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Abstract 

The interaction between free surface flow and structure is investigated using a new level set 

immersed boundary method. The incorporation of an improved immersed boundary method 

with a free surface capture scheme implemented in a Navier-Stokes solver allows the 

interaction between fluid flow with free surface and moving body/bodies of almost arbitrary 

shape to be modelled. A new algorithm is proposed to locate exact forcing points near solid 

boundaries, which provides an accurate numerical solution. The discretized linear system of 

the Poisson pressure equation is solved using the Generalized Minimum Residual (GMRES) 

method with incomplete LU preconditioning. Uniform flow past a cylinder at Reynolds 

number Re=100 is modelled using the present model and results agree well with the 

experiment and numerical data in the literature.  Water exit and entry of a cylinder at the 

prescribed velocity is also investigated.  The predicted slamming coefficient is in good 

agreement with experimental data and previous numerical simulations using a ComFlow 

model.  The vertical slamming force and pressure distribution for the free falling wedge is 

also studied by the present model and comparisons with available theoretical solutions and 

experimental data are made.  

KEY WORDS: level set method; immersed boundary method; slamming coefficient; water 

entry and exit; free surface; fluid-structure interaction. 
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1. Introduction 

Investigation of fluid structure interaction at the free surface is a classical hydrodynamic 

problem and has a wide range of applications particularly in the fields of naval architecture, 

civil and ocean engineering and physical oceanography. A flow singularity occurs when a 

body impacts the free surface, which gives rise to a high pressure peak localized at the spray 

root and makes water entry and exit problems difficult. In grid based numerical methods, 

there are two main strategies to handle a moving or deforming boundary problem with 

topological change, namely body conforming moving grids (Baum et al. 1996; Yan et al. 

2007) and embedded fixed grids (Yang et al. 1997; Ye et al. 1999; Tucker et al. 2000; Fadlun  

et al. 2000; Tseng et al. 2003; Balaras et al. 2004; Yang et al. 2006; Lv et al., 2006). For the 

former method, the grid can be efficiently deformed in an arbitrary Lagrangean-Eulerian 

(ALE) frame of reference to minimize distortion if the geometric variation is quite modest. 

Boundary conditions can be applied at the exact location of the rigid boundary. However, if 

the change of topology is complex, it will be very difficult and time consuming to regenerate 

the mesh. Also difficulties arise in the form of grid skewness and additional numerical 

dissipation may be a consequence of the redistribution of the field variables in the vicinity of 

the boundary.  

An alternative to body conforming moving grids is embedded fixed grids where the 

governing equations are usually discretized on fixed Cartesian grids. The method can also be 

divided into two major classes based on the specific treatment of the boundary cells; (1) 

Cartesian cut cell methods (Yang et al. 1997; Ye et al. 1999; Tucker et al. 2000) and (2) 

Immersed boundary methods (Fadlun  et al. 2000;  Tseng et al. 2003; Balaras et al. 2004; 

Yang et al. 2006; Lv et al., 2006). Although the Cartesian cut cell method was originally 

developed for potential flow, it has been applied and extended to the Euler equations, shallow 

water equations, Navier-Stokes equations to simulate low speed incompressible flows and 
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flows with moving interfaces. It has the potential to significantly simplify and automate the 

difficulty of mesh generation. There are also a number of disadvantages inherent in the use of 

this method. It cuts the solid body out of a background Cartesian mesh, which can generate 

sharp corners and a variety of different cut cell types. Thus, extending this method to three-

dimensions is not a trivial task. In addition, arbitrarily small cells arising near solid 

boundaries due to the Cartesian mesh intersecting a solid body can restrict the stability of the 

Cartesian solvers. 

In the immersed boundary method the momentum forcing which is introduced to enforce the 

boundary condition of the body in the fluid can be prescribed on a fixed mesh so that the 

accuracy and efficiency of the solution procedure on simple grids is maintained. Bodies of 

almost arbitrary shape can be dealt with and flows with multiple bodies or islands can be 

computed at reasonable computational cost (Fadlun et al. 2000). The immersed boundary 

method has the advantage of simplified grid generation and inherent simplicity which allows 

the study of moving bodies (Mittal et al. 2005) on fixed Cartesian grids. Furthermore, the 

appropriate treatment in the immersed boundary method leads to a convenient method for 

computing forces acting on a body, namely lift and drag forces. These advantages suggest 

that it is well suited to study problems involving a moving body with the free surface flow.   

The work here builds on earlier work by Zhang et al. (2009) in which a level set method with 

global mass correction was developed for two fluid flows and applied to simulate water 

column collapse and free surface waves over a submerged structure. A major contribution of 

the present work is the incorporation of an improved immersed boundary method with the 

free surface model. This makes it straightforward to undertake a variety of fluid structure 

interaction problems. A new algorithm is proposed to locate exact forcing points near the 

solid boundaries, which provides an accurate numerical solution. To accelerate the 

convergence of the solution of the Poisson pressure equation the Generalized Minimum 
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Residual (GMRES) method with incomplete LU factorization for preconditioning is applied. 

This paper is organized as follows. First, governing equations are discussed in Section 2. 

