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Abstract— In this paper we study the problem of personal 

name disambiguation (NED). We develop a framework to 

address the three challenges in personal name disambiguation: (i) 

identification of referential ambiguity, (ii) identification of lexical 

ambiguity, and (iii) predicting the NIL value, that is the value 

when a named entity cannot be mapped to a knowledge base. 

Our framework includes extractor, searcher and disambiguator. 

Experimental results evaluated on real-world data sets, show that 

our framework and algorithm provide accuracy in personal 

name linking up to 92%, which is higher than the accuracy of 

previously developed algorithms. 

Keywords—personal name disambiguation, data cleaning, 

lexical ambiguity, knowledge bases, context free grammar, 

similarity metrics.   

 

I. INTRODUCTION  

 

Correct personal name identification of a unique personal 

name is an important task in many areas including search 

engines, information retrieval, and machine translation [9, 13, 

14]. A large amount of data on the internet refers to names, 

including not only personal names but also names of locations, 

books, songs, films. Background knowledge, such as 

occupation, age, or nationality is usually required to 

disambiguate and identify a particular person by name.  

 

Personal name disambiguation (NED) is the task of matching 

the entity in a document to its comparable entry in a large 

knowledge base (e.g., Wikipedia) and is also known as name 

entity linking.  There are three challenges in personal name 

disambiguation: (i) referential ambiguity, (ii) lexical 

ambiguity, and (iii) predicting the NIL value.   

 

We briefly describe the challenges next. 

 

(i) Referential ambiguity or name variations means that 

different names may refer to the same person. Typically, a 

personal name (in English) consists of three parts: given name, 

middle name and family name, e.g., George Walker Bush. 

There are a variety of styles to represent English personal 

names, including:  nicknames, pen names, alias names, short 

names, or abbreviations. For example the same person George 

Walker Bush can be referred to as:  President Bush, Dubya 

Bush, George W. Bush, and 43rd President of the United 

States.  Personal alias names can be used as personal names 

and their syntax can be completely different from the real 

name such as The Governor which can be used to refer to 

Arnold Schwarzenegger. 

 

 A single name can be represented in multiple patterns.  For 

example, in the case when the family name is preceded by a 

preposition (de, da, di, von), an article (le and la) or both (du, 

des, del, de la, della) the name can be abbreviated in different 

ways and represented in different formats in different context. 

It is standardly recommended that de following a first name or 

title such as Professor, Mr.  Dr. is not used with the name 

alone. When the last name has only one syllable, de is usually 

retained. The preposition also remains, in the form of d', when 

it elides with the last name also beginning with a vowel. 

 

For example, the personal name Prof Philippe De Wilde can 

be represented in different formats in different context,  i.e.  

 

1. Prof Philippe D. Wilde 

2. Prof P. D. Wilde 

3. Prof P. De Wilde 

4. Wilde, Philippe De, Professor 

5. P D’Wilde, etc. 

 

(ii) Lexical ambiguity. The issue of lexical ambiguity means 

that a single name may refer to multiple persons [8]. For 

example, the name Chris Martin can refer to any of the 

following four persons: 

 

1. Chris Martin (born 1977), the English front-man of 

Coldplay. 

2. Chris Martin (artist) (born 1954), American painter. 

3. Chris William Martin (born 1975), Canadian actor. 

4. Chris Martin (footballer, born 1988), Scottish striker 

for Derby County. 

5.  

(iii) Predicting the NIL value. The issue of predicting the 

NIL value refers to names which cannot be matched to a 

personal name. 
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II. OUR APPROACH 

 

In this paper, we propose a new approach that can be used to 

both identify and disambiguate personal names. We use a 

combination of context free grammar (CFG) models and Jaro-

Winkler similarity metric in order to generate a set of 

candidate entities. Our model uses CFG to transform the 

variations in mention name to a unique format. A CFG has the 

following advantages:  

(i) it is flexible for personal name variations because it can 

capture multiple name formats; 

 (ii) it can be used to solve the misleading problem in text 

similarity measurement (including alternatives to Jaro-

Winkler, e.g. edit distance or cosine similarity) when the same 

person is represented using highly different textually (e.g., Bill 

Gates and William Gates) by transforming the nickname Bill 

to the given name William;  

(iii) CFG is different from other transformation tools because 

it allows us to understand the internal structure of personal 

name.  

