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Abstract—As AUVs are enabled with greater levels of auton-
omy, there is the need for them to clearly explain their actions
and reasoning, maintaining a level of situation awareness and
operator trust. Here, we describe the REGIME system that
automatically generates natural language updates in real-time as
well as post-mission reports. Specifically, the system takes time-
series sensor data, mission logs, together with mission plans as
its input, and generates descriptions of the missions in natural
language. These natural language updates can be used in isolation
or as an add-on to existing interfaces such as SeeByte’s SeeTrack
common operator interface. A usability study reflects the high
situation awareness induced by the system, as well as interest in
future use.

I. INTRODUCTION

Autonomous systems, by their very nature, act indepen-
dently making key decisions on which actions to take. They
are able to adapt, modifying preset plans and behaving in
a less observably deterministic fashion [1]. This behaviour
is key to their success and recent wide-spread adoption in
a variety of domains and applications (e.g. air vehicles for
farmers, underwater pipeline monitoring). However, there can
be a lack of clarity in the reasoning behind system actions due
to the absence of interactive interfaces between operators and
autonomous systems, thus leading to a reduced level of trust.
This is particularly prevalent in the underwater domain where
one does not have eyes-on the vehicle. Here, we describe one
of the first of such interfaces between Autonomous Underwa-
ter Vehicles (AUVs) and an operator referred to hence forth
as the REGIME system (REport GeneratIon from Metadata).

A. Background

Previous work has looked at enabling the mission plan to
be more scrutable and less opaque [2]. However, this work
looks at explaining only the plans whereas our work combines
the plans with logs of real missions in order to generate
accurate reports of what actually happened. Other previous
attempts have been made to build natural language interfaces
to bring mission states and purposes closer to human operators.
However, these are only in simulated environments for pre-
mission verifications [1]. The REGIME system described
here can process real world missions, with noise-prone data,
due to imperfect sensors and irregular trajectories, partially
caused by noisy environmental factors (e.g. varying water
current, heading and seabed shape). In addition, we are the

Fig. 1. The SeeTrack interface c©SeeByte with the mission analysis on the
right hand side

first to attempt to do this during a mission with only partial
information available at any one time.

II. SYSTEM ARCHITECTURE

The prototype system described here is able to provide
accurate reporting in-real time for In-Mission Analysis (IMA)
[3] as well as Post-Mission Analysis (PMA) [4] on both
simulated and real data. Both types of generated reports are
displayed on SeeByte’s SeeTrack common operator interface
(see Figure 1). It is designed to generate reports with regards
missions running SeeByte’s autonomous behaviour software
called Neptune, which is platform agnostic and runs on various
AUVs such as REMUS and IVER. As illustrated in Figure 2,
the report generation module takes three types of data sources
as its input: 1) the mission plan; 2) time-series sensor data (i.e.
navigation logs); and 3) event/error logs. The PMA system
accesses the ROS (Robot Operating System) logs downloaded
from the vehicle and extracts the navigation file in the form of
comma seperated values document (csv) with information e.g.
latitude/longitude/heading/depth. The PMA also takes as input
the mission plan and the event/fault logs from the vehicle.
The IMA uses similar data in terms of the mission plan
and navigation information but takes this directly from the
vehicle in real-time via an underwater acoustic communication
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Fig. 2. System architecture comparing Post-mission Analysis- PMA (left)
and In-mission Analysis- IMA (right) c©Heriot-Watt

Fig. 3. The Event Identifier: a hierarchical classifier for event identification
from real navigation sensor data

link using the Neptune Web Service API. Vehicle status, e.g.
faults/warnings, are also obtained in this way.

A. Event Detection

Given a data stream, a sequence of events of interest is
extracted by the Event Identifier. This sequence of events is
then aligned to the sequence of planned events taken from
the mission plan. The system focuses on two major event
types: wide area surveys (lawnmowers) and close inspection
of objects of interest (reacquisitions) [5] for Mine Counter
Measure (MCM) missions, where the vehicle is surveying an
area for mines for disposal.

For the PMA, this is done using dynamic programming,
specifically the Smith-Waterman algorithm. In order to identify
events of interest in noise-prone real sensor data, we construct
a rule-based hierarchical classifier as shown in Figure 3. To
relieve the error accumulation problem, each layer is designed
to be robust to imperfect labels from the previous layer. In
addition, there is a set of approximate geometric functions
specifically designed for this problem to confer robustness to
data noise (such as unevenness in row scans or coordinate
jumps during navigations)[4] . We refer here to the Event
Identifier for the PMA. The in-mission module uses a similar
pipeline as that described in Figure 3 but without access to
the dynamic programming as the event detection is happening
in real time.

