
E. Komendantskaya and J. Power (Eds.):
Coalgebra, Horn Clause Logic Programming and Types
EPTCS 258, 2017, pp. 52–67, doi:10.4204/EPTCS.258.4

c© Yue Li
This work is licensed under the Creative Commons
Attribution-Share Alike License.

Structural Resolution with Co-inductive Loop Detection

Yue Li
School of Mathematical & Computer Sciences

Heriot-Watt University
Edinburgh, United Kingdom

yl55@hw.ac.uk

A way to combine co-SLD style loop detection with structural resolution was found and is intro-
duced in this work, to extend structural resolution with co-induction. In particular, we present the
operational semantics, called co-inductive structural resolution, of this novel combination and prove
its soundness with respect to the greatest complete Herbrand model.

1 Introduction

Co-inductive logic programming extends traditional logic programming by enabling co-inductive reason-
ing to deal with infinite SLD-derivation, which has practical implication in different fields of computing
such as model checking, planning as well as type inference [21, 20, 2, 15].

One operational semantics of co-inductive logic programming is co-inductive SLD resolution (co-
SLD) [21, 20], which combines loop detection with traditional SLD resolution, so that it can be used
to reason co-inductively about infinite rational terms. An alternative operational semantics for co-
inductive logic programming is co-algebraic logic programming [15, 13], which adopts a more general
co-induction rule and uses structural resolution instead of SLD resolution as its induction rule.

The distinctive features of co-algebraic logic programming, compared with co-SLD, include that
the co-inductive reasoning mechanism of the former goes beyond loop detection; as a result the com-
puted formulae by the former are allowed to be either rational terms or (finite observation of) irrational
terms. Moreover, structural resolution [13, 11] allows for analysis of productivity [13] of logic pro-
grams. Productivity, also known as computations at infinity [17, ch. 4], concerns computation of infinite
data structures by non-terminating derivations. Productivity is studied not only in logic programming
community, but also in functional programming community, where they developed decision algorithm
for co-recursive list and stream definitions [19, 8]. Those distinctive features make co-algebraic logic
programming an ideal basis for developing productivity decision algorithms.

In this paper we explore a combination of co-SLD style loop detection with structural resolution,
resulting in a novel operational semantics called co-inductive structural resolution (co-S-resolution for
short), and we prove its soundness with respect to the greatest complete Herbrand model. An implemen-
tation is also presented as a contribution.

Co-inductive structural resolution is created as an intermediate semantics between co-SLD and co-
algebraic logic programming. On the one hand, it inherits loop detection from co-SLD, which is a
simpler co-inductive reasoning mechanism compared with the co-inductive mechanism of co-algebraic
logic programming. On the other hand, it uses structural resolution as co-algebraic logic programming
does, allowing for analysis of productivity. Introducing such an intermediate semantics has its practical
implication: there are two challenges involved in the design of productivity decision algorithms, which
are 1) productivity analysis with structural resolution and 2) co-inductive reasoning beyond loop detec-
tion; introducing the intermediate semantics makes it possible to deal with these two challenges one at

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/287499346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4204/EPTCS.258.4
http://creativecommons.org
http://creativecommons.org/licenses/by-sa/3.0/

Yue Li 53

a time, so co-S-resolution prepares future development of a productivity decision algorithm that uses
loop detection, which in turn will prepare even further algorithm development that goes beyond loop
detection. These points will be further discussed in Section 4.

An overview of the rest of the paper is as follows. In Section 2 we will introduce preliminary concepts
that cover substitution and unification with rational trees, co-SLD and structural resolution, and greatest
fix point, which will prepare us for further theory construction in later sections. In Section 3 we will
introduce the semantics for co-inductive structural resolution and prove its soundness. In Section 4 we
will have a review of related work, discuss the importance of co-S-resolution for productivity decision,
and conclude the paper. Appendix A presents the implementation.

2 Preliminaries

We assume readers’ understanding of standard definition of first order term and the modelling of (possi-
bly infinite) terms by trees. “Term” and “tree” are used interchangeably in this paper. Details about these
concepts can be found in [17, 6].
Definition 1 (Rational Term). A rational term [5, 10, 3, 21] refers to a (possibly non-ground and possibly
infinite) term (or tree) that has a finite amount of distinct sub-terms (or sub-trees). A rational term is also
known as a regular term [6, 9].

Our definition for substitution with rational trees (referred to as substitution for short hereinafter)
inherits the principle of substitution with finite trees in logic programming [17].
Definition 2 (Substitution). A substitution is a mapping of the form S= {x1/t1, . . . ,xn/tn}where x1, . . . ,xn

are distinct variables, t1, . . . , tn are rational terms, and ∀ i, j ∈ {1, . . . ,n}, xi does not occur in t j. Moreover,
ε denotes the empty substitution.
Example 2.1. Let θ = {x1/ f (f (. . .)),x2/g(x3)} be a substitution. Applying θ to the term p(x1,x2) is
denoted by p(x1,x2)θ , which evaluates to p(f (f (. . .)),g(x3)).

Composition of substitutions is defined in the same way as in [17, Sec. 4].
Definition 3 (Unification). Given two rational terms t1 and t2, unification is the process of finding a
substitution (unifier) θ such that t1θ = t2θ , i.e. applying θ separately to t1 and t2 yields the same tree.
This relation is denoted by t1 ∼θ t2.

The standard approach to rational term unification [18, 6, 5, 7, 23] involves systems of equations
of finite terms, and transforms that turn equation systems to their reduced form as the output of the
unification algorithm. The reduced form equation system can further be solved to obtain a solution in the
domain of rational trees [6]. We omit the details of the unification algorithm for rational trees and the
details of solving equation systems, which can be found in the above literature.
Remark. Our definition of substitution refers to solutions of reduced form equation systems. Consider
the unification problem p(X)∼ p(f (X)). The standard approach regards p(X)∼ p(f (X)) as an equation
system {p(X) = p(f (X))} and reduces it to the reduced form {X = f (X)}, which is called a substitution
in the standard sense. Locally in this paper we solve the reduced form {X = f (X)} to obtain the solution
{X = f (f (. . .))} and call this solution a substitution. We believe that our treatment of substitution can
emphasize the variables that are to be instantiated and will make the theory about co-inductive structure
resolution easier to formulate and understand.