Then numerical methodologies for the Navier-Stokes, free surface and immersed boundary 

method are described in Section 3. The problems arising from the classification of the grid 

points, direct forcing for the forcing points, hydrodynamic forces on the body and interaction 

between the fluid and structure are also discussed in this section in detail. Results are 

presented in Section 4; initially uniform flow over a circular cylinder at Re = 100 is simulated 

to demonstrate the accuracy of the present level set immersed boundary method. Next, it is 

used to calculate water exit and entry of a cylinder. Snapshots of the simulations have been 

compared with photographs of experiments by Greenhow et al. (1983). The slamming 

coefficients of water entry of a cylinder are compared to the theory, experiment and 

ComFlow (Kleefsman et al. 2005).  Results of a free falling wedge where a full coupling 

between the fluid and body are presented and compared with experimental results and 

previous numerical simulations in the literature. Conclusions and future work are given in 

Section 5. 

2. Governing equations 

2.1 Navier-Stokes equations 

The governing equations for an incompressible fluid flow are the mass conservation equation 

and the Navier-Stokes momentum conservation equations written as 

0i

i

u
x

∂
∂

= ,                                                                                                                                  (1)                                                                          
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where Cartesian tensor notation is used, (i = 1, 2), ju , p and jx are the velocities, pressure 

and spatial coordinates respectively,  if   represents momentum forcing components.  ijτ  is 

the viscous term given by 

ji
ij

j i

uu
x x

µτ
 ∂∂

= +  ∂ ∂ 
.                                                                                                                    (3)  

where ρ  and µ are the density and viscosity respectively appropriate for the phase that is 

occupying the particular spatial location at a given instant. 

2.2 Free surface equations 

Due to the existence of steep gradients in density and viscosity across the free surface, 

excessive numerical diffusion is experienced when computing viscous flows (Ferziger, 2002). 

Here, the level set method is used to capture the interface between the two phases. The 

evolution of the level-set function, φ ,  is governed by 

0j
j

u
t x
φ φ∂ ∂
+ =

∂ ∂ .                                                                                                                      (4) 

The solution of the Navier-Stokes equations will yield unwanted instabilities at the interface 

if density and viscosity are discontinuous there. To overcome this, a region of finite thickness 

over which a smooth but rapid change of density and viscosity occurs across the interface is 

introduced. This is achieved by defining a smoothed Heaviside function.  
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where ε  is related to the grid size. Using the smoothed Heaviside function, these properties 

are calculated using  
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1 2(1 )H Hβ β β= − + ,                                                                                                               (6) 

where β  can be density, viscosity or another property of interest. Since φ  is the signed 

normal distance from the interface, it satisfies 

0φ∇ = .                                                                                                                                   (7) 

When Eq.(4) moves the level set
 
φ  = 0

 
at the correct velocity, φ  may become irregular after 

some period of time (Sussman et al. 1994) and its properties as a distance function may be 

lost. Thus, to ensure that φ  remains a distance function that satisfies Eq. (4), redistancing 

must be performed. This is achieved by solving for a second distance function φ′  given by 

Eq. (8):  

( )( )1 0s
t
φ φ φ′∂ ′+ ∇ − =
∂

.                                                                                                       (8)                                                                                                         

Here,
  

t is a pseudo time for the variable
 
φ′ , the initial condition is ( ,0) ( )x xφ φ=′

   and ( )s φ  

is the smoothed sign function defined as 

( )
( )2 2

s φφ
φ φ ε

=
+ ∇

.                                                                                                          (9)                               

For incompressible flows, the total mass is conserved in time. However, the numerical 

discretization of the level set formulation does not preserve this property in general. Even 

with the above redistancing process for the level set function, it has been found that a 

considerable amount of total mass is lost in time (Chang et al. 1996; Yap et al. 2006). To 

overcome this difficulty, the global mass correction coupled with the first and second 

distance functions is used to preserve the total mass in time. The steady state solution to a 

third distance function φ′′  is obtained using Eq. (10): 
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corM
t
φ′′∂

=
′∂ ,                                                                                                                          (10) 

where t′  and corM are respectively a pseudo-time, which can be different from t , and mass 

correction factor. The steady state values of the second distance function φ′  are used as the 

initial condition for Eq. (10). 

Mass must be removed or added to ensure the conservation of the reference phase. Thus, a 

dimensionless mass correction term is introduced given by 

( ) o t
cor ref

o

M M
M sign

M
φ

−
= ,                                                                                             (11) 

where oM  and tM are the original mass and the mass of the reference phase at time t , 

respectively. Either fluid can be chosen as the reference fluid. The original mass is the mass 

calculated at the beginning. The mass at time t  increases when there is an injection of the 

reference phase but decreases when there is removal of the reference phase. Depending on 

the choice of the reference phase, the mass of the reference can be calculated using  

( )                 

                   1

1 0
ref ref ref

ref ref ref

H V H
M

H V H

ρ

ρ

∆ == 
− ∆ =

∑

∑ .                                                                     (12)      

where V∆ is the area that is occupied by the reference phase. 

 

3. Numerical method 

3.1 Navier-Stokes solver 
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A staggered grid is adopted to ensure strong pressure velocity coupling and to enforce mass 

conservation in each control volume. The governing Eqs. (1) and (2) are discretized using a 

fractional step method. 

