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ABSTRACT 

 

Patients with Alzheimer disease (AD) typically present with attentional and oculomotor 

abnormalities that can have an impact on visual processing and associated cognitive 

functions. Over the last few years, we have witnessed a shift towards the analyses of eye 

movement behaviors as a means to further our understanding of the pathophysiology of 

common disorders such as AD. However, little work has been done to unveil the link between 

eye moment abnormalities and poor performance on cognitive tasks known to be markers for 

AD patients, such as the short-term memory-binding task. This was the aim of the present 

study. We analyzed eye movement fixation behaviors of thirteen healthy older adults 

(Controls) and thirteen patients with probable mild AD while they performed the visual short-

term memory binding task (Parra et al., 2011). The short-term memory binding task asks 

participants to detect changes across two consecutive arrays of two bicolored object whose 

features (i.e., colors) have to be remembered separately (i.e., Unbound Colors), or combined 

within integrated objects (i.e., Bound Colors). Patients with mild AD showed the well-known 

pattern of selective memory binding impairments. This was accompanied by significant 

impairments in their eye movements only when they processed Bound Colors. Patients with 

mild AD remarkably decreased their mean gaze duration during the encoding of color-color 

bindings. These findings open new windows of research into the pathophysiological 

mechanisms of memory deficits in AD patients and the link between its phenotypic 

expressions (i.e., oculomotor and cognitive disorders). We discuss these findings considering 

current trends regarding clinical assessment, neural correlates, and potential avenues for 

robust biomarkers.  
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INTRODUCTION 

Visual information is thoroughly processed during fixations. Fixations normally last between 

150 ms and 300 ms [1] and are driven by saccades which direct the fovea towards a particular 

element of interest [2]. Fixations are therefore the end result of complex interactions between 

features of the explored environment (“bottom up”) and the instruction or question to be 

solved by the explorer (“top down”) [3, 4, 5, 6, 7, 8, 9, 10]. Behind such eye movement 

patterns, there are complex cognitive functions such as attention, executive control, and 

working memory [11, 12, 13, 14, 15, 9, 16, 17]. Hence, the investigation of abnormal patterns 

of eye movement could provide critical information on the influence that some pathologies 

causing visual impairments, such as Alzheimer Disease (AD), have on these cognitive 

abilities, and in doing so unveil the source of capacity loss linked to specific processing 

levels. 

In AD patients, progressive neuropathological changes affect certain laminae and cell types 

within the neocortex, which may lead to cortico-cortical disconnections [17, 18, 19]. This 

pathology, preferentially involves temporo-parietal association areas [20, 21, 22], whose 

damage could account for some of the differences found between AD patients and controls 

while performing cognitive tasks requiring perceptual organization, contrast sensitivity, 

spatial reasoning, and object recognition [23]. That AD patients are less able to process visual 

information is a finding well supported by the literature [24, for a review]. Subtle alterations 

in eye movement coordination and planning have been reported during performance on fine 



4 
 

motor tasks from the initial course of the disease [25]. It has been suggested that the fixation 

network is affected in AD patients [24]. Impairments of such a network could result in 

delayed target visualization, probably due to altered projections from the frontal lobes to the 

superior colliculus [26]. As suggested by previous research [27, 28, 29, 30], a reduced activity 

in the fixation pathway could give rise to erroneous gaze shifts in AD patients. It seems that 

neurons in the rostral pole of the superior colliculus, which are active during visual fixation, 

become inhibited during gaze shifts in AD patients. This finding suggests that AD may cause 

a loss of ability to disengage fixation from the stimulus due to a failure of processes 

responsible for inhibiting fixation neurons. These studies demonstrated that patients with AD 

show altered visual search strategies and eye movement behaviors, with deficits in smooth 

pursuit eye movements, an increased number of saccades as well as increased attentional 

deficits and eye blinks [31, 32, 18, 33]. Porter et al. [34] showed that altered patterns of eye 

movements in AD patients may account for limitations to organize strategies during visual 

search tasks that rely on binding functions. 