 

The similarity metric Jaro-Winkler, which we use, was 

originally designed to deal with typographical errors [21]. 

Studies which compare the Jaro-Winkler metric to alterative 

metrics, including Levenshtein, Q-gram, Smith-Waterman, 

and TF-IDF show that it has a good performance in personal 

name matching [20]. 

 

We introduce a new algorithm: Simple Partial Tree Matching 

(SPTM) for personal name disambiguation. SPTM is an entity 

coherence method, and is developed under the assumption that 

personal names mentioned in a single web page have the same 

conceptualization or are related. SPTM performs an ambiguity 

name evaluation and selects the best personal name entity for 

each ambiguity occurrence using the following three steps: 

 

1. We first generate an individual concept to each personal 

name entity base on designed occupation taxonomy 

architecture. 

2. The identified personal names which have the same root 

node are merged to create the comparison tree. The 

comparison tree which has the maximum number of nodes is 

considered first. 

3. We rank the candidate entities by comparing the 

similarity between each candidate entity concept and the 

comparison tree. The similarity score is calculated from the 

number of matching nodes and their weights. We give 

different weights to different hierarchical levels. The nodes 

which have the same level are ranked as having equal weight. 

The candidate entity which has the highest score is selected. 

 

The structure of this paper is as follows. In Section 3. we 

introduce the knowledge bases Wikipedia, YAGO, Freebase 

and DBPedia, which we have use for experimental evaluation 

of our results. In Section 4, we design the taxonomy and 

introduce personal name transformation which uses context 

free grammar.  The algorithm which uses simple partial tree 

matching is given next in Section 5. The experimental results 

and conclusion are in Section 6. 

 

 

III. KNOWLEDGE BASES 

 

We design new ontology architecture of professional 

categories by integrating web directories and the YAGO 

ontology [12] to create occupation taxonomy.  In the 

knowledge base, classes and entities are the main components 

that playing a key role in presenting entity conceptualization. 

Conventionally, class is the hierarchy of the elements that are 

used for grouping similar entities together. 

 

Consider, for example, Wikipedia [17], which is a free 

multilingual Web-based encyclopedia. It is built 

collaboratively by volunteers and each Wikipedia article is 

usually addressing a single topic only. Each topic has been 

manually allocated to at least one category in Wikipedia. 

Categories in Wikipedia are the group of articles that have a 

similar subject.  

 

We can see a box containing the categories to which an 

article belongs at the bottom of a page. For example, the page 

about Elton John is in the categories: 

  

 Elton John, 

 1947 births,  

 20th-century composers,  

 20th-century English male actors,  

 20th-century English singers and 59 more. 

 

The top of Wikipedia categories is:         

Portal:Contents/Portals.  

Wikipedia classifies the contents into 12 main category 

portals including General reference, Culture and the arts, 

Geography and places, Health and fitness, History and events, 

Mathematics and logic, Natural and physical sciences, People 

and self, Philosophy and thinking, Religion and belief systems, 

Society and social sciences, Technology and applied sciences. 

 

Wikipedia also divides people by the following broad 

categories: 

1. By association e.g., by educational institution or by 

company, where they currently work. 

2. By ethnicity, gender, religion, sexuality, disability, 

medical or psychological conditions. 

3. By the person’s name. 

4. By nationality and occupation 

5. By place, the place of birth or notable residence. e.g. 

people living in New York. 

