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ABSTRACT: Characterisation of cover concrete is often the most viable means for assessing the 

durability and has become increasingly evident over the past 20 years. A variety of field methods and 

laboratory techniques exist, which provide a number of properties, such as air permeability index, water 

absorption rate, water permeability index, chloride diffusivity, electrical resistivity, moisture content and 

porosity gradient. Most techniques are economical and appropriate for assessing the durability of 

structures subjected to a single mechanism of deterioration. In reality, structures may face multiple 

deterioration mechanisms, stress/strains due to both environmental and structural loading and related 

acceleration of deterioration. Developing an understanding of such multimode deterioration may help 

in addressing the performance gap between laboratory and field. In this paper, a brief review of some 

of the ways by which a performance testing strategy could be developed is given so that service life 

prediction could be more realistic.  
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INTRODUCTION 
 

For the design of concrete structures, durability and service life prediction have increasingly gained 

importance in recent years. This comes as a result of inadequate durability performance of many 

reinforced concrete structures built in the past few decades, which places enormous strain on 

construction budgets worldwide [1]. The dominant cause of premature deterioration of concrete 

structures is reinforcement corrosion (Figure 1) [2]. Traditional durability design approaches have been 

based on prescribed limiting values for selected mix design parameters, e.g. European Standard EN206-

1 [3] deals with durability of concrete entirely on the basis of prescriptive specification, although it 

refers to performance-related design methods (in the appendix) as an alternative. However, further 

development of performance-based specifications has been hampered by the lack of reliable, consistent 

and standardised test procedures and protocols for evaluating concrete performance [4, 5].  

Mehta [6] considered reinforced concrete with discontinuous micro-cracks as the starting point of 

an holistic model for factors influencing its durability. He considered that environmental factors causes 

the micro-cracks to propagate until they become continuous, which then results in permeability to 

influence the transport of moisture and aggressive ions into the concrete. Thereafter, crack growth 

(which depends on the fracture strength) accelerates the penetration of aggressive substances into the 

concrete, which in turn activates any one or a number of other mechanisms of deterioration. The 

interdependence of all these factors and the importance of the permeation characteristics and the 

strength of concrete can be seen more clearly in the composite diagram in Figure 2 [7].  
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Figure 1: Most frequently reported mechanisms of deterioration of reinforced concrete structures [2] 

 

 

Figure 2: Dependence of durability of concrete on microstructure and transport mechanisms [7] 

 

Figure 2 illustrates that the deterioration of reinforced concrete is related to its microstructure and 

the transport of the aggressive substances [7]. Thus an assessment of the durability of concrete 

structures can be made in terms of the measured permeation properties. As shown in the figure, the 

advance of the chloride front and the carbonation front depends on the permeation properties of the 

concrete cover. Therefore, a measure of permeation properties of concrete cover enables a good 
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estimate the durability of reinforced concrete structures. Over the last two decades, many techniques 

have been proposed for assessing the in situ permeation properties of concrete. Amongst these, the 

assessment of water absorption, air permeability and chloride diffusivity of the near-surface concrete is 

recognised as a reliable means to qualify and quantify durability performance [8, 9]. 

Ideally, performance testing techniques should provide information on the integrated quality of 

concrete cover as a function of time. Although the quality of concrete cover could be assessed by 

performance parameters such as sorptivity, depth and rate of water penetration, ionic (and gas) 

transport resistance, durability depends also on microcracking due to material and exposure 

characteristics, the moisture loss or residual moisture profile, cyclic and seasonal effects, hydration and 

pozzolanic effects and electrical properties of concrete. Whilst this list is by no means exhaustive, it 

does highlight the complex problem of assessing the durability of concrete structures. Various sensors 

have also been developed to either individually or collectively assess these parameters and this paper 

offers an overview of one type of sensor system, viz. electrical resistance sensors, in addition to various 

permeation methods. The usefulness of these techniques for a range of testing conditions is 

demonstrated so that some of them could be recommended to form the basis of performance based 

specifications of concrete structures in different service environments. 

 

TECHNIQUES FOR TESTING AND MONITORING PERFORMANCE OF 
CONCRETE STRUCTURES 

 
Laboratory methods for assessing permeation properties 
 Permeability methods 
The techniques to determine permeability of concrete can be broadly divided into two categories, gas 

(air) permeability tests and water permeability tests. Gas permeability coefficients can be determined 

by either measuring the flow of gas at a constant pressure or by monitoring the pressure decay over a 

specified time interval [10]. The rate of outflow is measured for the steady-state gas permeability test. 