The Event Identifier was evaluated on 243 real world AUV
missions and 27 simulated data whereby the true sequence
of events was transcribed by hand and this sequence was

TABLE I
COVERAGE OF THE DATA EVENT IDENTIFIER FOR POST MISSION

ANALYSIS

REMUS Neptune (28) Neptune Neptune Sim w
VIP (215) Sim (20) Excl Zones (27)

Event 79.4% 100% 98.3% 94.6%
Mission 78.6% 100% 95.0% 84.0%

compared to the output of the Event Identifier. Coverage
of event detection is given in Table I and calculated as follows:

Event Detection Accuracy = 1− (S +D + I)

N

where S is the number of substitutions, D is the number of
deletions, I is the number of insertions of events and N is the
total number of events in the transcription. Mission accuracy
is the proportion of missions with 100% of all events correctly
identified.

The coverage of the rule based system is presented in Table
I in terms of for four sets of data. The first set contains
215 real world missions conducted by the Heriot-Watt Oceans
Systems Lab using the REMUS VIP software. The second
set contains 28 missions using SeeTrack’s Neptune operating
software running on both IVER and REMUS vehicles. Note
that the rule-based system was tuned on this dataset and
therefore gets 100% coverage.

In order to test the true capability, the system was run
on simulated data, which introduced some noise. Specifically,
27 single vehicle missions were simulated using the Neptune
Simulator and Neptune Topside with settings to create a
variety of scenarios. Noise conditions were applied to some
simulated missions, such as changing the water current speed
and direction, changing the seabed shape (ripple or complex),
adding dynamic targets for reacquisition, changing shapes and
positions of the survey areas and adding exclusion zones.
In addition, a number of simulations were run with event
trigger scenarios e.g. dynamically changing the water current
direction 10 minutes after launching the mission. The vehicle
would try to adapt its direction based on the water current
direction after such an event is triggered. The third set of data
in Table I reports the coverage of the system on these simulated
data without exclusion zones where coverage reaches 98.3%
and 95% for Event and Mission respectively. The fourth set
includes exclusion zones, where there is a degradation of
performance when these exclusions zones are put in place.
Given that the system was not designed to cover missions that
included exclusion zones, this level of coverage is encouraging
(94.6% and 84%). Table I reports on event detection for post-
mission analysis but we do not predict much of a degradation
for in-mission reporting on the assumption of continuous
comms.

B. Generation of Natural Language Reports

The set of recognised events, along with other items of
interest are encapsulated in the form of formal semantics,
which is then sent to the Natural Language Generation (NLG)



Fig. 4. System architecture for in-mission reporting with example outputs
c©Heriot-Watt

component. Figure 5 gives an example of the formal semantics
on the left-hand-side and the realised PMA on the right. For
the post-mission reporting, the natural language generation
system is broken down into a number of individual reporter
modules that use rule-based generation. These are:

• Mission Plan Reporter debriefs on the plan of the
mission;

• Plan Success Reporter debriefs on the planned events
successfully executed by the AUV;

• Out-of-plan Event Reporter reports on events that are
outside the original plan e.g. dynamic object reacquisi-
tion;

• Abort Reporter seeks the reason for the abort, locates
and reports the aborted mission objective;

• Mission Log Reporter reports important messages in the
mission log, such as automatic parameter adjustments by
the AUV, the thruster controller errors during the mission,
etc.;

• Data Error Reporter reports potential errors identified
in the sensor data such as coordinate jumps (e.g. due to
noise in the navigation sensors).

The in-mission analysis system also contains the Mission
Plan reporter module, but includes the following modules as
illustrated in Figure 4 with example output text:

• Mission Progress Reporter debriefs on status with rela-
tion to the mission objectives;

• Asset Status Reporter debriefs on any warnings coming
from the asset;

• Objective Progress Reporter debriefs on progress sta-
tus for the current objective (e.g. doing a survey or a
reaquisition);

• Maneuver Reporter debriefs on status if the asset is
maneuvering e.g. towards the starting location of a new
objective or recovery point.

III. PERSONALISATION

For the system design, we deployed user-centred design
whereby we did an initial data collection to understand the
information needs of users and how these information needs

Fig. 5. PMA for mission given in Figure 1 with the semantic representation
on the left hand side and the example output on the right

differed depending on the role of the user. Participants in-
cluded GCS (Ground Control Station) Operators and Techni-
cal managers, Operations Command, Maintenance crew and
Processing, Exploitation and Dissemination personnel namely
environmental scientists. For the study, the users watched three
videos and were asked to select the type of information they
would like to see (e.g. mission type, launch time, mission
success). A report was then automatically generated, which
they could then edit for wording and style. We also performed
interviews with various potential end-users, to understand their
information needs further and determine what information
challenges they face in their role with regards to AUV mis-
sions, situation awareness and training. From these studies, it
was determined that users do have different information needs.
Examples of these differences are given below:

• Operations Manager want to know all possible infor-
mation but in a succinct manner;

• Maintenance Crew want to know only the information
whereby the mission went wrong and that which will
inform training of personnel;

• Processing Exploitation Dissemination want to know
information only pertaining to the collection of valid data.

