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Abstract. The CREST reactive-burn model uses entropy-dependent reaction rates that, until now, have been manually tuned
to fit shock-initiation and detonation data in hydrocode simulations. This paper describes the initial development of an
automatic method for calibrating CREST reaction-rate coefficients, using particle swarm optimisation. The automatic method
is applied to EDC32, to help develop the first CREST model for this conventional high explosive.
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INTRODUCTION

In recent years, the hydrocode-based CREST reactive-burn model has had success in modelling a range of shock

initiation and detonation propagation phenomena in polymer bonded explosives, see e.g. [1]. CREST uses empirical

reaction rates that depend on a function of the entropy of the non-reacted explosive, allowing the effects of initial

temperature, porosity and double-shock desensitisation to be simulated without any modifications to the model. In

contrast, the majority of reactive-burn models use pressure-dependent reaction rates and are not able to do so [2].

Until now, the reaction-rate coefficients have been manually calibrated by trial and error, using hydrocode sim-

ulations of sustained-shock gas-gun experiments and the detonation size-effect curve for the explosive. This paper

describes a new automatic method for calibrating CREST reaction-rate coefficients using the well-established particle

swarm optimisation technique [3]. The method is demonstrated by applying it to EDC32 to develop, in conjunction

with appropriate equations of state, the first CREST model for this conventional high explosive.

EDC32 comprises 85 wt.% HMX and 15% Viton A, with 1.5% porosity. Various experimental data are available,

though unfortunately not a detonation size-effect curve. In this work, the reaction rate was calibrated only to data from

four sustained-shock gas-gun shots on EDC32 and an estimated size-effect curve.

AUTOMATIC CALIBRATION METHOD

The form of reaction rate used in CREST has been described previously [1]. The reaction rate equations are (1) to (4),

where λ is the mass fraction of explosive that has reacted, and the reaction rate λ̇ is its derivative with time. The m and

b parameters depend on a function of entropy of the non-reacted explosive, Zs, which is obtained from the equation of

state. The algebraic form of m(Zs) and b(Zs) has recently been changed and is given by equations (5) to (10).

λ̇ = (m1λ̇1 +m2λ̇2 +m3λ̇3)(1−λ ) (1)

λ̇1 = (1−λ1)
√
−2b1ln(1−λ1) (2) b1 = c0(Zs − c12)

c1 (5) m1 = c6(Zs − c13)
c7 (8)

λ̇2 = λ1(1−λ2)

√
2b2

(
b2λ1

b1
− ln(1−λ2)

)
(3) b2 = c2(Zs − c12)

c3 (6) m2 = c8(Zs − c13)
c9 (9)

λ̇3 = λ1(1−λ3)

√
2b3

(
b3λ1

b1
− ln(1−λ3)

)
(4) b3 = c4(Zs − c12)

c5 (7) m3 = c10(Zs − c13)
c11 (10)

For Zs ≤ c12, the b parameters are set to a small but finite value. Coefficient c13 is an entropy threshold, below which

no reaction will occur. The m parameters are, therefore, set to zero for Zs ≤ c13. Limiters are applied to the b and m

parameters to prevent the reaction rate from becoming unfeasibly fast for very high entropies.

There are fourteen reaction-rate coefficients c0 to c13. For this work, the reaction rate has been simplified so that

only seven calibration coefficients, defined below as convenient functions of c0 to c13, are needed. This simplified form
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of reaction rate is sufficient for conventional high explosives (CHEs) like EDC32, for which there is relatively little

calibration data available. It was developed from the following observations:

• λ̇3 is not required for CHEs, so m3 is set to zero by defining c10 = 0. Its other coefficients are set to tractable

values of c4 = 1, c5 = 0 and c11 = 0.

• The b-entropy threshold c12 is unlikely to be required for explosives with a sparse data set, so is set to zero.

• Unless there is a need for b1 �= b2, for simplicity it is assumed that b1 = b2 = b(Zs) so c0 = c2 and c1 = c3.

This constrains the shape of the reaction rate λ̇ (t). Parameter b(Zs) is represented by two calibration coefficients,

BSHO= logb(Z1) and BDET = logb(Z2), where Z1 is an entropy of relevance to the shock-initiation regime and

Z2 is an entropy in the detonation regime.

• Parameter m2(Zs) is represented by calibration coefficients C9 = c9, m-threshold MT HR = c13 and M2HI =
m2(Z2), which is a high-entropy constraint on m2 to limit its magnitude in the detonation regime.

• The remaining two calibration coefficients controlling m1(Zs) are C7 = c7 and SUMM = Σimi(Z2), which needs

to be large enough to guarantee that λ → 1 in the detonation regime.

The reaction rate is calibrated by simultaneously varying the seven coefficients (BSHO, BDET , C9, MT HR, M2HI,

C7 and SUMM) in order to improve the fit to the calibration data. Many different optimisation methods are available

in the literature. We have used particle swarm optimisation (PSO) which is a mature and widely applicable technique.