Term matching is a concept closely related to unification, and is prerequisite for rewriting reduction
in structural resolution [13, 11]. We extend applicable terms for matching from finite trees to rational
trees by building the concept of rational tree term matching on the concept of rational tree unification.

54 Co-inductive S-resolution

Definition 4 (Term Matching). Given two rational terms t1, t2 and a unifier σ , if σ also satisfies that
t1σ = t2, then it is said that t1 subsumes t2, or t1 matches against t2. This relation is denoted by t1 ≺σ t2.
σ is called a matcher for t1 against t2.

Remark (Uniqueness of matcher). If two terms have matchers σ1 and σ2, then σ1 equals to σ2 when
restricted to variables that occur in the terms. Nevertheless, a matcher σ for term t1 against t2 is intended
to be identity on variables not in t1.

The symbolic notation for unification (∼) and matching (≺) follows [13]. Note that (∼) is a sym-
metric relation but (≺) is not symmetric. Sometimes t1 ≺ t2 may fail to convey which term subsumes
(i.e. matches against) which. A mnemonic tip is to regard the “precede” symbol (≺) as the “less than”
symbol (<) and derive from t1 ≺ t2 that t2 might be bigger (i.e. contains more symbols) than t1.

Example 4.1. a) p(x)∼θ p(f (x)) where θ = {x/ f (f (f (. . .)))}. θ is not a matcher.

b) p(x1,x1)∼θ p(f (y1),y1) where θ = {x1/ f (f (f (. . .))),y1/ f (f (f (. . .)))}. θ is not a matcher.

c) p(x1,x2)∼θ p(f (y1),y1) where θ = {x1/ f (y1),x2/y1}. θ is a matcher and p(x1,x2)≺θ p(f (y1),y1).

We now introduce the operational semantics of the well-known SLD-resolution (Linear resolution for
Definite clauses with Selection function) [17, 22] as a precursor of co-SLD and of structural resolution.

Definition 5 (SLD-resolution). Given a logic program P and goal

G =← A1, . . . ,An

if there exists in P a clause B0 ← B1, . . . ,Bm (with freshly renamed variables), such that B0 ∼θ Ak for
some k ∈ {1, . . . ,n}, then by SLD-resolution we derive

G′ =← (A1, . . . ,Ak−1,B1, . . . ,Bm,Ak+1, . . . ,An)θ

Remark. The notation of the form (A1, . . . ,An)θ denotes application of θ to every Ai, i ∈ {1, . . . ,n}.
In the following definition of co-SLD we introduce a set S for each predicate A in a goal [3], where

S records all previous goals (or their instances) that are relevant to the co-inductive proof of A.

Definition 6 (co-SLD resolution). Given a logic program P and a goal

G =← (A1,S1), . . . ,(An,Sn)

the next goal G′ can be derived by one of the following two rules:

1. If there exists in P a clause B0← B1, . . . ,Bm (with freshly renamed variables), such that B0 ∼θ Ak
for some k ∈ {1, . . . ,n}, then let S′ = Sk∪{Ak}, we derive

G′ =←
(
(A1,S1), . . . ,(Ak−1,Sk−1),(B1,S′), . . . ,(Bm,S′),(Ak+1,Sk+1), . . . ,(An,Sn)

)
θ

2. (Loop Detection) If Ak ∼θ B for some k ∈ {1, . . . ,n} and some B ∈ Sk, we derive

G′ =←
(
(A1,S1), . . . ,(Ak−1,Sk−1),(Ak+1,Sk+1), . . . ,(An,Sn)

)
θ

Remark. The notation of the form
(
(A1,S1), . . . ,(An,Sn)

)
θ denotes application of θ to every Ai and to

every member of every Si, i ∈ {1, . . . ,n}.

Yue Li 55

Definition 7 (co-SLD Derivation/Refutation). A co-SLD derivation consists of a possibly infinite se-
quence of goals G0,G1, . . . where G0 is of the form← (A1, /0), . . . ,(Am, /0) (m≥ 0), and for all i≥ 0, Gi+1
is derived from Gi using co-SLD resolution. A finite co-SLD derivation ending with the empty goal is
called an co-SLD refutation1.

Definition 8 (Computed Substitution). Given a co-SLD refutation D , let θ1,θ2, . . . ,θn be the sequence of
unifiers computed in D in the same order as they were computed, their composition θ1θ2 · · ·θn is called
the computed substitution from D .

Co-SLD is co-inductively sound [3, 21]. Co-inductive soundness is defined in terms of the greatest
complete Herbrand model. We assume the standard definition of complete Herbrand interpretation and
complete Herbrand base [17, Sec. 25], which, compared with Herbrand interpretation/base, allow for
infinite ground terms and atoms in addition to finite ones.

Definition 9 (T ′P operator). Let P be a logic program and B′P be P’s complete Herbrand base. The
complete immediate consequence operator T ′P : 2B′P 7→ 2B′P is defined as follows. Let I⊆B′P be a complete
Herbrand interpretation. Then

T ′P(I) = {A ∈ B′P | A← A1, . . . ,An is a ground instance of a clause in P and {A1, . . . ,An} ⊆ I}

Definition 10 (Greatest complete Herbrand model). Let P be a program. The greatest fix point gfp(T ′P) =
∪{I | I ⊆ T ′P(I)} of T ′P is called the greatest complete Herbrand model of P.

