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Abstract

Wemodel a one-dimensional Bose-Einstein condensate with the one-dimensional Gross-Pitaevskii

equation (1D GPE) incorporating higher-order interaction effects. Based on the F -expansion

method, we analytically solve the 1D GPE, identifying the typical soliton solution under certain

experimental settings within the general wave-like solution set, and demonstrating the applicability

of the theoretical treatment that is employed.
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I. INTRODUCTION

Solitons, as typical nonlinear phenomena in many branches of science, have been exten-

sively investigated both theoretically and experimentally, in the past few decades. Ultracold

quantum gases, where Bose-Einstein condensate (BEC)-related studies dominate in many

respects, are ideal candidates for the study of nonlinear dynamics because of their easy

control and flexible tunability.

The Gross-Pitaevskii equation (GPE), derived from the mean field approach, is proven to

be the reliable model for the study of BEC-related phenomena in ultracold quantum gases.

The one-dimensional case of the GPE (1D GPE) that models quasi-one-dimensional settings,

such as a system with an elongated potential, has attracted much attention in recent years.

The typical bright/dark soliton-type analytical solutions have been identified for regular

cubic nonlinear interaction formulations in the 1D GPE, as demonstrated in many prior

works [1–6]. Recently, however, higher-order nonlinear interactions have demonstrated their

importance in relevant theoretical and experimental progress. Originating from the higher-

order expansion of the two-body scattering phase shift at low momenta, the higher-order

effects have emerged in some novel cold atom systems, such as BECs with embedded Rydberg

molecules [7–10], and constitute particular ingredients in mean field formulations, such as

the GPE [11]. In this study, for 1D systems modeled by the 1D GPE, by incorporating

higher-order nonlinear interaction effects, we obtain the analytical solution to the 1D GPE

based on the F -expansion method [12, 13] and identify possible solutions to the typical

nonlinear features for both dark and bright solitons.

This paper is arranged as follows. The next section describes the 1D GPE model incor-

porating higher-order interactions and the F -expansion method. Section III demonstrates

the detailed problem-solving steps for obtaining the analytical soliton solution of the GPE.

Section IV gives some concluding remarks.
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II. MODIFIED GPE WITH HIGHER-ORDER INTERACTION AND F -

EXPANSION METHOD

A. Formulation of modified GPE

The GPE, which is derived from the mean field approach, typically considers only the

s-wave two-body scattering length in the nonlinear interaction formulation. However, to

incorporate higher-order effects in the two-body interaction dynamics, the contribution from

higher partial waves must be considered. The inter-particle potential can be expressed in

the following form [14]

Vint(r− r′) = U0[δ(r− r′) +
g2
2
(
←−
∇2

rδ(r− r′) + δ(r− r′)
−→
∇2

r)] (1)

where U0 = 4π~2a
m

is the hard-core interaction. The higher-order scattering effects are in-

corporated in the parameter g2 = a2/3 − are/2, where m, re, and a are the atomic mass,

effective range, and s-wave scattering length, respectively. As the 1D setting is typical and

some important experimental settings, such as elongated harmonic trapping are also quasi-

one-dimensional, in this study, we consider the 1D case of the GPE. In addition to the

higher-order two-body scattering effects that are to be incorporated in the modified GPE,

the three-body effect is also incorporated as a competing nonlinear interaction candidate.

The modified GPE in the dimensionless form can be expressed as:

i
∂

∂t
ψ = [− ∂2

∂x2
+ kx2 + (g0|ψ|2 + g1|ψ|4 + g2

∂2

∂x2
|ψ|2)]ψ (2)

where g0 and g1 are the two-body and three-body nonlinear interaction strength coefficients

(leading order) respectively, with g0 =
4π~2a
m

based on the standard Gross-Pitaevskii equation

formulation, and g1 is of order a2 because of three-body interaction. The term with the

interaction coefficient g2 is the contribution from higher-order wave scattering effects. Here k

is the harmonic trapping strength. For the elongated potential, it is the longitudinal trapping

strength, which is much smaller than the axial trapping strength. The tight confinement

in the axial direction of the elongated trap freezes the transverse motion of atoms, which

makes it valid that we investigate the nonlinear properties with the one dimensional system

modeled by Eq. (2). We will investigate the typical nonlinear properties of the system

modeled by Eq. (2).
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B. F -expansion method