6. By year, people are categorized by their year of 

birth and their year of death. 
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Wikipedia categories are organized in hierarchical 

structure. However, categories are not arranged in a strict 

hierarchy or tree of categories because each article can be 

assigned to more than one category, and each category can be 

assigned to more than one parent category.  The hierarchy of 

categories reflects the thematic structure only.  For example, 

the name Zidane is in the super-category Football in France, 

but Zidane is a personal name.   

 Wikipedia deals with personal name ambiguity in 

categories by using various kinds of attributes to make the 

names unique. It uses either a single feature or combinations 

of features to distinguish between people who have the same 

name: occupation, date of birth, nationality, place of 

residence. 

 

The significant feature in personal name disambiguation in 

Wikipedia is occupation. e.g. 

 Chris Brown (composer). 

 Nationality and occupation e.g., Chris Brown 

(Canadian musician). 

 Place of residence and occupation e.g., Chris Brown 

(California politician). 

 Occupation and date of birth e.g., Chris Brown 

(footballer, born 1992). 

 

YAGO [12] is ontology, which is part of YAGO-NAGA 

project that developed at Max Planck Institute for Informatics. 

YAGO stores information in the form of RDF triples SPO, 

where S is a subject, P is a property, and O is an object. A 

triple of SPO is called a fact. For example,  

 

Arnold_Schwarzenegger(S)  

actedIn(P) 

The Terminator(O) 

 

is a fact in YAGO. YAGO collects individual entities and 

their categories from Wikipedia info-boxes and links to the 

clean taxonomy of WordNet [16]. YAGO contains 365,372 

classes, 2,648,387 entities, and 104 relations [12]. 

Taxonomies in YAGO are well-formed and meaningful. 

For example, the YAGO instance Zenedide Zidande is a 

soccer player and he is a person. 

ZenedideZidande→instanceO f 

→SoccerPlayer→subclassO f →Person 

 

 

 
Fig. 1 YAGO structure 

 

The YAGO [12] structure includes of three major parts: 

classes (concepts, entity types), a set of individual entities, and 

literals (names, phrases). Figure 1 shows an excerpt of the 

YAGO knowledge base.  

 

Classes in YAGO are used for grouping similarly entities 

together and are derived from two main sources: WordNet 

[16] and Wikipedia [17]. YAGO allows each class to be a 

subclass of one or multiple classes (YAGO taxonomy) except 

the root class.  

 

The parent class of YAGO hierarchy is Entity. The 

relationship subclassOf is used to map between superclass and 

subclass.  

Words that have multiple meanings (ambiguous words) 

could be assigned to several synsets. YAGO considers only 

nouns and the relationship among synsets (super-subordinate 

or hyperonymy, hyponymy) to organize taxonomy classes and 

establish class from the synsets and to link  to Wikipedia 

categories. 

The lower classes from Wikipedia categories are mapped to 

the higher classes from Wordnet by determining the most 

frequent sense of the head word inWordNet. YAGO allows 

only the conceptual categories to be a class. The conceptual 

category is a category that has the head of word in a form of 

plural. YAGO analyses the head of category name through 

shallow noun phrase parsing. Most categories in YAGO 

are derived from Wikipedia. The depth 4-10 contain 90% 

of the categories. 

 

A set of individual entities consist of instances such as people, 

building, or country. YAGO  groups entities into six classes: 

 people,  

 groups(e.g., music bands, football clubs, universities, 

or companies),  

 artifacts (e.g., buildings, paintings, books, music 

 songs, or albums),  

 events (e.g., wars, sports competitions like Olympics, 

or world championship tournaments), 

 locations, and other. 
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Each individual entity could be an instance at least one class 

and connected to its class via relation type.  

 

YAGO deals with ambiguity and synonymy by mapping an 

alternative name via a relation. The quotes are used to 

distinguish literals from the entities. The alternative names are 

derived from Wikipedia redirect pages. The taxonomies in 

YAGO are merged Wikipedia categories with the concepts 

from WordNet. In our experiments, we used YAGO, as it 

provides multiple levels of taxonomy hierarchy. 