The other type of air test, referred to as falling pressure test, utilises the pressure decay to compute a 

gas permeability coefficient. Gas permeability tests became popular because of short test duration and 

the limited effect the test variables have on the pore structure during measurements [11]. 

Water permeability can be determined by either steady-state or non-steady state water flow 

measurements as well as water penetration under the influence of an external pressure head [11, 12]. 

The main difference between them is the test duration. The time required to obtain a steady-state flow 

varies from a few days to several weeks or months depending on the quality of concrete [13, 14], while 

the test duration of non-steady state tests is much shorter, generally less than 3 days. The test 

developed by El-Dieb and Hooton [14] needs to be highlighted due to its novelty. Compared to other 

methods, it provides a wide range of test pressure from 0.5 MPa to 3.5 MPa and improves the accuracy 

of the flow measurement. The range of water permeability coefficient determined by Nokken and 

Hooton [15] varies from 10-13 to 10-15 m/s, which is in agreement with the results reported by others 

using similar test arrangements [16, 17]. As the steady state tests require long test duration to achieve 

the steady state, the depth of water penetration in concrete also has been used to determine the water 

permeability coefficient for low permeability concretes. This method has been standardised and is 

outlined by BS EN 12390-8:2000 [18]. Chia and Zhang [19] and Pocock and Corrans [20] found that 

the scatter of results is quite high and the coefficient of variation of the test results is above 100%. 
Table 1 gives a summary of typical values and their variance for different test methods. 
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Table 1 Summary of typical values and variance of permeability coefficients 

determined by different test methods 

Permeability 

coefficient 

Concrete Variance 

(CoV) Poor Normal Good 

Kgas (m2) >10-13 10-14-10-15 <10-16 15%-30% 

Kwater-s (m/s) >10-11 10-11-10-13 <10-14 20%-40% 

Kwater-ns (m/s) >10-10 10-10-10-12 <10-13 40%-100% 
Note: 1) Kgas is the air permeability coefficient determined by the steady-state constant head test; 2) Kwater-s is the 

water permeability coefficient determined by the steady-state constant water head test; 3) Kwater-ns is the water 
permeability coefficient determined by the non-steady-state constant water head test. 

 

 Ion diffusion 
The transport of chloride ions can be assessed by means of an ionic diffusion test [10, 21]. Such tests 

can be grouped into two categories; diffusion based and migration based methods. The diffusion tests 

simulate the movement of chloride ions under the influence of a concentration gradient. Traditional set-

up includes either diffusion cells (steady-state and non-steady state), the immersion or ponding (non-

steady state). In the case of steady state tests, the rate of ionic transport is measured and using Fick’s 

first law of diffusion the diffusion coefficient is calculated. In the case of non-steady state tests, the 

depth of penetration of chlorides is used to calculate the diffusion coefficient by using Fick’s second law 

of diffusion. The steady state diffusion test typically requires six months or more to achieve a steady 

state of flow. The duration is short for non-steady state tests. The immersion and ponding tests usually 

take around 90 days, which can be used to assess chloride resistance for most construction projects if 

time is available. 

Many techniques have been proposed since 1980 that applies an external electrical field to 

accelerate the ingress of chloride ions. Some of the tests even utilised a higher concentration of chloride 

source solution to further expedite the movement [21]. One of the first tests in this category is the 

Rapid Chloride Permeability Test (RCPT) and this was adopted as a standard test by AASHTO T277 [22] 

and ASTM C1202 [23]. In this test, the resistance of concrete against chloride is categorised by the 

total charge passing through the specimen in the first 6 hours. As charge is carried out by other ions 

as well as chlorides during the test, this test has been criticised by some researchers [24]. Latest in the 

series is the steady-state migration test. The test arrangement is similar to RCPT, but the chloride 

concentration of the anolyte is measured, instead of the charge passed. The migration coefficient is 

calculated using a modified Nernst-Planck equation [21]. Tang and Nilsson proposed a rapid test based 

on the non-steady state chloride migration theory, known as the rapid chloride migration (RCM) test 

[25]. The chloride migration coefficient is calculated from the chloride depth and using a modified 