( ) 1
i

k k kk i j ij ki i
i

j j

u uu u g f
t x xρ

∂ ∂τ
∂ ∂

= − +
− + +
∆

 ,                                                                            (13)                                                                                                        
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where iu  is the intermediate velocity. k
if  is the momentum forcing used to enforce the 

desired boundary conditions on an immersed boundary interface and t∆ is the time step. The 

QUICK scheme with deferred correction (Waterson et al. 2007) is used to discretize the 

convection terms. The viscous terms in Eq. (13) are discretized with second order central 

differencing. When complex geometries are simulated using the immersed boundary method, 

the convergence is slowed further because the immersed boundaries modify the linear system 

(Tseng et al. 2003). Therefore, it is desirable to speed up the convergence. In this work, the 

Generalized Minimum Residual (GMRES) method with incomplete LU factorization for 

preconditioning (Yousef et al. 1986) is applied to solve the discretized linear system of the 

Poisson pressure equation.  

3.2 Free surface solver 

The level set with global mass correction method by Zhang et al. (2009) is used to simulate  

the free surface. The level set equation is solved using third order ENO for convection terms 

and a five stage Runge-Kutta scheme for time advancement. The redistancing equation is 
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solved using a similar equation to that given by Sussman et al. (1994). Global mass 

correction is solved using dual time stepping with a five stage Runge-Kutta.   

3.3 Immersed boundary treatment 

3.3.1 Classification of computational grids 

It is worth pointing out that our method for classifying the fluid points differs from that of Ye 

et al. (1999) and Balaras (2004).  Their methods cause some fluid points or solid points to 

become forcing points in some topological shapes thus leading to calculation error. 

Therefore, a method is proposed here to locate exact forcing points.  

The interface is described by interfacial markers using the arc length coordinates ( )sX  as 

shown in Fig. 1. The markers are equally spaced on the immersed boundary interface and the 

spacing is approximately equal to the local grid spacing. The functions 

2( ) x x xx s a s b s c= + + and 2( ) y y yy s a s b s c= + +  are generated. The coefficients, xa , xb , xc , 

ya  , yb   and yc , are obtained by fitting quadratic polynomials to particle i and its two 

neighbours i-1 and i+1. Thus, the normal of a marker to the interface is obtained.  

In order to locate the forcing points accurately, the immersed object is meshed with a 

triangular grid so that bodies of almost arbitrary shape can be dealt with and flows with 

multiple bodies or islands can be modelled with no difficulty. Before the identifying process 

begins, the bounding box that might contain the immersed object is defined around the object 

by the extrema of the object mesh coordinates to improve the efficiency of the algorithm. 

Only those fluid grids falling into this box will be checked. Then a do-loop based on the 

number of the cells in the immersed object triangular mesh is performed. During each cycle 

of this loop, fluid nodes in the bounding box are tested one by one to see if they fall into a 
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certain cell of the object mesh. There are two vectors defined as shown in Fig. 2: i) The unit 

normal vectors oriented inward from the triangular face, n ; ii) and the vector p  pointing 

from the centre of the triangular face of the cell to the node to be tested. The dot product 

between these two vectors, (pn)nedge, must be greater than or equal to zero if the angle, θ, 

subtended between them is less than 90° and less than zero if the angle is greater than 90°. 

{ } { } { } ( )) , 1 3xnedge nedge
n x y x x y y

y

n
(p p n p   p   p n p n nedge to

n
  = = = + = 
  

. .                                              (16) 

where the superscript "nedge" is the triangular edge number of the triangular cell. 

With reference to Fig. 2a, for the 2D case, the dot product between these two vectors must be 

positive for the three edges if the suspected node is to fall within the structure cell. If one of 

the dot products between these two vectors is less than zero, then the node being tested is not 

within the cell, as depicted in Fig. 2b. In order to reduce the pre-processing CPU time further, 

those nodes that fall within a particular cell are marked with flag 0 and will not be tested 

further. The forcing points as identified in Fig. 1, which are points with flag -1 in the solid 

phase with at least one neighbouring point in the fluid. Thus all Eulerian grid points are 

divided into three categories: (1) forcing points, which are grid points with flag -1 in the solid 

phase that have one or more neighbouring points in the fluid phase; (2) fluid points, which 

are all the points with flag 0 in the fluid phase; (3) solid points, which are all the remaining 

points with flag 1 in the solid phase. Ye et al. (1993) used the reshaped cell method and Yang 

et al. (2006) applied the field-extension to treat the points of moving boundaries in the fluid.  

In this study the ghost node rather than the reshaped cell and field extension method is used 

to enforce the boundary condition. This can greatly simplify the numerical implementation 

and save CPU time by reducing an additional field-extension or reshaped cell step. Moreover, 

the internal treatment is not necessary with the present method while it is required in the 

spectral simulations of Goldstein et al. (1993) near the immersed boundary. 
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3.3.2 Momentum forcing and interpolation for the velocity  

When Eq. (2) is discretized explicitly in time, the discrete form can be written as (Tseng et al. 

2003; Balaras 2004) 

1

RHS
k k

k ki i
i i

u u f
t

+ −
= +

∆
 ,                                                                                                        (17) 

where t∆  is the time step and RHSk
i  includes the convective, viscous, pressure gradient and 

body force of the governing equations. If the forcing k
if  must yield 1k

i bu u+ =  on the 

immersed boundary where bu  is the Dirichlet boundary condition at the immersed boundary, 

the forcing is given from the above equation. 

RHS
k

k kb i
i i

u uf
t
−

= −
∆

 .                                                                                                          (18) 

This forcing is direct in the sense that the desired boundary condition can be satisfied at every 

time step. Evaluating the force  k
if  requires no additional CPU time since it does not involve 

the computation of extra terms. Furthermore it does not influence the stability of the time 

advancement scheme. Although the basic idea is demonstrated, Eulerian grid nodes almost 

never coincide with the immersed boundary in practical applications. Thus, k
if  needs to be 

computed at grid points near and not exactly on the interface.  