PSO [3] works by moving a user-supplied number of “particles” (∼32 are recommended) through coefficient space

for a number (∼40) of iterations, known as “generations”. The coefficients to be optimised, as well as their allowed

ranges (minimum and maximum values), are also supplied by the user. Each particle has a “position” which is its

current set of coefficients, and a “velocity” which is the change in its coefficients from one generation to the next.

At the start of the PSO run, a random position (within the allowed ranges for each coefficient) and velocity is chosen

for each particle. Then the PSO submits hydrocode simulations for the first generation, waits until they finish, and

analyses the results to generate a goodness-of-fit value known as the “misfit” for each particle. The “best” misfit (in

our case, the minimum) for each particle and all the particles, from this and any previous generations, is identified.

Each particle’s velocity is updated using an equation containing three terms, the first depending on the particle’s

previous velocity, the second based (with a degree of randomness) on the difference from the best set of coefficients

that particle has seen, and the third based (with a degree of randomness) on the difference from the global best that all

particles have seen. Then each particle’s position is updated by adding the velocity to its previous position, before the

hydrocode simulations are repeated for the next generation. Appropriate choice of the PSO control parameters helps

the particles to explore the coefficient space effectively, before converging on the global best solution.

Our PSO code is written in Python with ancilliary Bash and Fortran 90 programs, and runs on AWE’s BULL B510

Linux cluster. Although the code has multi-objective capability [4], only single-objective PSO has been used in this

work. The code, as tailored to CREST model calibration, is known as CalibrateHE. For each particle, it runs 4 gas-

gun simulations in a 1D Lagrangian hydrocode, using 100 zones/mm meshing, and 3 different-diameter rate-stick

simulations in a 2D Eulerian hydrocode using either 50 or 100 zones/mm.

FIGURE 1. Embedded gauge data for EDC32 gas-gun shot 1s-1468 [5] (left), and a CREST simulation of the same shot (right).
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Figure 1 shows one of the sustained-shock EDC32 gas-gun shots used for calibration [5]. The coloured lines are

experimental data from particle-velocity gauges embedded at known depths within the explosive. In order to construct

the misfit, it was decided to compare two features of these data, the shock and peak states, because experience from

manual calibration shows that it is difficult to match these states without fitting the whole particle-velocity history. The

experimental data were analysed to determine the shock and peak states, and error bars were estimated. Results from

the gas-gun simulations for each particle are analysed automatically, and the misfit calculated using the first term in:

mis f it =
1

ngm

n

∑
1

g

∑
1

m

∑
1

[
calc− data

σdata
est

]2

︸ ︷︷ ︸
shock initiationregime

+
1

r

r

∑
1

[
calc− f itted data

σ f itted data
est

]2

︸ ︷︷ ︸
detonationregime

(11)

where n is the number of successful gas-gun simulations, g is the number of gauges in each gas-gun shot, m is the

number of metrics for each gauge (currently 4: the peak time, peak magnitude, shock time and shock magnitude) and

r is the number of rate-stick simulations. The σ est values are estimated errors; providing that PSO is used only to

optimise coefficients and not to estimate uncertainties on the coefficients, it is sufficient to estimate the errors.

The second term in equation (11) represents the fit to the detonation size-effect curve. This gives the variation in

detonation velocity with diameter, as obtained from unconfined cylindrical rate-stick experiments. Since a size-effect

curve is required to calibrate the detonation behaviour of CREST but no EDC32 data are available, it was necessary to

estimate a size-effect curve. This was done by scaling the measured detonation velocities for two similar HMX-based

explosives, LX-04 and EDC29, and using an established fitting form with an estimated failure diameter of 2mm. It

is hoped that the resulting curve, shown by the black line and error bars in figure 4 (right), is plausible. Three points

on this curve, at 3mm, 5mm and infinite diameter, are compared to detonation velocities automatically extracted from

rate-stick simulations, using pressure traces from marker particles positioned along the axis of symmetry.

APPLICATION TO EDC32

CalibrateHE was first run for 40 generations of 20 particles, using 50 zones/mm rate-stick simulations, in order to

demonstrate that it was working correctly. Figure 2 shows how the PSO has converged upon best-fit values for four

of the calibration coefficients; results are similar for the other three coefficients. The particles explore the parameter

space for ∼10 generations before beginning to converge. In this case, the particles move to a better minimum with

a higher value of M2HI after ∼20 generations though, due to its stochastic nature, this behaviour might be different

if the PSO run was repeated. Figure 3 shows that BSHO and BDET are tightly constrained by the calibration data

because they control b1 = b2. It is known that the most important parameter in the CREST reaction rate is b1, since it

largely determines the time and magnitude of the peak overall reaction rate [1]. Coefficients M2HI and SUMM have

wider minima because they are inter-related, so several combinations could give good fits to the calibration data.
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FIGURE 2. Variation of four of the seven reaction-rate calibration coefficients during 40-generation 20-particle PSO run.
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FIGURE 3. Misfit plots for four of the seven calibration coefficients, from the 40-generation 20-particle PSO run. The misfit
scale is truncated in order to focus on the best reaction rates.