More details on T ′P operator and its fix points can be found in e.g. [17, Sec. 26]. We now justify the
loop detection rule of co-SLD with an example.

Example 10.1. Consider the following program P which defines co-recursively all streams of 0’s and
1’s.

bit(0)←
bit(1)←
bit-stream(cons(X,Xs))← bit(X), bit-stream(Xs)

The co-SLD refutation for goal←bit-stream(cons(0,Xs)), following the left-first computation rule, is fin-
ished by one step of loop detection which unifies bit-stream(Xs) and bit-stream(cons(0,Xs)) with unifier
θ={Xs/cons(0,cons(0,. . .))}. Note that

bit-stream(cons(0,Xs))← bit(0), bit-stream(Xs) (*)

is an instance of the program clause, to which we can apply unifier θ and we get another program clause
instance

bit-stream(cons(0,cons(0,. . .))) ← bit(0), bit-stream(cons(0,cons(0,. . .))) (**)

We regard (*) and (**) as proof trees [4, Sec. 1.6], and notice that applying the loop detection rule
extends (*) into (**), whose set I of nodes satisfies I ⊆ T ′P(I), therefore I is a subset of gfp(T ′P). The
establishment of the relation I ⊆ T ′P(I) is mainly due to the reasoning that for each atom A ∈ I (or, for
each node A of proof tree (**)), there exists a program clause instance whose head is A, and whose body
is a subset of I, so that if A is in I, then A is in T ′P(I), indicating I ⊆ T ′P(I). Such reasoning applies to all
co-SLD refutation that involves use of loop detection.

1Logic programming works by refuting the goal, which is the negation of the proposition that is to be proven.

56 Co-inductive S-resolution

Definition 11 (Structural Resolution). Given a logic program P and goal

G =← A1, . . . ,An

the next goal G′ is derived using one of the following two rules:

1. (Rewriting Reduction) If there exists in P a clause B0 ← B1, . . . ,Bm (with freshly renamed vari-
ables), such that B0 ≺θ Ak for some k ∈ {1, . . . ,n}, then we derive

G′ =← (A1, . . . ,Ak−1,B1, . . . ,Bm,Ak+1, . . . ,An)θ

2. (Substitution Reduction) If there exists in P a clause B0← B1, . . . ,Bm (with freshly renamed vari-
ables), such that B0 ∼θ Ak but not B0 ≺θ Ak for some k ∈ {1, . . . ,n}, then we derive

G′ =← (A1, . . . ,An)θ

Remark. About rewriting reduction, notice that it is a special case of SLD-resolution, and since matcher
θ only instantiates variables from the renamed clause B0 ← B1, . . . ,Bm without instantiating variables
from goal G, the derived goal G′ can also be written as G′ =← A1, . . . ,Ak−1,(B1, . . . ,Bm)θ ,Ak+1, . . . ,An.
About substitution reduction, notice that it is, by nature, instantiation of universal quantifier.

Definition 12 (S-Derivation/Refutation). A structural resolution derivation (S-derivation for short) con-
sists of a possibly infinite sequence G0,G1, . . . of goals such that for all i ≥ 0, Gi+1 is derived from
Gi using structural resolution, without consecutive use of substitution reduction. A finite S-derivation
ending with the empty goal is called an S-refutation.

Definition 13 (Computed Substitution). Given a S-refutation D , let θ1,θ2, . . . ,θn be the sequence of
unifiers computed in D due to application of substitution reduction, sorted in the same order as they
were computed, their composition θ1θ2 · · ·θn is called the computed substitution from D .

Example 13.1. Consider the program:

p(f (X))← q(X) q(a)← r(f (a))←

Given goal← p(X),r(X) the next goal is← p(f (X1)),r(f (X1)) by substitution reduction on p(X) (with
renamed clause p(f (X1))← q(X1) and unifier θ1 = {X/ f (X1)}), then the next goal is← q(X1),r(f (X1))
by rewriting reduction on p(f (X1)) (with renamed clause p(f (X2))← q(X2) and matcher {X2/X1}), then
the next goal is← q(a),r(f (a)) by substitution reduction on q(X1) (with unifier θ2 = {X1/a}). Two more
steps of rewriting reduction derive the empty goal ← which terminates successfully the resolution and
the computed substitution is the composition θ1θ2 = {X/ f (a),X1/a}.

For more details on structural resolution, see [13, 11, 15]. Next we introduce the combination of
structural resolution and co-SLD style loop detection.

3 Co-inductive Structural Resolution

We introduce the declarative and operational semantics of co-inductive structural resolution. For the
operational semantics we introduce how it was formulated and prove its co-inductive soundness.

Yue Li 57

3.1 Declarative Semantics

The declarative semantics of co-inductive structural resolution is chosen to be the greatest fixed point
over the complete Herbrand base [17, ch. 4][23], as for co-SLD [21, 20, 3]. In fact, it was a conjec-
ture [12] that some form of combination of structural resolution and loop detection is correct w.r.t. the
greatest complete Herbrand model as co-SLD is, since they share the same co-induction mechanism and
their inductive components (structural resolution and SLD resolution, respectively) are both sound and
complete w.r.t. the least Herbrand model [13].

3.2 Operational Semantics

The implementation presented in Appendix A played important role in formulation of the operational se-
mantics. The implementation was created by integrating existing implementation of structural resolution
[16] and co-SLD [1], which showed plausible behaviour. So the implementation was then abstracted to
obtain the operational semantics, whose soundness was later proved. The upshot is that the implementa-
tion had come before the formulation of the operational semantics, but was then verified as the soundness
of the operational semantics was proved. In this section we present the operational semantics.

