
A Novel Approach to Low Multiplicative Complexity Logic Design

Jia Jun Tay, Ming Ming Wong

Faculty of Engineering, Computing and Science,

Swinburne University of Technology Sarawak Campus,

Sarawak, Malaysia

e-mail: jtay@swinburne.edu.my

M. L. Dennis Wong

Heriot-Watt University Malaysia,

Putrajaya, Malaysia

e-mail: D.Wong@hw.ac.uk

Cishen Zhang, Ismat Hijazin

Faculty of Science, Engineering and Technology,

Swinburne University of Technology Hawthorn Campus,

Victoria, Australia

Abstract—Logic optimization over the logic basis (AND, XOR,

NOT) has received increased attention in recent works due to

the potential in low gate count logic circuit implementation.

Previous logic minimization heuristic in this logic basis

involved randomized selection processes and thus exhibits

uncontrolled variations in the results produced and algorithm

execution time. In this work, we demonstrate a novel approach

to the same problem using Positive Polarity Reed-Muller

factorization. The proposed algorithm eliminates the reliance

on randomness and produces all optimal solutions obtainable

through the factorization method. This enables the application

of different selection criteria post-optimization to maximize

circuit sharing between functions. The proposed algorithm is

aimed towards optimizing the S-boxes of lightweight

cryptographic schemes.

Keywords-logic minimization; positive polarity reed-muller;

multiplicative complexity; lightweight cryptography

I. INTRODUCTION

Logic design is an exercise of interconnecting basic logic
building blocks to perform a specific function. The goal is to
design an economical circuit for a desired function which is
optimal in regards to a meaningful metric. Depending on the
application, the meaningful metric ranges from gate count to
circuit depth or even power consumption. Conventional
methods of logic simplification, such as Karnaugh mapping
and Quine-McCluskey procedure, operate over the logic
basis (AND, OR, NOT). However, recent works have begun
exploring logic design over the logic basis (AND, XOR,
NOT). In general, it has been observed that logic expressions
over the logic basis (AND, XOR, NOT) require fewer
product terms than their alternative expressions over the
logic basis (AND, XOR, NOT) [1]. This property gives the
potential for lower gate count logic circuits which are crucial
for resource constrained applications. As such, the potential
of an efficient logic minimization algorithm may aid the
purpose of optimizing the Substitution boxes (S-boxes) of
popular lightweight cryptographic schemes.

Works in [2] observed that a logic circuit constructed
over the logic basis (AND, XOR, NOT) using the minimal

number of AND gates usually results in very low gate count.
This observation inspired a heuristic approach to logic
minimization patented in [3]. Although the algorithm has
been demonstrated to produce good results on popular

cryptographic S-boxes such as the 42GF AES S-box [4]

and the PRESENT S-box [5], it experiences consistency
issues due to the nature of the randomized selection process
involved. Even with improvements proposed in [6], we are
unable to completely eliminate the relevance of randomness
in the algorithm.

In this work, we propose a novel approach to solving low
multiplicative complexity logic minimization problem
through Positive Polarity Reed-Muller (PPRM) factorization.
This method is aimed towards solving logic design problems
for S-boxes of lightweight cryptographic schemes. Therefore,
we limit our discussion to logic problems with 4-bit inputs as
most popular lightweight cryptographic schemes utilize one
or more 4x4-bit S-boxes for their non-linear substitution
processes.

The structure of the paper is organized as follows:
Section II and III provide preliminary knowledge regarding
the PPRM expressions and the concept of multiplicative
complexity in this context. In Section IV, we demonstrate the
role of PPRM factorization in achieving optimal
multiplicative complexity in logic design. The proposed
logic minimization algorithm is described in Section V. In
Section VI, we present optimal expressions for each
individual function in the PRESENT S-box. Section VII
explains the benefits of the proposed algorithm in relation to
the previous algorithm. Finally, concluding remarks and
potential future works are discussed in Section VIII.

II. POSITIVE POLARITY REED-MULLER EXPRESSIONS

The first step to solving any logic design problem is to
derive a logic equation which describes the circuit outputs as
a function of the circuit inputs. Similar to expressing a
function in its sum-of-product (SOP) form in the logic basis
(AND, OR, NOT), a PPRM expression is the function's
equivalent in the logic basis (AND, XOR, NOT). The term
"Positive Polarity" implies that all literals in the Reed-Muller

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Heriot Watt Pure

https://core.ac.uk/display/287498753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jtay@swinburne.edu.my

expression appear uncomplemented. In general, given a

function with n -bit inputs nxxx ,,, 21 , its PPRM

expressions can be defined as shown in (1) where

 1,0,,,
1210
naaa and

1243210 ,,,,,,
n

1131221 ,,,,,,1 xxxxxxxx nn fully describe f .

1212110021 ,,,

 nnaaaxxxf n (1)

One important property of the PPRM expression is that
for each unique function, there is only one unique
representation in PPRM form. This unique PPRM expression
can be derived easily by multiplying the truth vector of the

function with the n -variable transform matrix nT given in

(2) where 10 T .

11

1 0

nn

n
n

TT

T
T (2)

Logical and mathematical notations in PPRM
expressions are similar to the operations in modulo-2
arithmetic. In this work, we express logic XOR (mod-2
addition) using notations shown in (3). In this case, c

represents the sum resulting from the addition of a and b .

 cbaba (3)

Similarly, logic AND (mod-2 multiplication) is expressed
using notations shown in (4), where c is the product

resulting from the multiplication of a and b .

 cabba (4)

III. MULTIPLICATIVE COMPLEXITY

Multiplicative complexity fc of a function is defined

as the minimal number of multiplication (AND gates)
required to realize the function over the basis (AND, XOR,
NOT). It has been demonstrated in [7] that for a function of

degree d , the multiplicative complexity is at least 1d , i.e.