The present study compares visual processing in AD patients and healthy older adults 

(controls) during the short-term memory (STM) binding task. The STM binding task is a 

suitable tool to investigate the interplay of the above mentioned mechanisms and their 

potential link to eye movement disorders. The STM binding task is a change detection 

paradigm which assesses the ability to temporarily hold in memory either single features or 

features bound within integrated objects [35]. The task provides a measure of feature binding 

by contrasting performance during a condition in which features need to be remembered 

together (Bound Colors condition) relative to a baseline condition during which features are 

held in memory separately (Unbound Colors condition) [36, 35]. STM binding, as assessed 

by this paradigm, entails cortico-cortical interactions between areas responsible for 
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processing features and those responsible for keeping them together in STM [37, 38]. STM 

binding declines in patients with dementia due to AD [39] and in those who will inevitably 

develop dementia due to familial AD but are still asymptomatic as demonstrated by 

traditional neuropsychological tasks [39]. STM binding is an integrative memory function 

known to support the conjunction of features necessary to create objects' identity [40]. Such 

a function relies on regions along the visual ventral stream but is independent of the 

hippocampus [41, 42]. In a recent work investigating structural connectivity, Parra et al. [43] 

showed that white matter integrity in frontal regions and in the anterior part of the corpus 

callosum accounted for a significant proportion of variance of STM binding performance in 

patients with familial AD. Moreover, Parra and collaborators recently showed that STM 

binding deficits in patients in the prodromal stages of familial AD are associated to altered 

patterns of functional (i.e., EEG) brain connectivity [44, 45] which seem to involve not only 

parietal-occipital regions but also the frontal lobes [46, 47]. The behavioral and 

neuroanatomical evidence gathered so far with STM binding tests lends support to the notion 

that this form of binding (i.e., conjunctive binding abilities) supports the temporary retention 

of multifeatured objects and reflects neither perceptual binding abilities nor hippocampal 

mediated memory functions. For instance, Parra and collaborators reported that all the AD 

patients assessed in their series of studies had intact perceptual binding functions confirmed 

by a screening tool used to assess binding in perception [48, 39]. Further support to this view 

comes from the study by Parra et al. [41] in which they assessed healthy young volunteers 

while they perform a visual STM binding task similar to that reported here within the fMRI 

scanner. fMRI data revealed activation of regions within the visual ventral stream (i.e., 

Lateral Occipital Complex - LOC) during feature encoding. However, temporary memory 

for feature bindings activated similar regions of the LOC and also parietal and frontal lobe 
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regions, thus confirming the reliance of such memory function on a dedicated brain network. 

In none of the above discussed studies was the hippocampus found to contribute to 

conjunctive binding functions carried out in visual STM. This evidence warrants 

investigation of the link between eye movements and visual STM binding as the network 

components which are specific to the latter function seem to be shared with the network 

supporting the former function (i.e., frontal-parietal network [49, 50]).  To date, there is no 

information available as to whether STM binding deficits and eye movement behaviors may 

be features of the clinical phenotype of AD patients, which could share pathophysiological 

mechanisms. 

Investigating eye movement fixations in AD patients during STM binding performance 

would shed new light on the contribution of modulations of overt attention mechanisms 

across the different stages of memory processing (i.e., encoding and retrieval) to those 

impairments found with this task. Relying on the above discussed literature, two predictions 

are put forward regarding the contribution of the study of eye movements to cognition in AD. 

One (a) is linked to the role of memory load [51]. The STM binding task controls for this 

factor as the Bound and Unbound Color conditions present the same amount and type of 

features, and only the need of binding them together differs across these conditions. Hence, 

altered patterns of eye movements would be informative of limited binding abilities and not 

of overall processing deficits. The second (b) relates to the memory stages whereby the deficit 

could result from either poor encoding or impaired retrieval functions. Previous literature 

suggests that AD affects primarily memory encoding functions (see also [43, 44]). Fixation 

duration at these memory stages would inform on the extent to which eye movement 

impairments could be linked to poor encoding abilities or ineffective retrieval strategies. 
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2. METHODS 

 

2.1. Participants 

Data were acquired from 13 controls (all native Spanish speakers) with mean age of 68 years 

(SD=4.2) and mean education of 18.2 (in years) and from 13 patients with AD (all native 