The F -expansion method can be utilized to solve nonlinear partial differential equations

of the following form,

G(u, ut, ux, uxx, . . .) = 0 (3)

where u(x, t) is the function to be determined. G is a polynomial of u(x, t) and its partial

derivatives of various orders. With F (ξ) being a function of ξ = p(t)x + q(t), the key idea

of the F -expansion method is to express u(x, t) as a polynomial of F (ξ)

d2

dξ2
F (ξ) = c0(2F

3(ξ) +
3

2
λF 2(ξ) + µF (ξ) +

1

2
η) (4)

where λ, µ, and η are constants to be determined in the following problem-solving steps.

By multiplying both sides of Eq. (4) by dF (ξ)/dξ and integrating with ξ once, we obtain

the expression for dF (ξ)/dξ

dF (ξ)

dξ
= ±

√
c0(F 4(ξ) + λF 3(ξ) + µF 2(ξ) + ηF (ξ) + ς) (5)

We can express u(x, t) as

u(x, t) =
m∑
i=0

hi(t)F
i(ξ), hm(t) ̸= 0 (6)

The next step involves substituting Eq. (6) into the original nonlinear partial differential

equation (Eq. 3) and by using Eqs. (4) and (5), we can fix m by balancing between the

nonlinear term and highest differential term. Then, we express G in Eq. (3), as a polynomial

of F (ξ) and another polynomial of F (ξ) multiplied by dF (ξ)/dξ. We solve Eq. (3) by setting

the coefficients of all the terms, (F i(ξ) and F j(ξ)dF (ξ)/dξ), of the reformulated G to zero.

This will give a set of over determined ordinary differential equations (ODEs) of hi(t), which

will put u(x, t) in an explicit form if the ODEs can be solved consistently.
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III. SOLITON-TYPE SOLUTION OF GPE WITH HIGHER-ORDER INTERAC-

TION

A. Problem reformulation with coupled phase-modulus transformation

To eliminate the integrable constraints, we adopt the coupled phase-modulus transfor-

mation through the parameter function σ(t) as follows,

x′ = σ(t′)x, (7a)

t′ = t, (7b)

ψ(x, t) = σ1/2(t′) exp[i
σt′(t

′)

σ(t′)
x2)]φ(x′, t′) (8)

By substituting transformations (8) and (7) into Eq. (2), and changing the notation from

(x′, t′) to (x, t), the original modified GPE is transformed to the following form,

iφt + σ2(t)φxx +

[
k(t)

σ2(t)
+

1

4

(
σt(t)

σ(t)

)2

− 1

4

(
σt(t)

σ(t)

)
t

]
x2φ

+g0σ(t)|φ|φ+ g1σ
2(t)|φ|2φ+ g2σ(t)(|φ|2)xxφ = 0 (9a)

We then utilize the following ansatz for Eq. (9),

φ(x, t) = v(x, t)eiθ(x,t) (10)

When substituting Eq. (10) into Eq. (9), we obtain the equations for v(x, t) and θ(x, t) as

follows,

v2θt + σ2(t)(vvxx + v2θ2x) + α(t)x2v2 + β1(t)v
4 + β2(t)v

6

+β3(t)σ
2(t)(v2)xxv

2 = 0 (11a)

vt + σ2(t)(2vxθx + vθxx) = 0 (11b)

where α(t) = k(t)/σ2(t) + 1
4
(σt(t)/σ(t))

2 − 1
4
(σt(t)/4σ(t))t, βn(t) = −gn−1σ

n(t)(n = 1, 2),

and β3 = −g2σ(t). Equation (11) is in the form for which the F -expansion method can be

applied. This is shown explicitly in the following subsection.
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B. Soliton-type solution