Definition 14 (Co-inductive Structural Resolution). Given a logic program P and goal

G =← (A1,S1), . . . ,(An,Sn)

the next goal G′ can be derived by one of the following three rules:

1. (Rewriting Reduction) If there exists in P a clause B0 ← B1, . . . ,Bm (with freshly renamed vari-
ables), such that B0 ≺θ Ak for some k ∈ {1, . . . ,n}, then let S′ = Sk∪{Ak}, we derive

G′ =← (A1,S1), . . . ,(Ak−1,Sk−1),(B1θ ,S′), . . . ,(Bmθ ,S′),(Ak+1,Sk+1), . . . ,(An,Sn)

2. (Substitution Reduction) If there exists in P a clause B0← B1, . . . ,Bm (with freshly renamed vari-
ables), such that B0 ∼θ Ak but not B0 ≺θ Ak for some k ∈ {1, . . . ,n}, then we derive

G′ =←
(
(A1,S1), . . . ,(An,Sn)

)
θ

3. (Loop Detection) If Ak ∼θ B for some k ∈ {1, . . . ,n} and some B ∈ Sk, we derive

G′ =←
(
(A1,S1), . . . ,(Ak−1,Sk−1),(Ak+1,Sk+1), . . . ,(An,Sn)

)
θ

Notice that the Loop Detection rule for co-inductive structural resolution is the same as its counterpart
in co-SLD, and rule-1 of co-inductive structural resolution is a special case of rule-1 of co-SLD.

Definition 15 (co-S-Derivation/Refutation). A co-inductive structural resolution derivation is a possibly
infinite sequence G0,G1, . . . where G0 is of the form ← (A1, /0), . . . ,(Am, /0) (m ≥ 0), and for all i ≥ 0,
Gi+1 is derived from Gi by co-S-resolution without consecutive use of substitution reduction. A finite
co-S-derivation ending with the empty goal is called a co-S-refutation.

Definition 16 (Computed Substitution). Given a co-S-refutation D , let θ1,θ2, . . . ,θn be the sequence
of unifiers computed in D due to application of rule-2 or rule-3, sorted in the same order as they were
computed, their composition θ1θ2 · · ·θn is called the computed substitution from D .

Example 16.1. Consider program:

58 Co-inductive S-resolution

p(s(X))← q(X) q(X)← p(X),r(X) r(X)←
In the following co-S-refutation, for each goal we always select the left most predicate to resolve.

Goal 1: ←
(
q(X), /0

)
Goal 2: ←

(
p(X),{q(X)}

)
,
(
r(X),{q(X)}

)
(rule-1. q(X1)← p(X1),r(X1). {X1/X})

Goal 3: ←
(

p(s(X2)),{q(s(X2))}
)
,
(
r(s(X2)),{q(s(X2))}

)
(rule-2. p(s(X2))← q(X2). θ1 = {X/s(X2)})

Goal 4: ←
(
q(X2),{p(s(X2)),q(s(X2))}

)
,
(
r(s(X2)),{q(s(X2))}

)
(rule-1. p(s(X3))← q(X3). {X3/X2})

Goal 5: ←
(
r(s(s(s(. . .)))),{q(s(s(s(. . .))))}

)
(rule-3. q(X2)∼θ2 q(s(X2)). θ2 = {X2/s(s(s(. . .)))})

Goal 6: ← (rule-1. r(X4)← . {X4/s(s(s(. . .)))})

The answer to Goal 1 is given by computed substitution θ1θ2 = {X/s(s(s(. . .))),X2/s(s(s(. . .)))}. Loop
detection is used once for reduction from Goal 4 to Goal 5, and predicate q(X2) in Goal 4 is co-inductively
proved.

3.3 Soundness Proof

In this section, the main result shows that given a goal G, if there is a co-S-refutation for G, with computed
substitution σ , then there is a co-SLD refutation for Gσ , with computed substitution ε (i.e. the empty
substitution). Therefore if co-SLD is sound, then Gσε =Gσ is in the greatest complete Herbrand model,
meaning that co-S-resolution is also sound.

We will define a transformation algorithm that step-by-step transforms a co-S-refutation of goal
G into a co-SLD refutation of goal Gσ . The transformation is via an intermediate derivation, called
co-rewriting-id derivation, which simply consists of co-SLD resolution steps interleaved with identity
reduction steps (c.f. Definition 17). So given a co-S-refutation, it will be firstly transformed into a
co-rewriting-id refutation, which will then be trivially transformed into a co-SLD refutation. The trans-
formation from a co-S-refutation to a co-rewriting-id refutation is done during a sequential traverse of
the co-S-refutation, starting from the initial goal. According to the three lemmas (i.e. Lemma 1, 2 and 3,
defined later), each goal reduction step in the co-S-refutation establishes a co-rewriting-id reduction step,
and all co-rewriting-id reduction steps established during the traverse form the co-rewriting-id refutation.
The following are details of the proof.

Definition 17 (Identity Reduction). Given some goal G, the reduction from G to itself, is called identity
reduction, denoted by

G id−→ G

Definition 18 (co-Rewriting-ID Resolution). Given a program and some goal G, the next goal G′ can be
derived from G using one of following three rules:

1. The same as rule 1 in Definition 14.

2. Identity reduction.

3. The same as rule 3 in Definition 14.

Definition 19 (co-Rewriting-ID Derivation/Refutation). A co-rewriting-id derivation is a possibly infi-
nite sequence G0,G1, . . . where G0 is of the form← (A1, /0), . . . ,(Am, /0) (m ≥ 0), and for all i ≥ 0, Gi+1
is derived from Gi by co-rewriting-id resolution without consecutive use of identity reduction. A finite
co-rewriting-id derivation ending with the empty goal is called a co-rewriting-id refutation.

Yue Li 59

Definition 20 (Computed Substitution). Given a co-rewriting-id refutation D , let θ1,θ2, . . . ,θn be the
sequence of unifiers computed in D due to application of rule-3, sorted in the same order as they were
computed, their composition θ1θ2 · · ·θn is called the computed substitution from D .