 

Freebase [18] is a knowledge base using graph technology to 

store data. Freebase contains more than 800,000 personal 

entities and more than 2,000 occupations. Freebase structure 

includes data describing domains, types, properties, and 

topics. Freebase contains more than 39 million topics about 

real-world entities such as people, places, and organizations.  

 

For example, Bob Dylan, Hotel California (song), and love are 

the topics in Freebase.  

 

Type in Freebase is a set or a category of topics. Each topic 

can be mapped into one or multiple types. A fit set of 

properties are used to form a type.  

 

For example, the Football player type may consists of a set of 

various properties such as Number of Career Goals, Matches 

played, or Position(s).  

 

Domain is a group of related types that is the highest layer in 

freebase structure e.g., Soccer means the Soccer domain. We 

can map among topic, type, property, and domain in the form 

of 

 

subject:predicate:object. 

 

Taxonomy in Freebase has more depths. However, it has 

thematic categories e.g.,  

 

Milla Jovovich type Film/actor.  

 

This fact means Milla Jovovich is an actor and the actor class 

is assigned to domain Film but Film is not a person. 

 

 

DBpedia [19] knowledge base  is a multilingual knowledge 

base by integrating structured data from Wikipedia and 

maintained by the DBpedia user community. DBpedia has its 

own ontology. The DBpedia ontology contains 320 classes 

and 1,650 properties with a maximal depth of five [15]. 

DBpedia classifies a person by occupation and most of 

occupation classes have only one depth. DBpedia is well- 

organized but the hierarchy level is not deep enough for 

crating personal name concepts. We handle this problem by 

designing a new architecture for occupation taxonomy.  

 None of the existing knowledge base ontologies is suitable to 

establish unambiguous  personal name concept. Wikipedia 

categories and Freebase categories are dirty, not well-formed, 

and bound to a thematic structure. YAGO knowledge base has 

combined WordNet classes as a backbone and is also 

connected to Wikipedia categories. 

Occupation is an important feature for disambiguation in 

existing approaches. In our work we argue that using the 

personal name for disambiguation, as well similarity 

measures,  provides better results. 

 

 

IV. DISAMBIGUATION ALGORITHM 

 

We define extractor as a task for detecting entity name that are 

mentioned in a document. Searcher is a task for generating a 

set of candidate knowledge base entities to each mention name 

in a document. Disambiguator is a task for selecting a best 

entity to a mention name when the name is ambiguity.   

 

In order to handle the dirty data in Wikipedia and YAGO in 

our experimental results, we introduce a new occupation 

taxonomy architecture based on Web directories and YAGO 

ontology. Our occupation architecture consists of four layers: 

Person, Web directory classes, YAGO-WordNet classes, and 

YAGO-Wikipedia classes.  

We use two-steps approach to ensure that our occupation 

taxonomy is clean, well-formed, and semantically sound. 

Firstly, we handle the thematic domain problem by changing 

the context in Web directories before mapping them to our 

occupation taxonomy (e.g. Arts to Artists). Secondly, we 

evaluate the whole name in Wikipedia category before 

mapping it into WordNet class.  

      SPTM performs an ambiguity name test and selects best 

personal name entity for each ambiguity mention using three 

steps: 

  

1. We generate an individual concept to each personal 

name entity base on our occupation taxonomy 

architecture.  

2. The identification of personal names which have the 

same root node are merged to create the comparison 

tree. The comparison tree which has the maximum 

number of nodes will be considered first.  

3. We rank the candidate entities by comparing the 

similarity between each candidate entity concept and 

comparison tree.  

 

The similarity score is calculated from the number of 

matching nodes and their weights. We give different weights 

to different hierarchical levels. The nodes which have the 

same level are having equal weight. The candidate entity 

which has the highest score is selected.  

 

Our approach can return NIL value when we cannot generate 

the candidate entity to a mentioned name or the 

conceptualization of identification person differs from other 

identification person in a web page. We can predict the 
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possible persons for the NIL value by attaching NIL value and 

an occupation that has maximum occurrence among 

conceptualization of identification person in a web page using 

BingAPI. 