In order to obtain a possible soliton-type solution for Eq. (11), we adopt the following

ansatz,

v(x, t) = h(t)F (ξ) (12)

θ(x, t) = Φ(t)x2 + Γ(t)x+ Ω(t) (13)

where ξ = p(t)x+ q(t) and the F -expansion formulation takes the following form

(
dF (ξ)

dξ
)2 = a4F

4 + a2F
2 + a0 or (14a)

F
d2F

dξ2
= 4a4F

4 + 2a2F
2 (14b)

where an(n = 4, 3, 2, 1) are determined in later steps. By substituting ansatz (12) and

(13) into Eq. (11) and using Eqs. (14a) and (14b), we obtain two polynomials of

xiF j(dF (ξ)
dξ

)k, i, j, k are integers. By setting all the coefficients of the polynomials to zero, we

have the following set of ODEs of t

Eq.(11a)

x2F 2 : Φ′(t) + 4σ2(t)Φ2(t) + α(t) = 0 (15a)

xF 2 : Γ′(t) + 4σ2(t)Φ(t)Γ(t) = 0 (15b)

F 6 : g1(σh
2)2 + 6g2(σh

2)(σp)2a4 = 0 (15c)

F 4 : 4(σp)2a4 − g0(σh2)2 − 4g2(σh
2)(σp)2a2 = 0 (15d)

F 2 : Ω′(t) + (σp)2a2 − g2(σh2)(σp)2a0 = 0 (15e)

Eq.(11b)

xF ′ : p′(t) + 4σ2(t)Φ(t)p(t) = 0 (15f)

F ′ : q′(t) + 2σ2(t)Γ(t)p(t) = 0 (15g)

F : h′(t) + 2σ2(t)Φ(t)h(t) = 0 (15h)

From Eqs. (15c,d,e) we can obtain the following important results,

σ(t)p(t) = C1 (16a)

σ(t)h2(t) = C2 (16b)
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where C1 and C2 are constants to be determined by the initial experimental setting. Again,

from Eqs. (15c,d,e), we have

a4 = − g1C2

6g2C1

(17a)

a2 = − g1
6g22C1

− g0
4g2C2

1

(17b)

a0 = − g1
6g32C1C2

− g0
4g22C

2
1C2

+
Ω′(t)

g2C2
1C2

(17c)

From Eq. (15e), Ω(t) is the freely varying parametric function. For a4 > 0 and a2 < 0,

with a proper setting, choosing Ω′(t) = (2g1C1+3g0g2)2

96g1g2C1
+ g1C1

6g22
+ g0

4g2
, we have a0 =

a22
4a4

, making

Eq. (14a) have the following form,

dF (ξ)

dξ
= ±(a4)1/2(F 2(ξ) +

a2
2a4

) (18)

Equation (18) is integrable and possesses the following solution,

F (ξ) =

√
|a2|
2a4

tanh((
a2
2
)1/2ξ + C0) (19)

From ansatz (8) and (12), and using Eq. (19), we have

|ψ(ξ)| = D1C
1/2
2

√
|a2|
2a4

tanh((
a2
2
)1/2ξ + C0) = D1K tanh(KD0x+ q0(t)) (20)

where

K = (
1

2g2
+

3g0
4C1g1

)1/2 (21a)

D0 = |g1C1

6g2
|1/2 (21b)

q0(t) =
KD0q(t)

C1

+ C0 (21c)

D1 is the normalization constant and C0 is the constant determined by the initial condition.

We can see that solution (20) is of the dark soliton type. Equation (2) possesses the analytical

solution of the dark soliton type.