Proposition 1. Given a program, for any goal G, if there is a co-rewriting-id refutation for G with
computed substitution θ , then there is a co-SLD refutation for G with the same computed substitution θ .

Proof. Suppose D = G0, . . . ,Gn is a co-rewriting-id refutation for G = G0 with computed substitution
θ . By simultaneously removing from D all Gi+1 (i ∈ [0,n− 1]) such that Gi

id−→ Gi+1, the resulting
derivation D ′ constitutes a co-SLD derivation with computed substitution θ . Moreover, D ′ is a special
case of co-SLD derivation since Definition 18-rule 1 is a special case of Definition 6-rule 1.

Theorem 1. Given a program, for any goal G, if there is a co-S-refutation for G with computed sub-
stitution σ , then there is a co-rewriting-id refutation for Gσ with computed substitution ε (the empty
substitution).

The proof of Theorem 1 is based on properties of co-inductive structural resolution rules, formulated
in the following three lemmas.

Lemma 1 (Rewriting Preservation). Let
G rule-1−−−→

B
G′

be a goal reduction using rule-1 (as defined in Definition 14), and B the program clause involved in the
reduction.

Then for any substitution σ , it holds that

Gσ
rule-1−−−→

B
G′σ

Proof. Assume

• G =← (A1,S1), . . . ,(Ak,Sk), . . . ,(An,Sn) and

• B has the form B0← B1, . . . ,Bm (m≥ 0) and

• B0 ≺γ Ak, for some k ∈ [1,n].

By Definition 14, rule-1,

G′ =← (A1,S1), . . . ,(Ak−1,Sk−1),(B1γ,S′), . . . ,(Bmγ,S′),(Ak+1,Sk+1), . . . ,(An,Sn) (1)

where S′ = Sk∪{Ak}.
Since B0 ≺γ Ak (by the above assumption), it means (by Definition 4) that

B0γ = Ak (2)

Then for all σ , if we apply σ to both sides of (2), we have B0γσ = Akσ , which means (by associativity
of substitution [17, Sec. 4] and Definition 4) that

B0 ≺γσ Akσ . (3)

Now consider Gσ , by notational convention,

Gσ =← (A1σ ,S1σ), . . . ,(Akσ ,Skσ), . . .(Anσ ,Snσ) (4)

60 Co-inductive S-resolution

Because of (3) and (4), we can have reduction

Gσ
rule-1−−−→

B
G′′ (5)

where, by Definition 14, rule-1,

G′′ =← (A1σ ,S1σ), . . . ,(Ak−1σ ,Sk−1σ),(B1γσ ,S′′), . . . ,(Bmγσ ,S′′),(Ak+1σ ,Sk+1σ), . . . ,(Anσ ,Snσ)
(6)

where S′′ = Skσ ∪{Akσ}.
Compare (1) and (6), we have, by notational convention,

G′′ = G′σ (7)

By (5) and (7), we reach the conclusion of Lemma 1.

Hereinafter we adopt the following notation for substitution compositions. Given a sequence of sub-
stitutions θ1,θ2, . . . ,θn, for all k∈{1, . . . ,n}, let σk denote the composition θkθk+1 · · ·θn. For example, let
θ1,θ2,θ3,θ4 be a sequence of 4 substitutions, then σ1 = θ1θ2θ3θ4, σ2 = θ2θ3θ4, σ3 = θ3θ4 and σ4 = θ4.

Lemma 2 (Instantiation Preservation). Let

G rule-2−−−→
θk

G′

be a goal reduction using rule-2 (as defined in Definition 14), where θk is the unifier involved in the
reduction, and let

σk = θkθk+1 · · ·θn

for some n > k and some (arbitrary and possibly ε) substitutions θk+1, . . . ,θn.
Then

Gσk
id−−→ G′σk+1

Remark. The sequence of θ ’s in Lemma 2 will come from co-S-resolution steps when Lemma 2 is used
to prove Theorem 1.

Proof. From the premise of Lemma 2, we have

Gθk = G′ (8)

Applying σk+1(= θk+1 · · ·θn) to both sides of (8) we have

Gθkσk+1 = G′σk+1 (9)

Note that in (9)
θkσk+1 = σk

therefore by associativity of substitution, (9) can be written as

Gσk = G′σk+1

hence the identity reduction Gσk
id−−→ G′σk+1.

Yue Li 61

Lemma 3 (Loop Detection Preservation). Let

G rule-3−−−→
θk

G′

be a goal reduction using rule-3 (as defined in Definition 14), where θk is the unifier involved in the
reduction, and let

σk = θkθk+1 · · ·θn

for some n > k and some (arbitrary and possibly ε) substitutions θk+1, . . . ,θn.
Then

Gσk
rule-3−−−→

ε
G′σk+1

Proof. Assume
G =← (A1,S1), . . . ,(Ak,Sk), . . . ,(An,Sn) (10)

and
Ak ∼θk B (11)

for some k ∈ [1,n] and some
B ∈ Sk (12)

By Definition 14, rule-3,

G′ =←
(
(A1,S1), . . . ,(Ak−1,Sk−1),(Ak+1,Sk+1), . . . ,(An,Sn)

)
θk (13)

From (11) and Definition 3,
Akθk = Bθk (14)

Applying σk+1(= θk+1 · · ·θn) to both sides of (14), we have Akθkσk+1 = Bθkσk+1, then due to σk =
θkσk+1 and associativity of substitution,

Akσk = Bσk (15)

which means
Akσk ∼ε Bσk (16)

Consider Gσk, which can be written as

Gσk =← (A1σk,S1σk), . . . ,(Akσk,Skσk), . . . ,(Anσk,Snσk) (17)

Due to (12), it holds that
Bσk ∈ SKσk (18)

From (16) and (18), Gσk as in (17) can be reduced using Definition 14 rule 3, resulting in

G′′ =← (A1σk,S1σk), . . . ,(Ak−1σk,Sk−1σk),(Ak+1σk,Sk+1σk), . . . ,(Anσk,Snσk)

which can be rewritten in a simpler form

G′′ =←
(
(A1,S1), . . . ,(Ak−1,Sk−1),(Ak+1,Sk+1), . . . ,(An,Sn)

)
σk (19)

The reduction of Gσk is denoted by
Gσk

rule-3−−−→
ε

G′′ (20)

Comparing (13) with (19), we conclude, by associativity of substitution, that

G′′ = G′σk+1

and with (20) we reach the conclusion of Lemma 3.