Nernst-Planck equation. Currently, this method is included in the Nordic standards [26]. Due to short 

test duration and simplicity, the three migration based methods have an advantage over diffusion based 

tests for determining the chloride transport resistance of concrete. However, as stated earlier, the RCPT 

has several inherent problems. It is reported that this method measures conductivity of the pore solution, 

rather than chloride transport properties [24, 27]. The temperature rise due to the high voltage can 

significantly affect the conductivity of ions and, hence, the final result in Coulombs. Therefore, the RCPT 

cannot provide a reliable indication of chloride migration. The typical results of ionic diffusion/migration 

coefficients are given in Table 2. 
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Table 2 Summary of typical values and variance of ion diffusion/migration coefficients 

determined by different test methods 

Diffusion 

coefficient 

Concrete Variance 

(CoV) Poor Normal Good 

Ds (m2/s) >10-11 10-11-10-12 <10-12 15%-25% 

Dns (m2/s) >10-11 10-11-10-12 <10-13 20%-35% 

Dms (m2/s) >10-11 10-11-10-12 <10-13 20%-35% 

Dmns (m2/s) >10-11 10-11-10-12 <10-13 20%-35% 
Note: 1) Ds is the ion diffusion coefficient determined by the steady-state test; 2) Dns is the ion diffusion coefficient 
determined by the ponding or immersion test; 3) Dms is the ion migration coefficient determined by the steady-state 
migration test; 4) Dmns is the ion migration coefficient determined by the non-steady-state migration test. 

 

Field methods 
 In situ permeability tests  
Air permeability tests have gained popularity due to their short test duration and the fact that concrete 

pore structure is unaffected during the test. Schonlin and Hilsdorf [28] developed a surface-mounted 

air permeability test method that could measure the pressure drop to calculate an air permeability index. 

This falling pressure method is extremely fast and can be performed by a single operator. Later, 

numerous researchers modified the setup and theory of this technique. This type of surface-mounted 

air permeability tests can identify the effects of w/b, curing duration and curing temperature on 

permeability under controlled test conditions. However, it should be noted that in order to yield reliable 

results, the concrete should be in a moisture state equivalent of 21 days of drying in an oven at 40 oC. 

This can be ensured by achieving a relative humidity of less than 60% in the near-surface region of 

approximately 40mm thickness [10, 11]. 

The above moisture condition is not easy to achieve in situ, especially in most parts of northern 

Europe, where annual rainfall averages from 80 to 110 times [29]. Therefore, it is logical that concrete 

in structures should be tested when it is in a saturated condition rather than in a dry state. In situ water 

permeability tests are preferable to air permeability tests for assessing the quality of concrete in these 

regions. The CLAM test, first reported by Montgomery and Adams [30], for measuring the water 

permeability of in situ concrete was modified by Basheer et al. [31], which is currently available as 

Autoclam Permeability System (Figure 3). It is a constant head permeability test and the water 

permeability is estimated either by the steady state or non-steady state flow theory. In the latest version, 

a test pressure of 7 bar could be selected to assess high-performance concrete and improve the 

repeatability and accuracy of the measurements [11, 32].  

 
(a) CLAM water tester  (b) Autoclam permeability test system 

Figure 3: Different versions of CLAM permeability tests 
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 In situ chloride migration tests 
The steady state diffusion tests are not suitable for in situ application due to the long test duration. An 

external electric field can remarkably accelerate the ion transport and, hence, some migration tests 

have been designed as field test techniques. Three methods can be found in the literature, which are 

the Coulomb test [33], the in situ rapid chloride migration test (RCM test) [21] and the PERMIT ion 

migration test [34]. 

Whiting [33] developed the Coulomb test on the basis of the RCPT method. The charge passed is 

considered as an index to assess the diffusivity of concrete. As discussed before [22], the Coulomb test 

provides an estimate of the charge carried by all ions and not just chlorides. Moreover, this technique 

does not provide a migration coefficient. The second field method was developed by Tang and Nilsson, 

as reported by Tang et al. [21] based on the rapid chloride migration (RCM) test. An external potential 

voltage is applied through the reinforcement bar and cathode in the chamber. After the measurement, 

a core is taken from the test position and the chloride penetration front is examined by the colorimetric 

technique. The cores are needed for the in situ RCM and, hence, there is no obvious advantage 

compared with laboratory methods. 