Spanish speakers) with mean age 67 (SD=2.6 years) and mean education 13.4 (in years). It 

is worth noting that the STM binding task has proved insensitive to the level of education of 

the assessed individual [40], a feature that has led to the suggestion that this task is a 

transcultural cognitive marker for AD [47]. Patients were diagnosed based on the Diagnostic 

and Statistical Manual of Mental Disorders (DSM-IV) criteria which were applied by a 

psychiatrist. They were recruited at the Hospital Municipal and at Clinica Privada Bahiense, 

both of Bahía Blanca, Buenos Aires, Argentina. All AD patients underwent a detailed clinical 

interview asking about medical history, physical/neurological examination and thyroid 

function test. All the patients underwent biochemical analysis (hemoglobin, full blood count, 

erythrocyte sedimentation rate, urea and electrolytes, blood glucose), to rule out other 

common pathologies. Patients were excluded if: (1) they suffered from any medical 

conditions other than dementia that could account for, or interfere with, their cognitive 

functioning; (2) had evidence of vascular lesions in computed tomography or RMN; (3) had 

evidence for an Axis I diagnosis (e.g. major depression or drug abuse) as defined by the 

DSM-IV. To be eligible for the study -if applicable-, patients had to have at least one 

caregiver providing regular care and support. Patients taking cholinesterase inhibitors (ChE-

I) were not included. None of the subjects was taking hypnotics, sedative drugs or major 

tranquillizers. Those participants with a diagnosis of Ophthalmologic diseases such as 

glaucoma, visually significant cataract or macular degeneration were excluded from the 

study. Subjects’ visual acuity was 20/20 or corrected to 20/20. The investigation adhered to 
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the principles of the Declaration of Helsinki. All patients and all control subjects signed an 

informed consent prior to their inclusion in the study. 

The mean score of AD patients in the Mini-Mental State Examination (MMSE) [51] was 22.6 

(SD = 4.1) thus suggesting mild dementia. The mean score of AD patients in the Adenbrook’s 

Cognitive Examination - Revised (ACE-R) [52] was 65.3 (SD = 16.9). 

 

2.2. The STM binding task and eye movement assessment 

Stimuli were presented on the center of a 20” LCD Monitor (1024 x 768 pixels resolution). 

Participants sat at a distance of 60 cm from the monitor. Head movements were minimized 

using a chin rest. Eye movements were recorded with an EyeLink 1000 Desktop Mount (SR 

Research) eyetracker, with a sampling rate of 1000 Hz and an eye position resolution of 20-

s arc. All recordings and calibration were binocular. 

 

Participant’s gaze was calibrated with a standard 13-point grid for both eyes. After validation 

of calibration, the STM binding task began. During the task, participants were presented with 

arrays of object shapes in random positions of a 3x3 virtual grid which sustained 10o of visual 

angle. Objects were constructed using six different layouts, each defined by a shape and a 

frame area (see Fig. 1; also see [40]). The shape or frame area of each object (each 

representing 50% of the surface) was filled with a color. The procedures used to select the 

colors and the psychophysical features of the colors selected were reported in [40] and can 

be found in supplementary materials at 

http://www.era.lib.ed.ac.uk/bitstream/1842/2441/1/08-278-MAP.doc. During the task, 

participants were presented with arrays of two object shapes. Based on the study by Parra et 

http://www.era.lib.ed.ac.uk/bitstream/1842/2441/1/08-278-MAP.doc
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al., [40] this seems an optimal array size to identify STM binding impairments in AD patients 

(see also [53]). 

Trials began with a fixation screen (i.e., a cross) shown for 250 ms. This was followed by a 

study display presented for 2000 ms (Fig. 1). After an unfilled interval of 900 ms, the test 

display was presented until the participant responded. There was then an inter-trial interval 

of 1000 ms. In half of the trials objects on both displays were the same. In the other half, the 

objects in the test display showed different colors from those in which they were presented 

during the study display. Object locations in the test display were always randomly changed 

to make location an uninformative feature. Participants were requested to detect whether the 

study and test displays consisted of the “same” or “different” items and to respond verbally 

accordingly. Responses were manually typed by a trained instructor. 