The value, fu ,  at the forcing points in Fig. 1. is not known and has to be reconstructed using 

the information from the interface and surrounding field. First a virtual point, vu  , of the 

forcing point, fu , is located along the normal to the boundary. The location of the virtual 

point on the line normal to the boundary is determined in such a way that 1 2d d= , where 1d  

is the distance between the forcing point and perpendicular point, bu ,  and 2d  is the distance 
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between the perpendicular point and virtual point. If any of the points in the stencil 1-4 is a 

forcing point, the virtual point is relocated in a way such that 2 1d d> . This can be done by 

increasing the initial distance by one grid distance. Then the value of the virtual point vu  can 

be interpolated from the surrounding grid points 1-4 using bilinear interpolation. If all these 

points 1-4 are fluid points with flag 0, it is assumed that any variable in the 2D space can be 

written in the following form 

1 2 3 4u a a x a y a xy= + + +  .                                                                                                          (19) 

So the standard bilinear interpolation coefficients can be computed as follows 

1
1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

1         
1        
1        
1        

a x y x y u
a x y x y u
a x y x y u
a x y x y u

−
     
     
     =
     
     
     

,                                                                                                (20) 

where ( 1x , 1y ),( 2x , 2y ),( 3x , 3y ) and ( 4x , 4y ) are coordinates of the four points in the fluid. vu  

is the virtual point interpolated from the coefficients 1a , 2a , 3a  and 4a  and its coordinate 

( vx , vy ). bu  is the perpendicular point and also boundary point. Thus the value of any 

variable fu  at the forcing point is given as 

1 2 1

2 2
f b v

d d du u u
d d
+

= − .                                                                                                              (21) 

3.4 Hydrodynamic force calculation on the immersed interface 

The force f per unit area on a surface element with an outward normal n can be written as 

(Yang et al. 2006) 
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i ji j ij j

j i

uuf n p n
x x

τ δ µ
  ∂∂

= = − + +   ∂ ∂   
,                                                                                       (22) 

where if  is the surface force in ix  direction, jiτ  is stress tensor and jn is the direction cosine 

of n  in jx  direction. i

j

u
x
∂
∂

 can be computed using the stencil and interpolation coefficients 

that were used to construct the velocity field near the interface. Due to grid staggering the 

derivatives for each velocity are computed on different points on the interface. Pressure 

boundary conditions / 0p n∂ ∂ = are also imposed on the immersed boundary . p  needs to be 

computed on the virtual point thus its value on the body surface is obtained.  

3.5 Interaction between body and fluid  

In order to ensure numerical stability, a fully fluid-structure coupling method for the body 

velocity (Kleefsman et al. 2005) is taken as follows.  The sub-iterative index m is introduced 

in the following equation. 

( ) ( )( ) 









∆++−= +++ t

m
F

VVV
body

m
bodyk

body
mk

body
mk

body αα 111 1                                                                   (23)                                                                                                                                                        

where t∆  is the physical time step;  m
bodyF  is the hydrodynamic force on the body computed 

by integration of the pressure and viscous force over the boundary of the moving body; bodym  

is the mass of the body; α  is a relaxation factor used to prevent divergence of the sub-

iteration process which is in the range from 0 to 1; k
bodyV  is the vertical body velocity at the 

physical time k . At the physical time step k , the iterative initial value ( )01+k
bodyV  is taken as 

k
bodyV . For the sub-iteration a new pressure field is computed based on the vertical velocity 
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( )mk
bodyV 1+  and the hydrodynamic force is obtained by integration of the new pressure and 

viscous forces over the body surface. When the residual of the Poisson pressure equation is 

less than  610− ,  the sub-iteration is ended. 

4. Results 

4.1 Uniform flow past a circular cylinder 

Flow over a fixed circular cylinder is simulated to verify that the present immersed boundary 

method accurately predicts flow phenomena such as separation and vortex. The size of the 

computational domain is 20d × 50d where d is the cylinder diameter. This is large enough to 

minimize the effect of the outer boundary on the development of the wake. The computation 

is performed at a Reynolds number, Re = ρ u∞ d /µ = 100. A resolution of 0.01x y d∆ = ∆ =  

with time step 0.001 is used.  Additionally no slip boundary conditions are used on the 

cylinder with free boundary conditions applied on the right hand, top and bottom walls and a 

steady unidirectional inlet velocity  u=u∞, v=0 applied on the left hand wall. Fig. 3 shows the 

time history of lift and drag coefficients. The drag coefficient CD  and lift coefficient CL  are 

computed from 

CD = 21/ 2
xF
u dρ ∞

 ,  CL= 21/ 2
yF
u dρ ∞

                                                                                         (24) 

where xF  and yF denote the streamwise and normal hydrodynamic forces around the cylinder 

in Cartesian coordinates and can be obtained by integrating the pressure and viscous forces 

around the cylinder surface using Eq. (22). The mean drag coefficient is predicted to be 

CD(avg) = 1.41, the rms value of lift coefficient to be CL(rms) = 0.33 and Strouhal number 

(St= fd/u∞, where f is the frequency of vortex shedding) to be St = 0.168, all of  which agree 

well with computational results from the literature summarized in Table 1. Fig. 4 shows the 
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spanwise vorticity contours for Re = 100 at different non-dimensional time instants, where T 

= tu∞/d. The Karman vortex street predicted indicates that the vorticity field is well captured 

by the present immersed boundary method.    