The PERMIT ion migration test (Figure 4) was developed by Nanukuttan et al. [34]. Both the 

anolyte and the catholyte chambers are in the form of concentric cylindrical reservoirs. The chloride 

ions move from the catholyte towards the anolyte through the concrete due to the application of an 

electric field. The chloride movement is monitored by conductivity of the anolyte solution and the in 

situ migration coefficient is evaluated by a modified Nernst-Planck equation. Validation of the PERMIT 

has been carried out by comparing the coefficients from Permit test against the one-dimensional 

chloride migration test, the effective diffusion coefficient from the normal diffusion test and the apparent 

diffusion coefficient determined from chloride profiles [27, 34]. The results show that for a wide range 

of concrete mixes, a high degree of correlation exists between the in situ migration test and the 

laboratory based tests, the results of which are given in Figure 5. 

 

Figure 4: The PERMIT ion migration test apparatus 

 
Electrical resistivity sensors 
The electrical resistance of concrete is a function of several factors, including the geometrical 

configuration of the measuring electrodes, the tortuosity of the capillary pores, degree of pore 

saturation, and the concentration and mobility of ions in the pore solution [35, 36]. It can be used to 

monitor moisture movement, chloride ingress, carbonation and the likelihood of corrosion. The concrete 

resistance can be measured either with direct current (d.c.) or alternating current (a.c.). Due to 

electrode polarisation problems in dc mode, the current and potential electrodes are separated and a 
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four-point (or Wenner) configuration is used, while for ac measurements only two electrodes are 

required. The use of an a.c. signal normally reduces spurious electrode polarization effects and a 

frequency in the region of 5 kHz, in most circumstances, is sufficient to reduce such polarization 

problems to minimal proportions [36]. 

 

 
Figure 5: Correlation between Permit in situ migration coefficient and non-steady state migration 

coefficient for different types of concrete [34] 

 
The temperature of the concrete at the time of measurement is also important. Therefore, it is 

normal to present resistivity data at a predefined reference temperature, normally 25 oC, and 

temperature compensation formulae can be applied to the measured resistance data. This will assist in 

distinguishing changes in resistivity due to temperature and those due to changes in ionic concentration 

in the pore fluid and degree of saturation of the concrete. Miniature, multi-electrode (and thermistor) 

arrays embedded within the cover zone allow monitoring of the electrical properties (and temperature) 
of concrete at discrete depths from the exposed surface [37]. This can then be used to provide 

information on continuing hydration and pozzolanic reaction, wetting and drying effects, ionic ingress 

and the effectiveness of surface treatments. 

 

RELATIONSHIP BETWEEN PERMEATION TEST METHODS  
AND MEASURES OF DURABILITY 

 
Relationship with carbonation 
Several researchers attempted to establish the relationship between carbonation and both air 

permeability and water absorption. Figure 6 shows some of the results from the literature. It can be 

seen that there is a strong relationship between them in all these cases. Dhir et al. [38] also reported 

similar observations between Figg air permeability and depth of carbonation. However, the relationships 

were built based on empirical analysis and were dependent on the methods used. Therefore, it is safe 

to conclude that concretes with high air permeability will carbonate more, but precise prediction is still 

questionable, as no unique relationship exists at present for the whole range of concrete types and 

strength class used in structures. 
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         (a) Air (CO2) permeability index (Autoclam)  (b) Kair VS (carbonation depth)0.5 [38] 

vs carbonation depth [10] 

Figure 6: The relationship between carbonation and air permeability 
 
Relationship with chloride induced corrosion 
Basheer et al. [39] reported the evidence of links between chloride ingress, corrosion initiation time 

and sorptivity. In their study, cyclic ponding was carried out weekly to allow the chloride transport into 

concrete and the total test duration was 44 weeks. The chloride content and corrosion initiation time 

were measured and the effects of water cement ratio (0.45, 0.55, 0.65) were determined. The 

relationship between sorptivity (determined with Autoclam) and the chloride content is given in Figure 

7, where 25 mm and 40 mm represent the depth from the surface subjected to ponding. It can be seen 

that a fairly strong relationship exists and as expected the chloride content is lower at greater depths, 

suggesting that water absorption index can serve as a quick indicative approach. This trend needs to 

be verified for concrete containing supplementary cementitious materials so that the influence of 

binding, if any, can be considered in the relationship. 