We improve the searcher performance by transforming the 

mentions of variation name formats to a unique format. We 

boost up the the disambiguator performance by solving two 

problems in NED:  

1) Detecting context similarity that is requiring exact 

words overlap between the two compared documents and  

2) Identifying dirty data in Wikipedia categories and 

YAGO. 

 

 

II. FRAMEWORK 

 

We use the facts in YAGO knowledge base to design our 

personal name catalogue, occupation taxonomy, and personal 

name concepts. Each fact consists of three parts: subject, 

property, and object. The advantage of this structure is that it 

completely separates the catalogue into two parts: information 

for a searcher component and the information for a 

disambiguator component.  

 

The first part is personal name surfaces form that stores the 

collection of referent terms for each person. The personal 

surface form is established from facts that have the property 

means, where subject is the reference term and object is 

personal name entity.  

 

Our architecture contains four layers and is based on YAGO 

ontology and Web directories.   

 

 Layer 0 is a root node to define that an entity is 

assigned under this layer is a person.  

 Layer 1 is derived from Web directories that are used 

to distinguish person name in a big picture.  

 Layer 2 is derived from WordNet in YAGO. 

 Layer 3 is derived from Wikipedia categories in 

YAGO.  

 

The conceptualization in each personal name entity is created 

from this architecture. Our results show that occupation 

taxonomy is the useful feature to distinguish people 

unambiguously, when their names are ambiguous: only 0.06% 

of different people with the same name, have the  same 

careers, whereas (4.84 %) of people share both name and 

professional category. 

 

 

III. PERSONAL NAME TRANSFORMATION WITH CONTEXT 

FREE GRAMMAR(CFG) 

 

Data on the internet is heterogeneous; it originates from 

multiple sources and lacks uniform representation. Personal 

names that appear on the internet can be variations (giving rise 

to referential ambiguity). Therefore, the exact match lookup 

over personal surface form that is used, for example in [1] is 

insufficient to detect candidate entity.  

 

To deal with referential ambiguity problem, we introduce a 

context free grammar framework to transform multiple 

formats of personal name to a unique format. This framework 

is based on [6] and consists of  three components: grammar 

rules, predicates, and actions. We create sixteen CFG rules to 

handle referential ambiguity problem (e.g., different order, 

nick name, alternative name).  

 

The rules are given below. 

 

R1 NAME  → PS 1  NAME 2   

          PS= 1.value;Name = 2.value 

R2 NAME  → GN 1  MN 2  FN 3   

          GN = 1.value; MN = 2.value; FN = 3.value 

R3 NAME  → GN 1  FN 2   

          GN = 1.value; FN = 2.value 

R4 NAME  → FN 1 ”,” 2  MN 3   

          GN = 2.value; MN = 3.value; FN = 1.value 

R5 NAME  → FN 1 ”,”  

          GN = 2.value; FN = 1.value 

R6 NAME  → AN 1 AN = 1.value 

R7 GN  → G GN(I,G) value = G 

R8 GN  → N NN(I,N,G) value = G 

R9 MN  → M            value = M 

R10 GN  → Letters 1 Letters = 1.value 

R11 MN  → Letters 1 Letters = 1.value 

R12 FN  → F         FN(I,F) value = F 

R13 AN  → A AN(I,A) value = Personal name 

R14 PS  → P Prefix(I,P)  

R15 PS  → S Suffix(I,S)  

R16 Letters  → L value = L 

 

R1 is used to separate a title from personal name. For 

example, given an input ’George W. Bush,Jr’, R1 produces 

two outputs including PS = Jr and PN = George W. Bush. 

    R2-R6 are used to define the location of GN (given name) , 

MN (middle name) , FN (family name), and/or AN 

(alternative name) in the sequence of personal name tokens 

and use a space between a token for segmentation. For 

example, given an input George W. Bush, R2 produces three 

outputs including GN  = George,  MN  = W., and  FN  = Bush.  