62 Co-inductive S-resolution

Next we give an algorithm that outputs co-rewriting-id refutations, giving a co-S-refutation as input.
This algorithm constitutes our proof of Theorem 1 and we will provide an example to demonstrate the
algorithm at work.

Proof of Theorem 1. Given a goal G = G0, assume D = G0, . . . ,Gn is a co-S-derivation, and θ1, . . .θm is
the sequence of unifiers computed during derivation D due to the use of Definition 14 rule 2 or 3. Let
θm+1 = ε so σ1 = θ1, . . .θmθm+1 is the computed substitution for goal G.

Definition 14 is the default domain when we mention rule 1,2 or 3 in this proof. We build the co-
rewriting-id derivation D ′ of Gσ1 using the following algorithm.

For each i ∈ {0, . . . ,n−1}, starting from i = 0 and in the ascending order of i, (*)

• If
Gi

rule-1−−−→
B

Gi+1

then write down, by Lemma 1,
Giσx

rule-1−−−→
B

Gi+1σx

where

x =

{
1 If i = 0;
k If i > 0 and Giσk is in D ′.

x is well-defined in the second case because of the condition (*).

• If
Gi

rule-2−−−→
θk

Gi+1

then write down, by Lemma 2,
Giσk

id−→ Gi+1σk+1

• If
Gi

rule-3−−−→
θk

Gi+1

then write down, by Lemma 3,
Giσk

rule-3−−−→
ε

Gi+1σk+1

Remark. Compare the specific co-S-refutation for goal G0, which has computed substitution σ1 =
θ1θ2θ3θ4 where θ4 = ε , with the co-rewriting-id refutation for goal G0σ1 generated by the algorithm.

G0σ1
rule−1−−−−→

B1
G1σ1

rule−1−−−−→
B2

G2σ1
rule−2−−−−→

θ1
G3σ1

rule−3−−−−→
θ2

G4σ1
rule−1−−−−→

B3
G5σ1

rule−3−−−−→
θ3

(G6σ1 =←)

G0σ1
rule−1−−−−→

B1
G1σ1

rule−1−−−−→
B2

G2σ1
abid−3−−−−→ G3σ2

rule−3−−−−→
ε

G4σ3
rule−1−−−−→

B3
G5σ3

rule−3−−−−→
ε

(G6σ4 =←)

Theorem 2 (Soundness). Co-inductive structural resolution is sound with respect to the greatest com-
plete Herbrand model. In other words, if a goal G has a co-S-derivation with computed substitution σ ,
then Gσ is in the greatest model.

Proof. Given a program and some goal G, assume G has a co-S-derivation with computed substitution σ .
By Theorem 1 Gσ has a co-rewriting-id derivation with computed substitution ε , then by Proposition 1
Gσ has a co-SLD derivation with computed substitution ε . Since co-SLD is sound with respect to the
greatest complete Herbrand model, Gσε = Gσ is in the model.

Yue Li 63

4 Related Work and Conclusion

Existing soundness proof for co-SLD helped this work. A soundness proof of co-SLD, based on co-
induction, is provided in [20], in which it was established by a lemma that if some goal G has co-SLD
derivation with computed substitution σ , then Gσ also has a co-SLD derivation. This idea inspired the
author to explore if a goal has a co-S-derivation, whether there is also a co-S-derivation for the same goal
with computed answer applied. Another soundness proof of co-SLD is given in [3], which is based on
the theory of infinite tree logic programming formulated in [10]. The infinite tree derivation proposed in
[10] selects all sub-goal altogether rather than one sub-goal at a time, and it is sound with respect to the
greatest model. In [3] the soundness of co-SLD is proved by showing that any co-SLD derivation can be
unfolded into an infinite tree derivation, therefore the soundness of co-SLD derivation is backed by the
soundness of infinite tree derivation. Our proof in this paper obviously is inspired by such technique in
[3], which relates different derivations and reuses previous results.

As a by-product of our proof, we can use the same arguments to show that soundness and complete-
ness of structural resolution can be proved based on soundness and completeness of SLD resolution.
For soundness, if a goal G has a successful structural resolution derivation with computed substitution
σ , then Gσ has a successful rewriting-id derivation, which is a special case of SLD derivation. For
completeness, it needs to be shown that every SLD derivation has a corresponding structural resolution
derivation, by splitting each non-rewriting step in SLD derivation into one step of substitution reduction
followed by one step of rewriting reduction.

Future work will involve development of a productivity semi-decision algorithm based on co-inductive
structural resolution. Now we have a sketch of the role that will be played by co-S-resolution. Given a
non-terminating SLD derivation, necessarily some (maybe none) of its SLD resolution steps are rewrit-
ing reductions. A class of programs are characterized for their termination for rewriting [13, 14], called
observationally productive programs. Since all consecutive rewriting steps are finite for such programs,
in a non-terminating SLD derivation of some observationally productive program, there necessarily are
infinite steps of non-rewriting SLD resolution steps. This fact will be crucial for productivity analysis
since only non-rewriting steps can produce unifiers that may accumulate and instantiate the original goal
into an infinite tree at infinity. Since the notion of productivity relies on rewriting reduction, productiv-
ity analysis is made easier by S-resolution compared with using SLD resolution; hence the advantage
of structural resolution over SLD resolution. Moreover, loop detection needs to be combined with S-
resolution to serve as a finite implementation of non-terminating productive S-derivations; finding a way
for such a combination, proving its co-inductive soundness, and implementing it, are the contributions
of this paper.