 

Two experimental conditions were used (Fig. 1). In the Unbound Color condition both the 

shape and frame areas of each object were shown in different colors. In the “different” trials 

the color from either the shape (50%) or the frame (50%) area of the two objects was replaced 

by a new color that had not appeared in the study display. Participants were told to focus on 

colors and not on their associations as the change would consist of new colors. In the 

condition assessing memory for Bound Colors both the shape and frame area were also of 

different colors. However, in the “different” trials the two objects swapped either the color 

from the shape area (50%) or from the frame area (50%). Participants were told that colors 

and their associations were both relevant as sometimes colors would be rearranged in 

different combinations during the test display. For each condition participants performed 15 

practice trials followed by 32 test trials. The “same” and “different” trials were fully 

randomized and conditions were blocked and counterbalanced across participants 
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------------------------------------------------- 

Insert Fig 1 about here 

------------------------------------------------- 

 

2.3. Statistical analysis 

Statistical analyses were performed in R version 3.1.1 (RDevelopment Core Team). Group 

differences in the STM binding task were tested with ANOVA and linear regression. A model 

with saccade amplitude was created for each task to test for the relationship between these 

variables and task performance. We used the lmer program of the lme4 package (version 

0.999999-2) [54] for estimating fixed and random coefficients. This package is supplied in 

the R system for statistical computing (version 3.1.1; R Development Core Team, 2013). We 

chose gaze duration (i.e., sum of consecutive fixation durations within a target) as the 

dependent variable because this measure includes refixations on a place, and refixations 

usually reflect a processing difficulty [1]. In addition, we transformed the dependent variable 

to log because it allowed us to obtain a normal distribution of residuals and a better statistical 

power. Fixed effects in LMM terminology correspond to regression coefficients in standard 

linear regression models. They can also estimate slopes or differences between conditions. 

We estimated how strongly the mean log gaze duration varied within participants by fitting 

a random intercept for participants. Instead of estimating a slope or the difference between 

conditions, random effects estimate the variance that is associated with the levels of a certain 
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factor (i.e., participants’ processing rate). Regression coefficients (bs) standard errors (SEs) 

and t-values (t=b/SE) are reported for the LMMs. Since there is no clear definition of “degree 

of freedom” for LMMs, precise p-values cannot be reported. The t-distribution is equivalent 

to the normal distribution for all practical purposes (i.e., the contribution of the degrees of 

freedom to the test statistics is negligible). Our criterion for referring to an effect as 

significant is t = b/SE >±1.95. 

 

3. RESULTS 

3.1 Correct recognition during the STM binding task 

Mean behavioral data during the STM binding task is shown in Figure 2. Relative to Controls, 

patients with AD showed a large drop in performance on the Bound Colors (BC) condition 

(66% and 90% of correct responses for AD patients and controls, respectively) a discrepancy 

not found during the Unbound Color (UC) condition (87% and 93% of correct responses for 

AD patients and controls, respectively) (See Figure 2). To analyze performance, a two-way 

mixed ANOVA was used. The between-subject factor was Group (Controls vs. AD patients) 

and the within-subjects factor was Condition (BC vs. UC). The ANOVA resulted in a main 

effect of Condition: (F=97.04, p<0.001) but not of Group: (F=3.04, ns). The Condition by 

Group interaction was significant (F=13.32, p<0.001).  Four post-hoc comparisons, two 

across groups (i.e., UC: AD vs. controls and BC: AD vs. controls) and two across conditions 

(AD: UC vs. BC and Controls: UC vs. BC) were carried out to further investigate the 

interaction (corrected p-value = 0.005). They revealed that AD performed worse in the BC 

than in the UC condition (t=4.23, p=0.001). In addition, AD performed worse than controls 

in the BC than in the UC condition (t=4.51, p=0.001). None of the other contrasts across 
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groups or conditions resulted in significant differences. These results mirror those reported 

by Parra et al. [40].  

 

3.2. STM binding and gaze duration 

In Table 1 we report, (a) effects related to the mean values of gaze duration when averaging 

over all predictors; (b) interactions of Condition x Group, and (c) those interactions of 

Condition x Group x Memory Stage (Encoding vs. Retrieval).  

Averaging over all predictors. We first evaluated mean log gaze duration as function of % 

of correct recognition. As shown in Table 1, % of Correct Recognition as a function of gaze 

duration was non-significant (t=1.34), but the effect trended toward the expected positive 

direction: gaze duration increases led to increased correct recognition. Saccade amplitudes 

exerted a significant effect on gaze duration (t=-3.25) (See Table 1). When we analyzed the 

effect of Memory Stage (Encoding vs. Retrieval) collapsing across Group and Condition, we 

noted a significant effect on gaze duration, reflecting longer gazing times during Retrieval 

than during Encoding (t=2.26). Finally, when we analyzed the effect of Memory Stage and 

task Condition on gaze duration, we found significantly longer gazing times during Retrieval 

of BC than during retrieval of UC (t=3.27) (See Table 1). 