 

Table 1 Comparison of drag coefficient, rms of lift coefficient and Strouhal number with 

previous studies 

 Re=100 

St=fd/u∞ CD(avg) CL(rms) 

Current study  0.168 1.41 0.33 

Tseng et al. (2003) 0.164 1.42 0.29 

Kim et al. (2001) 0.165 1.33  

Dias and Majumdar (2001) 0.171 1.395 0.283 

Williamson (Exp.) (1988) 0.166   

 

4.2 Water entry and exit of a cylinder  

The problem of water exit of a cylinder is very significant in various practical applications. 

Understanding such complicated physical processes, including breaking up of the free 

surface, body-fluid interaction and free surface-vortex interaction, is useful in, for example, 

understanding the impacts of wave energy converters under extreme waves.  This is a severe 

test for the numerical procedure since the initial impact is considerable and the local deadrise 
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angle is very small thus making the simulation of the penetration processes extremely 

challenging. Greenhow et al. (1983) conducted experiments of water exit and entry of a 

horizontal circular cylinder to show the difference of free surface deformation between the 

entry and exit processes. Greenhow et al. (1997) simulated the processes by using a nonlinear 

two-dimensional BEM based on the assumption of irrotational flow. Battistin et al. (2003) 

investigated the hydrodynamic loads during water entry of axisymmetric bodies using the 

boundary element formulation based on potential flow. Kleefsman et al. (2005) applied the 

VOF with a local height function to solve the water entry problem. Lin (2007) used a VOF 

one phase model and cut-cell technique in a fixed grid system to simulate the water entry and 

exit.  

A cylinder of r = 1 m is placed in calm water in a rectangular tank of width = 8 m, height = 

10 m and the distance of its centre to the free surface d = 1.25m. The time step Δt = 0.0001 is 

used for the simulation of water entry and exit. The water has dynamic viscosity 1 × 10-3 

kg/m/s and the air 1.8×10-5  kg/m/s, the density of water is 1000 kg/m3 and air 1 kg/m3. The 

cylinder is given a constant upward velocity, V = 0.39 m/s. Thus the dimensionless 

parameters are 8.0/ == drε , 39.0/ == grVFr  and T = Vt/d. The comparison of free 

surface profiles between the present numerical method and those presented by Greenhow et 

al. (1997) is shown in Fig. 5 at two non-dimensional  time instants, T = 0.4 and 0.6. Good 

agreement can be seen.  

Snapshots of the interaction between the cylinder and interface are shown in Fig. 6 at exit 

velocity V = 0.39 m/s. As the cylinder moves upward, the cylinder deforms the free surface 

and waves are generated in the exit process and propagate towards both sides of the cylinder. 

Breaking can occur during exit due to strongly negative pressures arising on the cylinder 

surface.  
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Here, the same parameters as used in the water exit of a cylinder problem are used. The 

cylinder starts its downward motion from a height of d = 1.25m to the calm water surface 

with a constant velocity V = -1m/s. Snapshots of two different instants in time are shown in 

Fig. 7 and are compared with photographs of experiments by Greenhow et al. (1983). The 

free surface observed in the experiment is captured very well by our model. And a series of 

snapshots is shown in Fig. 8. When the cylinder moves close to the free surface at T = 0.2, the 

small air gap between the free surface and body surface is very important and causes the free 

surface to deform. As the cylinder impinges on the free surface at T = 0.6, there are jets 

generated on both sides of the cylinder. When the cylinder moves further downward, a large 

amount of water is pulled downward and the surface depression persists at T = 2.0. As the 

cylinder is fully submerged in the water at T = 4.0, there is a water jet in the centre of the 

water surface. The results are very close to those reported by Lin (2007). The water jets are 

captured very well by the two phase model. 

The slamming coefficient is given by  

2
FC
rVρ

=                                                                                                                                 (25)                                                                               

where F is the total vertical hydrodynamic force, r is the radius of the cylinder and V is the 

entry velocity. Based on potential flow theory, the hydrodynamic slamming force is given by 

( )22 2
2

F V Vr V tπ ρ= −                                                                                                                (26)                                                    

where t  is the time at the moment of the first impact. Fig. 9 shows comparison of the 

slamming coefficient versus the penetration depth for present model results with theoretical 

results of Von Karman, (1929), experimental results of Campbell and Weynberg (1980) and 

numerical results using ComFlow (Kleefsman et al. 2005). The comparison is reasonably 
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good. At the beginning, an impulsive high pressure is generated and the initial slamming 

coefficient reaches 4.0.  Later the cylinder is submerged in the water and experiences a 

buoyancy force and  the slamming coefficient is around 1.6. The slamming coefficient 

predicted by the presented model does not reach the initial peak value measured in the 

experiment, but the variation in slamming coefficient with penetration depth agrees better in 

the later stages of the impact with the experiment. The slamming coefficient oscillates along 

the penetration depth at the initial impacting stages, which is due to the lack of stability of the  

pressure distribution near the body boundary in this method.  