R7 is used to transform GN to the given name that may be 

matched with a given name in the personal name dictionary. 

For example, given an input George, R7 pro-duces an output 

GN = George. 

    R8 is used to transform GN where GN is a nick name to a 

given name that may be matched with a nickname in the 

personal name dictionary. For example, given an input Bill 

and R8 produces two given names including GN = William 

and Willis. 
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    R9 is used to transform MN to the middle name. We do not 

match the variable M over our personal name dictionary. The 

output in this rule is returned the original token. 

 

R10-R11 are used to evaluate that GN  or MN  is an initial 

letter. 

     R12 is used to transform FN to the family name that may 

be matched with a fam-ily name in the personal name 

dictionary. For example, given an input Bush, R12 produces 

an output FN = Bush. 

     R13 is used to transform AN where AN is an alternative 

name to the personal name that may be matched with an 

alternative name in the personal name dictionary. For 

example, given an input 43rd President of the United States, 

R13 produce an output AN  = George W. Bush. 

     R14 is used to remove prefix that will be matched over the 

prefixes in our personal name dictionary. 

     R15 is used to remove suffix that will be matched over the 

suffixes in our personal name dictionary. 

     R16 is used transform Letters to an initial letter. We do not 

match this token to our personal name dictionary so, the 

original token is returned. 

A personal name transformation with CFG rules has the 

advantage by boosting the precision and recall in generating a 

set of candidate entities in each mention. The experimental 

results show that the framework can solve the problem of 

referential ambiguity by transform names variations to a 

unique form. Furthermore, the CFG framework using with 

Jaro-Winkler metric can boost up the performance in text 

similarity measurement. A complete overview of our 

framework is given in Fig. 2. 

 

 

 
 

Fig. 2 Personal Name Transformation Framework 

 

 

 

 

IV. NEW ALGORITHM FOR PERSONAL NAME 

DISAMBIGUATION WITH SIMPLE PARTIAL TREE MATCHING 

(SPTM) 

 

   Our algorithm uses only personal names mention within a 

web document to disambiguate ambiguity names. We assume 

that personal names that have appeared within a single web 

page have the same conceptualization or they are related 

(spouse or child). We used the layer 1(e.g., Entertainers and 

Artists, Sportsman, and Politician) to be a root node for 

grouping people together. People who have the same concepts 

mean they have the same root node but the child nodes may be 

different.  

SPTM uses the two tree-matching, computing the similarity 

score between a candidate conceptual tree and a comparison 

tree. The depth of node in a tree is used to assign a weighting 

score to a node (deeper depth higher weight). The comparison 

tree is created by joining the nodes of identifying the personal 

name mentions trees which have the same root node. The 

comparison trees which have the maximum number of nodes 

will be selected first. The similarity score is calculated from 

the total matching node multiplied by the total of weighting 

score plus the related score (the candidate that associated with 

defining mention will have 100 score). The candidate who has 

the highest score is selected.  

We observed two conditions before using SPTM. First, 

every node in the tree is unique ,and  it can occur once in each 

tree. Secondly, the multiple levels in tree hierarchy will be 

flatten into two levels, the first level is a root node and the 

second level is a set of child nodes. These child nodes under 

the root node are arranged flowing down, start from left to 

right, one level at a time. Each node contains two important 

pieces of information : its content and its depth. Figure 3 

shows how to remove the level and sort the child nodes. The 

original tree has four levels after flattening, all child nodes are 

compacted into one level using top-down 

 

 

 

 

 

 

Fig 3. An original tree (a) and a flattened tree (b). 

 

The personal name concept of identifying mentioned names in 

each web page are next used to construct the comparison tree. 