Interaction of Group x Condition. We then evaluated whether gaze duration was 

differentially affected during the BC condition when comparing controls and AD patients. 

As shown in Table 1 and in Figure 3, the mean gaze duration significantly decreased in AD 

patients with respect to controls (t=-3.51). However, when analyzing the UC condition, 

controls and AD patients showed similar gaze durations, which did not result in significant 

differences between groups (t=0.22) (See Table 1 and Figure 3).  
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Interactions of Condition x Group x Memory Stage. Then we considered gaze duration as 

function of task Condition across Group and Memory Stage. As it is shown in Table 1, only 

during the BC task there was a significant effect between groups (t=2.38), whereby Controls 

and AD patients showed well differentiated gaze durations. While controls showed a similar 

gaze duration between Encoding and Retrieval, AD patients showed significantly shorter 

gaze duration during Encoding than during Retrieval (See slope for controls and AD patients 

during Encoding and Retrieval on the BC condition in Figure 3. More details about this 

striking effect are presented in the Discussion section). In contrast, both groups showed 

similar gaze durations when performing the UC task (t=1.60) (See Figure 3). 

 

4. DISCUSSION 

Given that the BC and UC condition presented the same amount and type of features, and 

only the need of binding them together differed across these conditions; we investigated 

whether subtle changes in binding processing such as those presented in mild AD patients 

might coexist with abnormal eye movements, detectable by an eyetracker coupled to the STM 

task. Our results provide evidence that even at these early stages of the disease, AD patients 

showed gross changes during eye movements fixations associated to the BC condition of the 

STM binding task, compared to healthy controls. This suggests that the analysis of eye 

movements might provide an additional useful tool to identify early clinical expressions in 

AD patients which are associated to impairments of cognitive functions known to hold 

marker properties for this type of dementia (i.e., the STM binding test). As shown in Figure 

3, controls’ encoding responses differ from those seen in AD patients. Controls seem to meet 
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the encoding demands of the BC task more effectively than AD patients. AD patients 

however, showed shorter gaze duration particularly during the encoding stage of the BC 

condition. This suggests that poor encoding mechanisms could be the source of impairments 

found in these patients during STM binding tasks. Similar conclusions were presented by 

Parra et al [see 43] and Pietto et al. [46] using brain connectivity and ERP analysis. A 

reduction in gaze duration and in the number of fixations during the encoding of bound 

information may be the output of inefficient cortical integration mechanisms responsible for 

forming or holding the master map of locations which, as suggested by Treisman and Gelade 

[55], would keep features together in perception and seemingly in STM. Such a map will 

bind together features sharing the same visual space. The fact that such a pattern of 

impairments was not observed during the UC condition which presented identical number 

and type of feature rules out differential visuospatial demands of the BC condition as a 

potential driver of this effect. This leaves binding as the potential candidate which could 

account for the altered pattern of eye movements found in AD patients during the STM 

binding task reported here. There is evidence that AD patients can bind surface features in 

perception [39], particularly when these features are processed within the same visual stream 

(i.e., ventral as it is the case for the stimuli presented here [56]). This suggests that AD 

patients may have specific problems encoding visual bindings in STM seemingly due to poor 

cognitively guided visual commands. Daffner et al. [57] showed that AD patients exhibit a 

diminished visual curiosity when identifying novel stimulus, probably due to impaired neural 

mechanisms responsible for controlling the cortical components of the motivational drive. 

However, the results presented here would be unlikely accounted for by lack of visual 

curiosity. The fact that the UC and BC presented identical visual materials and that the 

function found to be impaired (i.e., binding) is rather a construct which need to be applied to 
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succeed in this task, make the visual curiosity hypothesis an unlikely account. Nevertheless, 

Daffner et al. [57] proposed that visual curiosity impairments in AD patients could be 

mediated by dysfunction of prefrontal association cortices. Such cortical regions also play a 

role in STM binding functions. Hence, future studies will need to investigate the extent to 

which impaired eye movements, altered STM binding functions, and reduced visual curiosity 

in AD may share neurocognitive mechanisms. 