 
Figure 7: Relationship between sorptivity index and chloride content at two different depths [39] 

 

The relationship between sorptivity and corrosion initiation time is shown in Figure 8 [39]. Although 

there exists a good trend between sorptivity and the corrosion initiation time, of the interaction between 

sorptivity, cover depth and corrosion initiation time can also be seen in this figure. That is, the effect of 

sorptivity is dominant at the lower cover of 25mm for the concrete studied. In other words, in addition 

to providing good quality concrete a minimum cover depth also is needed to ensure greater protection 

against chloride induced corrosion. 
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Figure 8: Relationship between sorptivity index and corrosion initiation time [39] 

 

INFLUENCE OF THE EFFECT OF SERVICE LOADING AND THE RESULTING 
MICRO-CRACKS ON RESISTANCE TO CHLORIDE INGRESS (AS EXPRESSED 

BY CHLORIDE MIGRATION COEFFICIENT) 
 

It has been recognised that structural cracks do influence the chloride transport and chloride induced 

corrosion in reinforced concrete structures, but there is little published work on the influence of micro-

cracks due to service loads on these properties. Thus, the effect of micro-cracks caused by loading on 

chloride transport into concrete was studied by Wang et al. (40). Four different stress levels (0%, 25%, 

50% and 75% of the stress at ultimate load – fu) were applied to 100 mm diameter concrete cores and 

chloride migration coefficient was determined using a bespoke test setup based on the NT BUILD 492 

test. The effects of replacing Portland cement CEMI by ground granulated blast furnace slag (GGBS), 

pulverised fuel ash (PFA) and silica fume (SF) on chloride transport in concrete under sustained loading 

were studied. The results are shown in Figure 9, which indicate that chloride migration coefficients 

changed little when the stress level was below 50% of the fu,, suggesting that it is desirable to keep 

concrete stress less than 50% fu if this is practical. The effect of removing the load on the change of 

chloride migration coefficient was also studied. An increase of loading up to 50% did not cause any 

significant non-recoverable damage to concrete as far as the migration coefficients are concerned. 

However, the increase of loading above 50% of fu resulted in a significant change in migration coefficient 

between unloaded condition and no load condition.  

 
Figure 9: Relationship between applied stress level and chloride migration coefficient [40] 
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EFFECT OF COMBINED CARBONATION AND CHLORIDE INGRESS IN 
CONCRETES (AS QUANTIFIED BY AIR PERMEABILITY AND CHLORIDE 

MIGRATION COEFFICIENTS) 
 

In many exposure environments for concrete structures, there is a high probability of the cyclic effect 

of both the chloride ingress and carbonation. Wang et al. (41) reported a detailed investigation on the 

influence of carbonation on both the ingress and distribution of chlorides in three different types of 

concretes, by comparing results from exposure to chlorides, chlorides before carbonation and chlorides 

after carbonation. Concretes studied were of 0.55 water-binder ratio with 100% Portland Cement (PC), 

70% PC + 30% pulverized fuel ash (PFA) and 85% PC + 10% PFA + 5% microsilica (MS) as binders. 

Chloride profiles were compared to assess the effects of all variables studied in this research. The effect 

of carbonation was quantified by measuring air permeability and its influence on chloride transport was 

measured in terms of chloride migration coefficient. The results, shown in Figure 10, indicate that 

carbonation of concrete increases chloride transport, but the precise nature of this is dependent on the 

combined regime as well as the type of binder. In general, it was found that carbonation of chloride 

contaminated concretes results in a decrease of their chloride binding capacity, that is it releases the 

bound Cl- in concretes and pushes chlorides inwards, as has been established previously by other 

researchers. It has also been established that the combined regimes detrimentally affect the service 

life of concrete structures, particularly when chloride induced corrosion is a concern. 