Given a set T of identifying personal name concepts, all nodes 
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in T are be merged into comparison tree if their root nodes are 

equal. The duplicate nodes are removed and the unique nodes 

are arranged in ascending order. Fig. 4 shows how to create 

comparison tree. We start with 3 initial trees; all of them have 

only two levels. The root node in each tree is matched first; 

the trees can be merged only if their root nodes are equal. In 

this example, trees T1 and T2 are merged because they have 

the same root node A and created the new tree that call 

comparison tree (Tc). All nodes in two trees are merged and 

sorted in ascending order.  

 

 
 

Fig. 4. Building the comparison tree. 

 

SPTM algorithm consists of three steps: comparison tree 

selecting, two tree matching, and similarity score calculating 

as follows. First, the comparison tree is selected. The section 

criterion requires that the comparison tree that has the 

maximum number of members first. If the member of 

members of two comparison trees is equal, the comparison 

tree that has the highest nodes is selected and the algorithm 

proceeds to Step 2: matching tee. The matching tree consists 

of two steps: matching the root node and matching the 

children nodes.  In Step 3, the similarity score between the 

comparison tree and the candidate tree  is calculated.  Figure 5 

gives an example of SPTM algorithm. The two trees Tc and 

T1 have the same root node A. This means that the two trees 

have the same concept and can be matched. The matching 

nodes are {A, A1,A11}.  

 

Our model predicts the NIL value under two conditions: (i) we 

cannot generate a candidate entity for a mentioned name. (ii) 

an mapping entity has a different ancestor node and/or 

distantly related to the existing identifying entities in a Web 

document. This is different from existing approaches. For 

example, in [2] the NIL value is detected by creating one 

entity calling out to predict NIL value when the similarity 

score lower than a fix threshold. In [7] a SVM ranker is used  

to predict the NIL value. The NIL value is then returned if a 

set of candidate entity is empty or a candidate entity does not 

in the top of Google returning values. 

 

 
 

Fig. 5 Matching in SPTM 

 

 

 

V. EXPERIMENTAL RESULTS 

 

In order to evaluate the effectiveness of the framework for 

linking a mentioned name to a real world entity, we measure 

the performance of the system into two criteria: 

 

1. The searcher performance of generating candidate 

entities. 

 

2. The disambiguator performance of entity linking. 

We used two data sets that provided personal names, their 

alternative names and their professional categories: YAGO 

version 2.3.0 and our data catalogue, in which we collected 

web documents from three websites: 

 

1. http://www.today.com 

 

2. https://uk.yahoo.com 

 

3. http://www.msn.com/en-gb/ 

 

 Our catalogue contained 107,058 persons, 332 profession 

categories including Person (a root category), 105,604 

personal concepts, 145,638 personal surface forms, and 4,203 

personal relations. The evaluating data sets contained 992 

mention names, 119 referential ambiguity names, and 114 

lexical ambiguity names. 

 

The experimental results demonstrated that our proposed 

approach achieved excellent performance over real-world data 

sets. The system takes a single web-page as an input. It  

produces the identifiable person for each mentioned name in a 

web page or returns the NIL value if the mentioned name does 

not match any personal name in a knowledge base. For a NIL 

value, the system passes a mentioned name and the occupation 
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that has a maximum number of co-occurrence from the 

identifiable personal names via BingAPI to produce a top ten 

links of possible persons. 

The system is developed using Apache/2.4.12 (Ubuntu), 

PHP Version 5.6.11-1ubuntu3.1, and mySQL 5.6.28-

0ubuntu0.15.10.1. The personal name matching has one active 

actors and two cooperating system API.  

 

The effectiveness of our proposed model is empirically 

validated through experimental assessments with real-world 

data sets. In our data set only 18 personal names are identified 

as NIL, which amounts to 0.13% of all values. The overall 

quality of data transformation is extremely high, the 

framework returned the NIL value in less than 1% of all cases. 

Subsequent analysis of the returned NIL values revealed that 

all of the 18 returned NIL values are alternative names.  