Notwithstanding these knowledge gaps, the results presented here suggest that eye 

movements may be a sensible approach to collect subjects' performance when analyzing 

visual information, from the encoding through the retrieval stages of memory. AD patients 

and controls had longer and similar fixations when encoding UC targets (see Figure 3), being 

our results compatible with previous evidence about relatively preserved feature processing 

in mild AD patients [42]. Parra et al. [40] showed that processing BC demanded more 

cognitive resources than the UC, and that this seems to be true regardless of age [58]. 

However, previous evidence suggests that AD selectively impairs feature binding [40]. 

Interestingly, our study shows that gaze duration follows a pattern of impairment similar to 

that observed through other behavioral measures of STM performance (e.g., percentage of 

correct recognition), thus suggesting a strong link between these two neurocognitive 

responses.  

A fMRI study reported binding-specific activation in posterior parietal regions [50, 59, 60, 

61] which are also known to be part of the network supporting top-down attentional and eye 

movement control [62]. Moscovitch [63] suggested that the inferior parietal lobe mediates 

the automatic allocation of attention to retrieved memory contents. Petersen and Posner [48] 

proposed that overt shifts of attention through eye movements are associated with higher 
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accuracy of performance in relational visuospatial memory task. Others [64, 65, 66] have 

argued that the activation of these parietal lobe regions may reinforce and help to produce 

stronger spatial representations and, consequently, stronger visualization would produce 

more accurate memory recognitions. The last decade has witnessed a surge of studies 

documenting a parietal dysfunction in AD patients which seems to be associated to reduced 

exploration strategies [67, 18]. In our study, controls’ and AD patients’ saccade amplitudes 

did not show significant differences through the BC and UC conditions of the STM tasks. 

More research will be needed to understand saccade behaviors during the STM binding task 

reported here. 

 

In summary, we propose that the analysis of eye movements during STM binding tasks 

provides a valuable measure to further assess disease mechanisms. Eye movement disorders 

reflect deficits in attention and working memory processes in AD patients. We suggest that 

a more comprehensive evaluation of eye movements during binding, incorporating both an 

in-depth analysis of oculomotor responses and assessment of cognitive processes, may well 

provide a user-friendly marker of early disease symptoms and future progression. Future 

longitudinal studies can investigate whether abnormal eye movement responses linked to 

STM binding impairments can reliably anticipate the diagnosis of AD. Moreover, future 

studies should refine our understanding of the interplay between eye movements and the 

cognitive constructs underlying memory binding during STM tasks. Particular emphasis 

should be placed on the causal relationship between these phenotypic features of the most 

common form of dementia. 
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Table 1: Parameter estimates for fixed effects of Linear Mixed Models. Threshold of 

significance is set at t = ±1.95. 

  
  

Gaze 

duration   

  M SE t-value 

Fixed effects     

Mean Gaze duration (log) 6.668 0.060 110.02 

%  of Correct Recall 0.007 0.005 1.34 

Saccade amplitude -0.009 0.030 -3.25 

Encoding vs. Recognition 0.035 0.015 2.26 

UC vs. BC X Encoding vs. Recognition 0.523 0.159 3.27 

Group x Task Condition      

Control vs. AD X BC -0.467 0.133 -3.51 

Control vs. AD X UC 0.027 0.125 0.22 

Group x Task Condition x Memory Stage 

(Encoding vs. Retrieval) 
    

Control vs. AD X BC X Enc. vs. Rec. 0.271 0.114 2.38 

Control vs. AD X UC X Enc. vs. Rec. 0.181 0.113 1.60 

Variance components  Variance SD 

Subject  0.035 0.187 

Residual   0.072 0.269 
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FIGURE CAPTIONS 

Figure 1. Trial design for the two conditions of the STM tasks. 

Figure 2. Corrected recognition during the two experimental conditions in both controls 

and AD patients (error bars = standard errors of the mean). 

 

Figure 3. Effect of binding task on gaze duration in control and in Alzheimer Disease (AD) 

patients during Encoding and Recognition moments. .Panel show partial effects of LMM 

(i.e., after removal of other fixed effects and variance components). Bar errors denote 

95%confidence intervals. Gaze duration is plotted on a log scale for correspondence with the 

LMM. 
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