Acknowledgement I would like to thank my supervisor Dr. Ekaterina Komendantskaya for her support
and discussion. I would like to thank Dr. Joe Wells and anonymous reviewers for their constructive
comments.

References

[1] Davide Ancona (2013): Regular corecursion in Prolog. Computer Languages, Systems & Structures 39(4),
pp. 142–162, doi:10.1016/j.cl.2013.05.001.

[2] Davide Ancona, Andrea Corradi, Giovanni Lagorio & Ferruccio Damiani (2010): Abstract Compilation of
Object-Oriented Languages into Coinductive CLP(X): Can Type Inference Meet Verification? In: Formal

http://dx.doi.org/10.1016/j.cl.2013.05.001

64 Co-inductive S-resolution

Verification of Object-Oriented Software - International Conference, FoVeOOS 2010, Paris, France, June
28-30, 2010, Revised Selected Papers, pp. 31–45, doi:10.1007/978-3-642-18070-5 3.

[3] Davide Ancona & Agostino Dovier (2015): A Theoretical Perspective of Coinductive Logic Programming.
Fundam. Inform. 140(3-4), pp. 221–246, doi:10.3233/FI-2015-1252.

[4] K.L. Clark (1980): Predicate Logic as a Computational Formalism. Research monograph / Department
of Computing, Imperial College of Science and Technology, University of London. Available at https:
//www.doc.ic.ac.uk/~klc/monograph.html.

[5] Alain Colmerauer (1985): Prolog in 10 Figures. Commun. ACM 28(12), pp. 1296–1310,
doi:10.1145/214956.214958.

[6] Bruno Courcelle (1983): Fundamental properties of infinite trees. Theoretical Computer Science 25(2), pp.
95 – 169, doi:10.1016/0304-3975(83)90059-2.

[7] M.H. van Emden & J.W. Lloyd (1984): A logical reconstruction of Prolog II. The Journal of Logic Program-
ming 1(2), pp. 143 – 149, doi:10.1016/0743-1066(84)90001-3.

[8] Jörg Endrullis, Clemens Grabmayer, Dimitri Hendriks, Ariya Isihara & Jan Willem Klop (2010): Productivity
of Stream Definitions. Theor. Comput. Sci. 411(4-5), pp. 765–782, doi:10.1016/j.tcs.2009.10.014.

[9] Gopal Gupta, Ajay Bansal, Richard Min, Luke Simon & Ajay Mallya (2007): Coinductive Logic Program-
ming and Its Applications, pp. 27–44. Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-
540-74610-2 4.

[10] Joxan Jaffar & Peter J. Stuckey (1986): Semantics of Infinite Tree Logic Programming. Theor. Comput. Sci.
46(2-3), pp. 141–158, doi:10.1016/0304-3975(86)90027-7.

[11] Patricia Johann, Ekaterina Komendantskaya & Vladimir Komendantskiy (2015): Structural Resolution for
Logic Programming. In: Tech. Commu. of ICLP’ 15.

[12] Ekaterina Komendantskaya (2017): Personal communication.
[13] Ekaterina Komendantskaya & Patricia Johann (2015): Structural Resolution: a Framework for Coinductive

Proof Search and Proof Construction in Horn Clause Logic. CoRR abs/1511.07865. Available at http:
//arxiv.org/abs/1511.07865.

[14] Ekaterina Komendantskaya, Patricia Johann & Martin Schmidt (2016): A Productivity Checker for Logic
Programming. LOPSTR’16. Available at http://arxiv.org/abs/1608.04415.

[15] Ekaterina Komendantskaya, John Power & Martin Schmidt (2016): Coalgebraic logic programming: from
Semantics to Implementation. Journal of Logic and Computation 26(2), p. 745, doi:10.1093/logcom/exu026.

[16] Yue Li (2016): Comparative Study of Search Strategies for Term-Matching and Unification Based Resolution
in Prolog. Available at http://www.macs.hw.ac.uk/~yl55/CoALP_Report_Dec16.pdf. Unpublished.

[17] J. W. Lloyd (1987): Foundations of Logic Programming; (2Nd Extended Ed.). Springer-Verlag New York,
Inc., New York, NY, USA, doi:10.1007/978-3-642-83189-8.

[18] Alberto Martelli & Ugo Montanari (1982): An Efficient Unification Algorithm. ACM Trans. Program. Lang.
Syst. 4(2), pp. 258–282, doi:10.1145/357162.357169.

[19] Ben A. Sijtsma (1989): On the Productivity of Recursive List Definitions. ACM Trans. Program. Lang. Syst.
11(4), pp. 633–649, doi:10.1145/69558.69563.

[20] Luke Simon (2006): Extending Logic Programming with Coinduction. Ph.D. thesis, The University of Texas
at Dallas. Available at http://www.utdallas.edu/~gupta/lukethesis.pdf.

[21] Luke Simon, Ajay Mallya, Ajay Bansal & Gopal Gupta (2006): Coinductive Logic Programming, pp. 330–
345. Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/11799573 25.

[22] M. H. Van Emden & R. A. Kowalski (1976): The Semantics of Predicate Logic As a Programming Language.
J. ACM 23(4), pp. 733–742, doi:10.1145/321978.321991.