4.3Free falling of the wedge 

As the velocity of a wedge during a free fall into a liquid depends on the interaction between 

the wedge and the surrounding fluid, it is a big challenge for most models to treat the free 

surface and moving solid bodies together. The immersed boundary coupled level set model 

with global mass correction is used to simulate the water entry of a free falling wedge and 

results compared with the experimental and numerical work of Zhao et al. (1997), Kleefsman 

et al. (2005) and Oger et al. (2006) and Shao (2009). The wedge section used in the 

experiment by Zhao et al. (1997) is shown in Fig. 10. The breadth of the wedge is 500mm. 

The V-shaped section has a 30o dead-rise angle. The total weight of the drop rig is 241kg and 

a ballast weight of 100kg. The vertical motion is the only degree of freedom for the wedge in 

this experiment. A detailed description of the experiment can be found in Zhao et al. (1997). 

The numerical simulation is based on the above experiment to calculate the water entry of a 

free falling wedge. The numerical tank is 2m wide and 1m deep. The water has dynamic 

viscosity 1 × 10-3 kg/m/s and the air 1.8×10-5  kg/m/s, the density of water is 1000 kg/m3 and 

air 1 kg/m3, and the acceleration due to gravity is taken to be g = 9.81m/s2. The initial 

conditions were defined using the exact velocity V = -6.15 m/s.  
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Fig. 11 shows the grid convergence tests for a free falling wedge. Resolutions of 

0.01x y m∆ = ∆ =  with time step Δt = 10-4, 0.005x y m∆ = ∆ =  with time step Δt = 5105 −× and 

0.0025x y m∆ = ∆ =  with time step Δt = 5105.2 −×  respectively are used to simulate the free 

falling wedge and compared with Zhao et al. (1997). Grid refinement for free surface profiles 

is shown in Fig. 11(a). The finer the grid, the better the jets are captured. Also the free falling 

velocity and vertical slamming force agree much better with Zhao et al. (1997) for the fine 

grid. Fig. 12 presents the comparison of snapshots between the experimental photographs 

(Greenhow et al. 1983)  and present model of 0025.0=∆=∆ yx  for the free falling wedge 

entry with deadrise angle 30o.  The visual comparison is very good.  

When the wedge using immersed boundary method is simulated, the slow convergence of the 

Poisson pressure equation is exacerbated due to the modified linear system  by the immersed 

boundary. Thus, GMRES with incomplete LU factorization for preconditioning is very 

desirable. Fig. 13 shows the comparison of the convergence between GMRES and TDMA 

(TriDiagonal-Matrix Algorithm, (Patankar 1980)). GMRES accelerates the covergence 

significantly with less sub-iteration numbers. 

Fig. 14 shows the calculated pressure field and the pressure comparison at different instants 

near the wedge boundary. The figures in the left panels give a clear and visual explanation of 

the pressure curves obtained. Fig. 14(b) highlights the pressure peak in the area of pressure 

cell P5. Fig. 14(c) gives the pressure peak in the area of pressure cell P1. The pressure from 

the present simulation is underestimated for the instant t = 0.00435 s when compared with 

both the experimental and numerical results of Zhao et al. (1997). At the very beginning of 

the impact, the wedge impinging the free surface leads to sudden and excessive change of the 

pressure in the fluid. Furthermore the gas phase does not develop well at the very beginning 

and the instability between the gas and liquid influences the instantaneous pressure capture.  
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For t = 0.0158 s, this underestimation still exists but becomes smaller compared with the 

instant t = 0.00435 s. At this time, the pressure coefficient agrees with the experimental data 

better than the numerical simulation of Zhao et al. (1997). However, the maximum pressure 

coefficient is far lower than either the experimental data or  numerical simulation of Zhao et 

al. (1997). At t = 0.0202 s, the present results overpredict compared with the experiment. 

This is possibly due to the three-dimensional effects, as mentioned by Zhao et al. (1997).  

To quantitatively demonstrate the accuracy of the immersed boundary level set with the 

global mass correction, the falling velocity of the wedge and the fluid forces acting on the 

wedge are shown in Fig. 15(a) and (b). Fig. 15(a) shows the vertical fluid forces acting on the 

falling wedge. It is seen that there are two stages for the change of the vertical force. In the 

first stage (0 s < t <0.016 s) high pressure is generated at the initial impact which leads to an 

increase in the vertical hydrodynamic force on the wedge. In the second stage (0.016 s < t < 

0.025s), the wedge is fully wetted. This causes a drop of the vertical force. All the numerical 

results agree well with the experiment data before t = 0.0125 s. After t = 0.015 s, Shao, 2009 

underestimates the force and Kleefsman et al. (2005) accurately predicts the force while Zhao 

et al. (1997), Oger et al. (2006) and the present method overpredict the peak force. This 

overpredicted force after t = 0.015 s generates stronger deceleration than the experiment and 

results in the slow motion of the wedge falling into the water compared to the experiment as 

shown in Fig. 15(b).  

5. Conclusions 

The new level set immersed boundary method has proven to be a valuable tool for 

investigating complex cases of fluid-structure interaction and wave impacts. The 

incorporation of an improved immersed boundary method with the free surface flow allows a 

curved body to be modelled easily and enables the various applications of fluid structure 
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interaction to be tackled. In this paper, a new method to classify the grid points and locate the 

forcing points was presented. The momentum forcing was imposed by introducing ghost 

node inside the boundary resulting in ease of grid generation.  GMRES was applied to 

accelerate the convergence of the Poisson pressure equation.  