 

Figure 10: Influence of carbonation on air permeability and chloride migration coefficient of different 

types of concrete [41] 

 

USE OF ELECTRICAL RESISTIVITY MEASUREMENTS TO ASSIST THE 
PERFORMANCE TESTING APPROACH FOR CONCRETE STRUCTURES 

 
The challenges posed by a performance-based testing and specification approach to ensure the service 

life of concrete structures have been acknowledged. Amongst the different types of sensors available, 

the resistivity sensors, such as the Covercrete Array by McCarter et al. [37] have been found to be 

promising for performance monitoring and compliance testing. To investigate its applicability, the 

electrical response of concrete under long-term hardening and cyclic ponding was monitored up to 350 

days. Figures 11 (a) and (b) display the resistivity at 75mm from the surface from 7-days up to 

approximately 350 days for both 0.35 and 0.65 w/b ratio. The influence of supplementary cementitious 

materials on the resistivity is clearly evident from these two figures; at the end of the test period, the 
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resistivity of the FA/35 and GGBS/65 mixes are almost an order of magnitude higher than the PC mix, 

at both w/b ratios. The increase in resistivity for both the GGBS and FA concretes reflects the on-going 

reactivity of the SCMs and pore structure refinement during the post-curing period. The temporal 

increase in resistivity for the concretes can be represented by the equation of the form: 

 

where, ρt is the resistivity (ohm.cm) at time, t (days); ρref is the resistivity at a reference time, tref, and 

n could be regarded as an aging exponent which will be related to hydration and pozzolanic reaction. 

The reference time could be taken as 28-days, hence tref = 28-days and the respective resistivity at 28-

days is ρref. Best-fit curves to the data are plotted in Figures 11-(a) and (b) (solid lines) through the 

measurement points with the fitting equations presented on these figures.  

Although the equations on these figures were developed on the best-fit line to all the data points 

for a particular w/b ratio, a curve could be evaluated from fewer measurements, which has obvious 

practical implications. Figures 11 (c) and (d) present the best-fit curves (solid lines) based on resistivity 

measurements at 3 measurement points (7, 28 and 56 days) using the same reference time of 28-days. 

For comparative purposes, the best-fit curves based on all the measurement points on Figure 11 (a) 

and (b) are also presented, from which a fairly strong agreement can be found. 

 

(a) Measured data for w/b = 0.35            (b) Measured data for w/b = 0.65 f 

 
(c) Prediction based on early results for w/b = 0.35 (d) Prediction based on early results for w/b = 0.65 

(solid lines in both graphs, Dash lines are curves fitted based on all measurement points) 

Figure 11: Increase in resistivity of different types of concrete (FA/35: 35% FA + 65% PC; GGBS/65: 

65%GGBS + 35% PC) over the period 7-350 days after casting [42] 
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Once the resistivity is predicted using early data as indicated in Figures 11(c) and (d), it is possible 

to estimate the change in resistivity over the life time of the structure. This would give information on 

pore structure (more specifically pore connectivity) and the instantaneous chloride diffusion coefficient. 

Once this methodology is validated in on-going research projects, the performance indicator of concrete 

can be assessed by monitoring electrical responses, which could be considered as a step in the right 

direction for developing performance specifications and service life prediction models for structures in 

service. 

 

CONCLUSIONS 
 

Both in situ testing and monitoring methods have been found to be useful for assessing the resistance 

of the covercrete against carbonation, chloride ingress and chloride induced corrosion of steel in 

concrete. A range of methods exists for determining the air permeability, water permeability and ionic 

transport resistance of concrete. Air permeability measurements are likely to be influenced by the 

moisture distribution in the cover region of the concrete. However, they are easy to carry out and have 

short test duration. Non-steady state water penetration tests are also influenced by the moisture 

gradient of the cover concrete. Therefore, saturated water permeability tests are preferable. Although 

cores extracted from structures in service could be tested in the laboratory under controlled temperature 

and moisture conditions, reliable in situ permeability tests have the advantage of carrying out numerous 

tests at the same test location, without damaging the structure. To determine the chloride transport 

resistance, there exist both steady state and non-steady state diffusion tests as well as steady state 

and non-steady state migration tests. They all have their own specific benefits as well as drawbacks. 

Diffusion tests normally have long test duration. Therefore, migration tests have become very popular 

and they can be completed within an acceptable test duration. 

It has been found that there exists good correlation between permeation measurements and 

durability indicators. The effects of service loading and combinations of exposure on these durability 

indicators could be quantified using the various permeation test methods. Therefore, these test 

methods could form the basis of developing a performance based specification strategy for concrete 

structures. 

Further, it has been established that the measurement of electrical resistivity at early stages of 

cement hydration could form the basis of predicting its longer-term behaviour. Therefore, further 

research relating the electrical resistivity to durability parameters could form the basis of an approach 

to specify durability and test for its compliance for structures in service.  
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