In Eq. (15e), when Ω′(t) + (σp)2a2 = 0, we have a0 = 0. For this case,

dF (ξ)

dξ
= ±(a4)1/2

√
F 4(ξ) +

a2
a4
F 2(ξ) (22)
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which is integrable. For a2 < 0

F (ξ) =

√
a2
|a4|

sech((a2)
1/2ξ + C ′

0)

|ψ(ξ)| = D2C
1/2
2

√
a2
|a4|

sech((a2)
1/2ξ + C ′

0) =
√
2D2Ksech(

√
2KD0x+ q′0(t)) (23)

where D2 is the normalization constant, q′0(t) =
√
2KD0q(t)

C1
+ C ′

0,and C ′
0 is a constant de-

termined by the initial condition. It is not difficult to notice that solution (23) is of the

bright soliton type. Thus, the system described by the 1D GPE (Eq. (2)) supports both

the dark and bright soliton-type solutions. In the limits that the higher-order effects are to

be neglected, g2 and g1 are very small. In Eq. (21a), 1
2g2

is very large, but C1 is set to a

value such that K is of normal size (K ≪ | 1
2g2
|). From | 1

2g2
| = | 3g0

4C1g1
| −K or | 3g0

4C1g1
|+K, we

know that | 3g0
4C1g1
| ≃ | 1

2g2
|, or D0 = |g1C1

6g2
|1/2 ≃ |g0

4
|1/2. From the normalization conditions of

formula (20) and (23), we can see that C1 should be chosen in such a way that K = |2g0|1/2
4

.

The dark soliton type and bright soliton type solutions reduce to

|ψ(ξ)|dark =

√
2

4
D1

√
|g0| tanh(

√
2

8
|g0|x+ q0(t)) (24)

|ψ(ξ)|bright =

√
2

4
D2

√
|g0|sech(

1

4
|g0|x+ q′0(t)) (25)

which are just soliton type solutions of the regular one-dimensional cubic nonlinear

Schrödinger equation in the g2 → 0 and g1 → 0 limits of Eq. (2), with g0 < 0 and

g0 > 0 corresponding to the bright soliton type and dark soliton type cases, respectively.

Different from the three-dimensional case regarding incorporating higher-order interaction

effects reported in prior work [15], where the higher-order interaction coefficient, g2 plays

an important role ensuring the stability of the system, the one-dimensional scenario setting

supports stable bright and dark solitons. The parameters of these solitons, such as am-

plitude and width, depend principally on the leading lower order interaction coefficient g0.

Higher-order interaction coefficients g1 and g2 are several orders of magnitude smaller than

g0 and usually will not alter the qualitative features that arise from the dominant leading

coefficient, g0. From formula, (21a, b), we can get

D0 =
1

2
[
|g0|

1− 2g2K2
]1/2 (26)
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where Kis of order
√
|g0|. For g2 ≪ K−2, we can see D0 ≃ 1

2
|g0|1/2. Since g2 =

a2/3− are/2 and s-wave scattering length can be adjusted across a broad range via the Fes-

hbach resonance experimental technique, we can visually capture the soliton shape difference

arising from higher-order interaction effects for g2 reaching 0.1K−2 through Fig 1 and Fig

2. However, in most cases g2 ≪ K−2 holds and we cannot see a difference in the pictorial

curves of soliton solutions (19) and (23), when compared to the case without consideration

of the higher-order interaction (with g1 = 0, g2 = 0).
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FIG. 1: Dark soliton solution |ψ(x, t)| with g1 = 0 and g2 = 0 vs. x at time when q0(t) = 0 (solid

line) compared with dark soliton solution |ψ(x, t)| with same setting except g2 = 0.1K−2 (dashed

line).
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FIG. 2: Bright soliton solution |ψ(x, t)| with g1 = 0 and g2 = 0 vs. x at time when q0(t) = 0 (solid

line) compared with bright soliton solution |ψ(x, t)| with same setting except g2 = 0.1K−2 (dashed

line).

IV. CONCLUSION

We studied the 1D GPE with the higher-order nonlinear interaction formulation, which

incorporates the higher-order two-body effect and leading-order three-body scattering ef-

fects. Through the F -expansion method, combined with the coupled modulus-phase trans-

formation, we analytically solve the GPE, identifying both the dark and bright soliton-type

solutions without introducing any additional integrability constraints. The analytical results

derived here can be used to guide experimental investigations in scenarios such as optical

fibers and BECs, which exhibit higher-order nonlinear effects.
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