This method was validated using uniform flow past a circular cylinder. Predicted lift 

coefficient, drag coefficient and Strouhal number for uniform flow past a cylinder at 

Reynolds number 100 agree well with the experimental data and computational results from 

the literature. More detailed free surface evolutions and wave generations were seen in 

snapshots of the water-air interface contours and vorticity strength for water exit and entry of 

a cylinder. The visual agreement between snapshots of the simulations and photographs of 

experiments by Greenhow et al. (1983) is very good. The slamming coefficient predicted by 

the present model for the water entry of a cylinder at the prescribed velocity shows a fair 

agreement with the experimental data by Campbell et al. (1980) and previous numerical 

simulations using ComFlow (Kleefsman et al. 2005). Finally, for the free falling wedge, a full 

coupling between fluid and body movement was investigated. The vertical slamming force 

predicted by the present model agrees well with the experiment at the early stages. Later, the 

model overestimates the peak force causing a stronger deceleration and slower motion of the 

wedge because it does not account for the three-dimensional effects.  

The present method is currently being extended to simulate the coupled dynamic response of 

the wave energy converter and mooring system under extreme wave loading. The dynamic 

response of the mooring lines is strongly coupled with the hydrodynamic motion of the wave 

energy converter and may affect its performance.  

 



22 

 

Acknowledgement 

The authors gratefully acknowledge the support of the South West of England Regional 

Development Agency in funding this project through Peninsular Research Institute for 

Marine Renewable Energy (http://www.primare.org/). The authors also would like to 

acknowledge the support of the Natural Environmental Research Council (Grant No. 

NE/E002129/1) during this project. 

References 
 
Balaras E., 2004. Modeling complex boundaries using an external force field on fixed 
Cartesian grids in large-eddy simulations. Computers and Fluids 33,375–404. 
 
Battistin D., Iafrati A., 2003. Hydrodynamic loads during water entry of two-dimensional and 
axisymmetric bodies. Journal of Fluids and Structures 17,643-664. 
 
Baum J.D., Luo H., Lohner R., Yang C., Pelessone D. and Charman C., 1996. A coupled 
Fluid/Structure modelling of shock interaction with a truck. AIAA, 0795.  
 
Campbell I.M.C. and Weynberg P.A., 1980. Measurement of parameters affecting slamming. 
Report No. 440,Wolfson Unit of Marine Technology, Tech. Rep. Centre No. TO-R-8042, 
Southampton. 
 
Chang Y.C., Hou T.Y., Merriman B., Osher S., 1996. A Level Set Formulation of Eulerian 
Interface Capturing Methods for Incompressible Fluid Flows. Journal of Computational 
Physics 124,449-464. 
 
Dias A., Majumdar S., 2001. Numerical computation of flow around a circular cylinder, 
Technical Report, PS II Report, BITS Pilani, India. 
 
Fadlun E.A., Verzicco R., Orlandi P., Mohd-Yusof J., 2000. Combined immersed-boundary 
finite-difference methods for three-dimensional complex flow simulations. Journal of 
Computational Physics 61, 35–60. 
 
Ferziger J.H. and Peric M., 2002. Computational Methods for Fluid Dynamics (3rd edn). 
Springer: New York. 
 
Goldstein D., Handler R. and Siirovich L., 1993. Modeling a no-slip flow boundary with an 
external force field. Journal of Computational Physics 105, 354-366. 
 
Greenhow M. and Lin W., 1983. Non-linear free surface effects: experiments and theory. 
Report Number 83-19, Department of Ocean Engineering, Massachusetts Institute of 
Technology. 
 



23 

 

Greenhow M. and Moyo S., 1997. Water entry and exit of horizontal circular cylinders. 
Philosophical Transactions of Royal Society A  355(1724), 551–63. 
 
Kim J., Kim D., Choi H., 2001. An immersed-boundary finite-volume method for simulations 
of flow in complex geometries. Journal of Computational Physics 171, 132–150. 
 
Kleefsman K.M.T., Fekken G., Veldman A.E.P., Iwanowski B. and Buchner B., 2005. A 
volume-of-fluid based simulation method for wave impact problems. Journal of 
Computational Physics 206, 363-393. 
 
Lin P.Z., 2007. A fixed grid model for simulation of a moving body in free surface flows. 
Computers and Fluids 36, 549-561.  
 
Lv X., Zhao Y., Huang X.Y., Xia, G.H. and Wang Z.J., 2006 An efficient 
parallel/unstructured-multigrid preconditioned implicit method for simulating 3D unsteady 
compressible flows with moving objects. Journal of Computational Physics  215, 661-690. 
 
Mittal R. and Iaccarino G., 2005. Immersed boundary methods. Annual Review of Fluid 
Mechanics 37, 239-261. 
 
Oger G., Doring M., Alessandrini B., Ferrant P., 2006. Two-dimensional SPH simulations of 
wedge water entries. Journal of Computational Physics 213,803–822. 
 
Patankar S. V., 1980. Numerical Heat Transfer and Fluid Flow. Hemisphere/Mcgraw hill: 
Washington. 
 
Shao S. D., 2009. Incompressible SPH simulation of water entry of a free-falling object. 
International  Journal for  Numerical Methods in Fluids  59, 91–115. 
 
Sussman M., Smereka P., Osher S., 1994. A Level Set Approach for Computing Solutions to 
Incompressible Two-Phase Flow. Journal of Computational Physics 114, 146-159. 
 
Tucker P. and Pan Z., 2000. A Cartesian cut cell method for incompressible viscous flow. 
Applied Mathematical Modelling 24, 591–606. 
 