FIGURE 4. Fit to calibration data for the global best particle from the 26-generation 8-particle PSO run that was used to calibrate
the CREST model for EDC32. Left: one of the four sustained-shock gas-gun shots. Right: detonation size-effect curve.

The PSO was run again to calibrate the reaction rate for EDC32, with 26 generations of 8 particles, using rate

stick simulations with 100 zones/mm meshing which is converged for detonation propagation. This is fewer particles

than is desirable from a computer-science perspective, but limited computational resource was available for this work.

From a physics perspective, the results are sufficient to calibrate CREST providing that the fit to the calibration data is

acceptable. The best particle, whose reaction rate has been adopted for the model, had the following coefficients:

c0 = c2 = 1.104× 108 μs−2 (Mbar cm3/g)−c1 , c1 = c3 = 2.300, c4 = 1.0 μs−2 (Mbar cm3/g)−c5 , c5 = 0.0, c6 =
1.993× 105 (Mbar cm3/g)−c7 , c7 = 2.48, c8 = 11.12 (Mbar cm3/g)−c9 , c9 = 0.325, c10 = 0.0 (Mbar cm3/g)−c11 ,

c11 = 0.0, c12 = 0.0 Mbar cm3/g and c13 = 2.25× 10−4 Mbar cm3/g. If these values are substituted into equations

(5) to (10) and plotted, the entropy-dependence of the m and b reaction-rate parameters is similar to the previous

manually-calibrated CREST model for the HMX-based explosive PBX 9501 [1], which is reassuring.

Figure 4 shows how well the model fits the calibration data. A reasonably-good fit to gas-gun shot 1s-1468 has been

obtained, comparable in quality to the PBX 9501 model. Space does not permit the other three gas-gun comparisons

to be illustrated here, but they are similar. The resulting misfit for the shock initiation regime, the first term in equation

(11), is 31.35. The fit to the estimated size-effect curve for EDC32 is excellent, giving a misfit for the detonation

regime of 0.99. The misfit for the gas-gun data is much higher than for the size-effect curve because the shock and

peak states from the gas-gun simulations (figure 4) are often outside the estimated error bars on the experimental data

(figure 1). While this suggests that the CREST model could be improved, it is also likely that the estimated errors are

too small because they do not account for shot-to-shot variability. In future, a hierarchical model [6] could be used to

estimate better errors for the gas-gun data.
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CONCLUSIONS

An automatic calibration method, CalibrateHE, has been developed for CREST reaction-rate coefficients. A particle

swarm optimisation code submits multiple hydrocode simulations, whose results are analysed to determine the “misfit”

to calibration data. Over ∼40 generations, the code finds a best set of reaction-rate coefficients that minimise the misfit.

CalibrateHE has been applied to EDC32, to develop the first CREST model for this conventional high explosive. The

reaction rate has been calibrated using four sustained-shock gas-gun shots and an estimated size-effect curve. The fit

to the calibration data is comparable in quality to that for manually-calibrated CREST models for other explosives

and, since multiple sets of reaction-rate coefficients have been tested, it is more likely that a best fit has been achieved.

It is much easier and quicker to run CalibrateHE than it is to manually calibrate a CREST reaction rate. However,

there is a danger in reducing the level of human involvement because any automatic optimisation scheme can only

work within the equation-set provided. Since the original development of CREST, both the reaction-rate equations

and the entropy-dependence of their m and b parameters have been improved. The necessity to change the equations

was identified during the manual calibration process, when attempting to tune the reaction rate to new data sets. It is

important that, when automatic calibration methods are used, time is spent analysing the resulting reaction rates and,

if necessary, changing the reaction-rate equations to improve the fit to experimental data.

CalibrateHE is computationally expensive because several rate-stick simulations are required for each particle,

and each of these takes up to 8 hours to run on 32 Intel Sandy Bridge processors. In this work, the number of

rate sticks was limited to three to reduce the computational expense, but defining the size-effect curve in this way

is cumbersome. It is hoped that research currently underway at Leeds University using the straight and variational

streamline approximations with CREST will, in future, enable the size-effect curve to be estimated in minutes. If

successful, this has the potential to signficantly reduce the computational expense of reaction-rate calibration.

CalibrateHE currently uses a simplified reaction rate that is appropriate for conventional high explosives like EDC32

for which there is relatively little calibration data available. Well characterised and/or insensitive high explosives will

require a more-complete reaction rate, possibly using all fourteen of the available coefficients. In due course, the code

will be made compatible with these reaction rates, and with other types of calibration data e.g. Pop plots.

CREST equations of state (EoS) are calibrated to appropriate data using a separate automated code. It has been

shown [7] that adjusting the EoS coefficients within the uncertainties in the underlying data can improve the fit to

detonation corner turning behaviour. By combining the EoS and reaction-rate codes in future, to allow both sets of

coefficients to be optimised simultaneously, it will become possible to account for uncertainties in the EoS data when

CREST models are calibrated.
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