To this end, a personalisation interface (see Figure 7) was
implemented, which allows for information customisation
through the SeeTrack interface.

IV. USABILITY STUDY

A usability study was conducted with 15 users in the
field of AUVs. These subjects were software engineers and
operators with varying experiences and computer program-
ming expertise. The study was between-subjects design with
two conditions where one group was shown a sequence of
utterances generated by the system (‘language only condition’)
and the other group was given both language and the visual
path and estimated vehicle position (‘multimodal condition’)
as in Figure 1. At the end of the mission, subjects were asked
questions to garner an idea of their overall mental model of
the system in terms of understanding what the system is doing
and how it is working as well as general usability.

The questions from the post-questionnaire are listed here:
• Q1: In general, I trusted the AUV was doing what it

should be doing
• Q2: I have an overall understanding of how the AUV was

working



Fig. 6. Mean responses for post-questionnaire on usability

• Q3: have an overall understanding of why it was doing
what it was doing

• Q4: I have confidence that the reporting was an accurate
reflection of what the system was doing

• Q5: I would feel confident making a decision whether to
abort the mission or not based on this reporting

• Q6: The language was appropriate
• Q7: The language used in the reporting was natural
• Q8: I would find it useful to have this type of reporting

during the mission
Overall the system received high usability ratings (see

Figure 6) where mode=5 on a 5 point Likert scale for
understanding how the system was working and what it was
doing on the mission, thus reflecting a high situation awareness
induced by the natural language. We also observed a mode=5
for language appropriateness, reflecting the effective design of
the natural language generation system as well as a mode=5
for whether subjects would use the system in the future. With
regards to the two conditions, subjects expressed the same
level of trust in the system across conditions of mode=4,
however, for the multimodal system there seemed to be a more
accurate mental model of what the system was doing (mode=5
compared to mode=4), reflecting the need for both visual and
language output for maximum situation awareness1.

Qualitative feedback included statements such as “In gen-
eral, these types of messages are great and informative.” and
“The reporting was good in that it reported the most important
information, at a good pace”. Some areas for improvement
included the users wanting to know the source of the infor-
mation.

V. DISCUSSIONS AND FUTURE WORK

This paper describes how natural language reports are
generated for real and simulated AUV missions using meta-
data to infer the events in the mission, combined with mission
plans and system self-reported errors. A usability study reflects
the high situation awareness induced by the system as well as
high interest in future use.

1There are too few data points to do statistical analysis with high enough
effect-size

Fig. 7. Interface for personalising information reported

REGIME here deploys a sophisticated method for event
detection that avoids error accumulation but one that is rule-
based. Machine learning techniques have been proposed in
previous works for AUV behaviour identification based on
simulated missions [6], as well as for NLG on time-series data
[7]. However, besides the labour-cost of data collection itself,
the expertise required for data annotators and the confidential
issues related to real AUV missions are also main barriers
of practically applying large-scale data-driven methods to
real world missions [8]. Investigating highly data-efficient
learning algorithms for pattern recognition in AUV trajectories
and for NLG with limited data will be the focus of our
future research. Future work also includes, report generation
from more complex missions involving multiple collaborative
agents on multiple platforms. These mission types will lead
to more challenging NLG problems requiring, for example,
aggregation and referring expression generation.

It is understood that we are reporting in a comms-limited
environment, however, the experimentation reported here as-
sumes comms are present. Whilst, improving comms is out of
the scope of this work, future work will look to work with the
latest comms technology and adapt to missing and incomplete
data as a result of the limited comms.

An information level customisation interface was developed
as described here and shown in Figure 7. Future work would
look to develop adaptive personalisation where, through on-
line machine learning, the system would learn and understand
the information needs of the user, also recognising cognitive
overload and instigating mitigations strategies to optimise sit-
uation awareness whilst still managing cognitive load. Finally,
we would like to develop a truly interactive system, whereby
the user can ask questions regarding missions and interrogate
the data either through text, chat or voice. Such an interactive
system would provide a medium through which the system
could learn user’s preferences and information needs and adapt
accordingly through interaction rather than one-way reporting.
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