[23] W. P. Weijland (1988): Semantics for logic programs without occur check, pp. 710–726. Springer Berlin
Heidelberg, Berlin, Heidelberg, doi:10.1016/0304-3975(90)90194-M.

http://dx.doi.org/10.1007/978-3-642-18070-5_3
http://dx.doi.org/10.3233/FI-2015-1252
https://www.doc.ic.ac.uk/~klc/monograph.html
https://www.doc.ic.ac.uk/~klc/monograph.html
http://dx.doi.org/10.1145/214956.214958
http://dx.doi.org/10.1016/0304-3975(83)90059-2
http://dx.doi.org/10.1016/0743-1066(84)90001-3
http://dx.doi.org/10.1016/j.tcs.2009.10.014
http://dx.doi.org/10.1007/978-3-540-74610-2_4
http://dx.doi.org/10.1007/978-3-540-74610-2_4
http://dx.doi.org/10.1016/0304-3975(86)90027-7
http://arxiv.org/abs/1511.07865
http://arxiv.org/abs/1511.07865
http://arxiv.org/abs/1608.04415
http://dx.doi.org/10.1093/logcom/exu026
http://www.macs.hw.ac.uk/~yl55/CoALP_Report_Dec16.pdf
http://dx.doi.org/10.1007/978-3-642-83189-8
http://dx.doi.org/10.1145/357162.357169
http://dx.doi.org/10.1145/69558.69563
http://www.utdallas.edu/~gupta/lukethesis.pdf
http://dx.doi.org/10.1007/11799573_25
http://dx.doi.org/10.1145/321978.321991
http://dx.doi.org/10.1016/0304-3975(90)90194-M

Yue Li 65

A Implementation of Co-Inductive Structural Resolution

SWI-Prolog (Multi-threaded, 64 bits, Version 7.2.3)
http://www.swi-prolog.org

%---

clause_tree(true,_) :- !.

clause_tree((G,R), Hypo) :-

!, % Note 1

clause_tree(G, Hypo),

clause_tree(R, Hypo).

clause_tree(A,Hypo) :- find_loop(A,Hypo).

clause_tree(A, Hypo) :- % rewriting reduction

unifying_and_matching_rule(A, Body),

clause_tree(Body, [A|Hypo]). % Note 2

clause_tree(A, Hypo) :- % substitution reduction.

unifying_not_matching_rule(A, _),

clause_tree(A, Hypo). % Note 3

%---

find_loop(A,[B|_]) :- A = B.

find_loop(A,[_|C]) :- find_loop(A,C).

% choose clauses whose heads unifies with the goal,

% and specifically, matches the goal.

unifying_and_matching_rule(A, Body) :-

copy_term(A,A_copy), % Note 4

clause(A_copy,_,Ref), % Note 5

clause(A1,_,Ref), % Note 6

subsumes_term(A1,A), % Note 7

clause(A,Body,Ref). % Note 8

% choose clauses whose head unifies with the goal,

% and specifically, does not match the goal.

unifying_not_matching_rule(A, Body) :-

copy_term(A,A_copy),

clause(A_copy,_,Ref),

clause(A1,_,Ref),

\+ subsumes_term(A1,A),

clause(A,Body,Ref).

%--

Note 1 Clauses deal with mutually exclusive cases, hence the cuts.

Note 2 A is not instantiated by finding a matching clause.

66 Co-inductive S-resolution

Note 3 A is instantiated by finding a unifying but not matching clause.

Note 4 At run time variable A is bound to the current (atomic sub-)goal G, A_copy then is a variant Ǵ
of G with fresh variables. Built-in copy_term/2 is used to make a copy of G to use in the next
procedure clause(A_copy,_,Ref) to search for a unifying rule without instantiating variables
from G.

Note 5 At run time, this procedure finds some clause whose head unifies with the variant Ǵ of the current
(atomic sub-)goal G and get the clause’s reference number n that is bound to Ref. The term Ǵ
bound to A_copy may be instantiated. The body of the found clause, which may be instantiated,
is discarded as indicated by “_”.

Note 6 Use the reference number Ref to get a copy of the found clause by the previous procedure
‘clause(A_copy,_,Ref)’. Only the head, which is bound to A1, of the clause is needed for
subsumes check, and the body of the clause is discarded as shown by ‘_’.

Note 7 Term matching is checked by using built-in predicate subsumes_term/2, which does not in-
stantiate variables. Any binding made for subsumes check will be undone by implementation of
subsumes_term/2.

Note 8 If the subsumes check is passed by the found unifying clause, then use a fresh copy of this
particular clause, as specified by Ref, to reduce the goal. Variables in the term t bound to A will
not be instantiated because the clause head subsumes t as has been checked, but variables in the
body of the clause, which is bound to Body, are instantiated by sub-terms from t.

One of the anonymous reviewers of this paper suggested that

“The two clauses for rewriting and substitution reduction can be merged into a single one to
make the interpreter more compact and efficient (but maybe a bit less readable).”

And he/she suggested the following code:

clause_tree(A, Hypo) :-

copy_term(A,A_copy),

clause(A_copy,_,Ref),

clause(A1,_,Ref),

subsumes_term(A1,A) *-> clause(A,Body,Ref),

clause_tree(Body, [A|Hypo])

;

clause(A,Body,Ref),

clause_tree(A, Hypo).

% Example object programs

% -------------------------

% trace: clause_tree(a,[])

a :- a1,a2.

a1 :- b1,b2.

b1 :- c1,c2.

a2.

b2.

c1.

Yue Li 67

c2.

%--------------------------

% trace: clause_tree(p(X),[]).

p(s(X)) :- p(X),p(X). % non-linear co-recursion

%--------------------------

% trace: clause_tree(cond_f(X),[]).

cond_c(s(a)).

cond_e(s(_)).

cond_f(X) :- cond_e(X),cond_c(X).

%--------------------------

% trace: clause_tree(q(X),[]).

r(_).

p(s(X)) :- q(X).

q(X) :- p(X),r(X).

	1 Introduction
	2 Preliminaries
	3 Co-inductive Semantics
	3.1 Declarative Semantics
	3.2 Operational Semantics
	3.3 Soundness Proof

	4 Related Work and Conclusion
	A Implementation

