Linking named
entities with knowledge base via semantic knowledge. In Proceedings of
WWW ’12, pages 449–458, USA. ACM, 2012.

[4] Hachey, B., Radford, W., Nothman, J., Honnibal, M., and Curran, J. R.
Evaluating entity linking with wik-ipedia. Artificial Intelligence,
194(0):130 – 150, 2013

[5] Christen, P., Churches, T., and Zhu, J. X.. Probabilistic name and
address cleaning and standardisation, 2002.

[6] Arasu, A. and Kaushik, R. A grammar-based entity representation
framework for data cleaning. In Proceed-ings of SIGMOD, pages 233–
244, ACM, 2009.

[7] Dredze, M., McNamee, P., Rao, D., Gerber, A., and Finin, T. Entity
disambiguation for knowledge base pop-ulation. In Proceedings of
COLING , pages 277–285, 2010.

[8] Li, Y., Wang, C., Han, F., Han, J., Roth, D., and Yan, X.. Mining
evidences for named entity disambiguation. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD, pages 1070–1078, 2013.

[9] Yang, W. Identifying syntactic differences between two programs.
Softw. Pract. Exper., 21(7):739–755, 1991.

[10] Zhai, Y. and Liu, B. (Dec.). Structured data extraction from the web
based on partial tree alignment. Knowledge and Data Engineering, IEEE
Transactions on, 18(12):1614– 1628, 2006.

[11] Mann, G. S. and Yarowsky, D. Unsupervised personal name
disambiguation. In Proceedings of Conference on Natural Language
Learning at HLT-NAACL- Volume 4, CONLL, pages 33–40, 2003.

[12] Demidova, E., Oelze, I., and Nejdl, W. Aligning freebase with the
YAGO ontology. In Proceedings of ACM International Conference on
Information & Knowledge Management, CIKM, pages 579–588, 2013.

[13] Han, X. and Zhao, J. Web personal name disambiguation based on
reference entity tables mined from the web. In Proceedings of
International Workshop on Web Information and Data Management,
WIDM, pages 75–82, 2009.

[14] Raman, V. and Hellerstein, J. M. Potter’s wheel: An interactive data
cleaning system. In Proceedings of the International Conference on
Very Large Data Bases, VLDB, pages 381–390, Morgan Kaufmann
Publishers, 2001.

[15] Lehman, J et al. Dbpedia–a large-scale, multilingual knowledge base
extracted from wikipedia. Semantic Web, 6(2):167–195, 2013.

[16] WordNet https://wordnet.princeton.edu/

[17] Wikipedia https://en.wikipedia.org/wiki/Main_Page

[18] FreeBase https://en.wikipedia.org/wiki/Freebase

[19] DBPedia http://wiki.dbpedia.org/

[20] Bilenko Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., and
Fienberg, S.. Adaptive name matching in information integration.
Intelligent Systems, IEEE, 18(5):16–23, 2003.

[21] Elmagarmid, A., Ipeirotis, P., and Verykios, V. Duplicate record
detection: A survey. IEEE Transactions on Knowledge and Data
Engineering 19(1):1–16, 2007.

https://wordnet.princeton.edu/
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Freebase
http://wiki.dbpedia.org/