We evaluated two text similarity functions: Jaro-Winkler 

and cosine similarity on 168 alias names of 25 personal 

names. PNTF combined with Jaro-Winkler produced the 

highest accuracy but  shows smaller number of improvement 

in PNTF with cosine similarity methods.  

Searcher’s performance: The candidate count is 1.6, i.e one 

mention name have average 1.6 candidate entities. This is not 

too high and is reducing the workload for disambiguator. The 

candidate precision and recall are both over 80%. This means 

the searcher has high performance in generating candidate 

entities. The performance in NIL value returning is also very 

high, it is nealy 100%. 

   Disambiguator’s performance. The percentage score for 

overall linkable score was 91.82%. The effectiveness in 

handling lexical ambiguity is 72.07%. This study produced the 

precision result in entity linking similar to Cucerzan [1] that 

obtained precision of 91.40%. Most of the incorrect in lexical 

ambiguity is a result of short name mentioning. From 114 

lexical ambiguity mentions, 42 mentions are short names (e.g., 

Timberlake, Ronaldo, Fernando and the system returns the 

correct answers only in 42.86% of such cases. Remarkable is 

that the accuracy improves to 85.95% if the lexical ambiguity 

is a full name. 

 

 

VI. RELATED WORK 

 

Frameworks that use extractor, searcher, and disambiguator 

have been previously proposed.  For example  studies 

presented in [1, 2, 3 ] focused on precision targets for the 

disambiguator, whereas [4] determined that the searcher 

component is more important and has a much stronger effect 

on performance than the disambiguator task because of the 

potential for referential ambiguity in personal names. 

Most real word data is dirty, incomplete, or imprecisely 

formatted [5] and as a result, we cannot use exact matched 

lookup over a knowledge base to process a set of candidate 

entities for a mentioned personal name as it is done in [1, 2].  

For example. exact-matched lookup, when the formatting is 

different will  produce dissimilarity: e.g. Barack Obama and 

Barak Obama will be dissimilar, even though they are the 

same personal name. We use a technique similar to the one 

introduced in [6] as a pre-processing step, intended to 

transform personal name variations to a uniform 

representation. Alternative techniques exist. For example, [4] 

this problem was solved by using uniform weight scheme 

score to rank the candidate names. The candidate which has 

the highest score is selected. However, this method suffers 

when a context can be both the given name and the last name 

because the scores are equal. To circumvent this, in our work, 

a regular grammar in personal name structure is used for 

segmentation the components in personal name (the location 

of first name, middle name, or last name) and these 

components are matched directly to the personal name 

dictionary. 

Methods proposed for the disambiguator task in  [ 1, 2, 3, 7,  

9, 10, 11, 13, 14] handle lexical ambiguity in different ways. 

Those methods can be divided broadly into two types: context 

similarity methods and combining methods. The first one is 

textual similarity method called a bag of word or context 

similarity. Context similarity uses the terms around the entity 

mention and the Wikipedia page that related with entity to 

measure similarity between two entities. The limitation in 

context similarity method is requiring exact word overlap 

between the two compared texts, which may become an over 

strict constraint because of flexible usage in natural language.  

 

The empirical results demonstrated that our framework is 

effectiveness in personal name linking. Hence the effective in 

short name linking indicates that only personal name con-

cepts are insufficient for mapping a short name ambiguity to 

the real-world entity. There-fore, in our future work we would 

like to improve the performance in short name ambiguity. We 

plan to mine the evidences across the document that 

introduced in [21] using the connection between persons. 

.  

VII. CONCLUSION 

 

In this paper we describe a framework for personal name 

disambiguation which consists of extractor, searcher and 

disambiguator and achieves a high percentage of correct 

disambiguation. The extractor component uses Alchemy API 

that uses to extract personal name from a web document. This 

tool has overall good ability to extract the personal names that 

are mentioned within a web-page. The searcher component 

contains two main functions: personal name transformation 

and candidate generator and combines three components: 

personal name transformation with context free grammar 

rules, personal surface form, and text similarity function.  
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