Tseng Y.H., Ferziger J. H., 2003. A ghost-cell immersed boundary method for flow in 
complex geometry. Journal of Computational Physics 192, 593-623. 
 
Von Karman T., 1929. the impact of seaplane floats during landing. NACA Technical Note, 
vol. 321. Wahsington, DC:NACA.  
 
Waterson N.P. and Deconinck H.. Desigh principles for bounded higher-order convection 
schemes- a unified approach. Journal of Computational Physics 2007; 224:182-207. 
  
Williamson C. H. K. and Roshko A., 1988.  Vortex formation in the wake of an oscillating 
cylinder. Journal of Fluids and Structures 2, 355-381. 
 



24 

 

Yan S. and Ma Q.W., 2007. Numerical simulation of fully nonlinear interaction between 
steep waves and 2D floating bodies using the QALE-FEM method. Journal of Computational 
Physics 221, 666-692. 
 
Yang G., Causon D., Ingram D., Saunders R., Batten P., 1997. A Cartesian cut cell method 
for compressible flows. Part A. Static body problems. Aeronautical Journal    101 (1001), 47–
56. 
 
Yang J.M. and Balaras. E., 2006. An embedded-boundary formulation for large-eddy 
simulation of turbulent flows interaction with moving boundaries. Journal of Computational 
Physics  215, 12-40. 
 
Yap Y.F., Chai J.C., Wong T.N., Toh K.C., Zhang H.Y., 2006. A global mass correction 
scheme for the level set method. Numerical Heat Transfer, Part B 50,455-472. 
 
Ye T., Mittal R., Udaykumar H., Shyy W., 1999. An accurate Cartesian grid method for 
viscous incompressible flows with complex immersed boundaries. Journal of Computational 
Physics 156, 209–240. 
Yousef S. and Martin H.S., 1986. GMRES: a generalized minimal residual algorithm for 
solving nonsymmetric linear systems. SIAM Journal of Scientific and Statistical Computing 7 
(3), 856–869. 
 
Zhang Y.L., Zou Q.P., Greaves D., 2009. Numerical simulation of free surface flow using the 
level set method with global mass correction. International Journal for Numerical Methods in 
Fluids, in press. 
 
Zhao R., Faltinsen O., Aarsnes J., 1997. Water entry of arbitrary two-dimensional sections 
with and without flow separation, in: 21st Symposium on Naval Hydrodynamics. 
 
 

 

 

 

 

 

 

 

 

 



25 

 

forcing point
virtual point

solid point
marker point
fluid point

1

4

2

3

perpendicular point
 

Fig. 1. Grid classification and interpolation procedures for the forcing points, fu  . 
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Fig. 2. Two scenarios of testing process for the classification of the computational grids 
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Fig. 3. Time history of lift and drag coefficients for uniform flow past a cylinder at Re=100 
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Fig. 4. The instantaneous vorticity contours in the near wake of a cylinder in a uniform flow 

for Re=100 in a uniform flow at (a) T = 25; (b) T = 68. 

 

 

 

 

 

 

(a) 

(b) 



29 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Comparisons of free surface profiles between the present method (solid black line) and 

boundary element simulation by Greenhow et al., (1997) (circles) at two non-dimensional 

time instants (a) T = 0.4; (b) T = 0.6.  
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Fig. 6. Water exit of a cylinder at V=0.39m/s. The free surface position (solid black line) and 

vorticity strength (shading, -10~10 with intervals 0.2) at non-dimensional time (a) T = 0; (b) 

T = 0.4; (c) T = 0.8; (d) T = 2.0; (e)T = 2.5; (f) T = 3.0.
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Fig.7.  Comparisons of simulated water entry of a cylinder (right panels) and experiment (left 

panels, Greenhow et al., (1983)).   
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Fig. 8. Water entry of a cylinder at V = -1.0m/s. The free surface position (solid black line) 

and vorticity strength (shading, -10~10 with intervals 0.2) at non-dimensional time (a) T = 0; 

(b) T = 0.2; (c) T = 0.6; (d) T = 1.0; (e) T = 2.0; (f) T = 4.0. 
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Fig. 9. Comparisons of slamming coefficients between present model, the theory of  Von 

Karman (1929),  experimental data of Campbell et al. (1980), numerical simulation of 

Kleefsman et al. (2005). 
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Fig. 10. Wedge section used in the experiment and pressure gauge locations P1-P5. 
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Fig. 11. Grid convergence tests for a free falling wedge (a) free surface profile; (b) Time 

history of falling velocity; (c) Time history of vertical slamming force.  
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Fig. 12. Free surface profile of free falling wedge with deadrise angle 30o (Bottom: present 

model; Top, Experiment by Greenhow et al., (1983))   
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Fig. 13. Comparison of the convergence between TDMA and GMRES applied to the Poisson 

pressure equation for the free falling wedge.   
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Fig. 14. Calculated pressure distribution(left panels) and comparisons of pressure at the 

wedge boundary (right panels) for different instants: (a) t = 0.00435 s; (b) t = 0.0158 s; (c) t = 

0.0202 s. P is the pressure, V(t) denotes wedge vertical velocity at that time instant, y is 

vertical coordinate on the wedge surface, yb is the vertical coordinate of the keel and yd is the 

draft of the body.  
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Fig. 15. (a) Time history vertical slamming forces. (b) Time history falling velocity.  
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