 1 dfc . Although a definite upper bound for the

multiplicative complexity of a function has yet to be
established, [8] has proven that for a function with n inputs,

its multiplicative complexity is at most 1n as long as

5n , i.e. 1 nfc given 5n .

Low multiplicative complexity logic minimization aims
to achieve low gate count circuits for a desired function by
using the minimal number of AND gates required to
construct the circuit. As such, the proposed algorithm can be
described as a logic minimization heuristic that produces
logic circuits which are optimal in terms of multiplicative
complexity.

IV. POSITIVE POLARITY REED-MULLER FACTORIZATION

FOR LOW MULTIPLICATIVE COMPLEXITY

Previous approach to low multiplicative complexity logic
minimization requires performing addition and
multiplication on random selection of signals within an
expanding sample space until the desired truth vector is
found. In this section, we demonstrate a different approach to

achieving minimal AND gates through PPRM factorization.
As mentioned previously, we consider four inputs logic
functions for application in lightweight cryptographic S-
boxes.

Let 421 ,,, xxx be the four logic inputs of a function.

Consider the PPRM expression given in (5).

 4121321 xxxxxxxxf (5)

Using the lower bound rule, it is easy to see that the
function has a multiplicative complexity of

 21 dfc . In this case, it is obvious that we can

achieve optimal AND gates by factorizing the literal 1x as

shown in (6).

 42321 xxxxxxf (6)

However, actual logic problems are often not solvable by
a single-staged factorization. Consider the PPRM expression
in (7), which describes the function for the most significant
output bit of the PRESENT S-box [9].

 142132431421321 xxxxxxxxxxxxxxxf

 (7)

The multiplicative complexity of the function is known

to be 2 fc . However, there is no obvious way to

manipulate the PPRM expression into a form that requires
two AND gates to realize. To solve the problem, we first

remove any literals with a degree of 1d to form xf ' .

These literals are completely linear (no multiplication) and
thus can be reintroduced into the equation through additions

once xf ' is optimized.

 32431421321' xxxxxxxxxxxxf (8)

From (8), we proceed with the first step of factorization.
There are no specific rules in choosing the literal to be
factorized at this stage as each may potentially lead to an

optimal solution. Factorizing 2x will result in the expression

in (9).

cba

xxxxxxxxxxf 431341312' (9)

Notice the three important sections for the resultant
expression as indicated in (9). a includes the factorized

literal, b includes the factorized clauses, while c represents

the remaining clauses that do not contain the factorized

literal. At this stage, if ab can be achieved with AND gates

less than or equal to 2 fc , there is a possibility that an

optimal solution can be derived from the expression. As

shown in (10), ab can be realized with two AND gates in

this case.

 34312 xxxxxab (10)

The next objective is to manipulate the expression in
such as way that c requires no extra AND gates to realize. In

other words, c needs to become either (a) free of

multiplication or (b) has the same clauses as b . This can be

done by adding another literal into a . For example, by

adding 1x into a , a new string of clauses d has to be added

to c for cancellation. This is shown in (11).

ba

xxxxxxxxf 3413112'

dc

xxxxxxxxx 314131431 (11)

Completing the XOR operations between c and d

results in (12).

cba

xxxxxxxxxxxxxf 414313413112' (12)

With the expression manipulation method above, we are
able to change the clauses in c without introducing

additional AND gates to ab . Since c in (12) still requires

additional AND gates after ab , by adding the literal 3x into

a and completing the addition between c and d , we arrive

at the expression in (13).

ba

xxxxxxxxxf 34131312'

c

xxxxx 34131 (13)

ba

xxxxxxxxf 3431312'

c

xxxx 3431 (14)

Since the clauses in c is exactly identical to the clauses

in b , no extra AND gates are required and the entire

expression in (14) can be realized with two AND gates, i.e.
optimal in terms of multiplicative complexity. The final step
is to reintroduce the linear section of the circuit removed in
the first step to obtain the optimized expression (15).

 3431312 xxxxxxxxf

 14213431 xxxxxxx (15)

This example demonstrates the procedure to derive an
optimal solution for a low multiplicative complexity logic
design problem without relying on randomness. It is
important to note that although the length of (15) may
suggest a large logic circuit, a huge portion of the equation
are linear strings of XORs which share repeated terms. As
such, the actual logic circuit required to realize the
expression is much smaller due to circuit sharing. The
challenge now is to derive an efficient algorithm that
produces all optimal solutions achievable through this
method for a given problem.

V. PROPOSED ALGORITHM FOR LOW MULTIPLICATIVE

COMPLEXITY LOGIC MINIMIZATION

In this section, we describe the proposed algorithm
designed using concept demonstrated in Section IV. A
pseudocode for the algorithm is provided in Algorithm 1.

TABLE I. FREQUENCIES OF LITERALS IN EACH DEGREE FOR (8)

Literal
Degree

Total
4 3 2 1

1x 0 3 0 0 3

2x 0 2 1 0 3

3x 0 2 1 0 3

4x 0 2 0 0 2

A. Step 1: Select the First Literal for Factorization

The algorithm selects a literal to be factorized from the
available n inputs. The selection is done sequentially as all

literals need to be factorized eventually to discover all
possible solutions unless they are interchangeable (see
Subsection V-F).

B. Step 2: Form a , b and c

Once the literal to be factorized is chosen, the algorithm

forms a , b and c as demonstrated in (9). Note that after the

factorization of the first literal, b will remain constant

throughout the subsequent steps of the algorithm.

C. Step 3: Form All Possible Variations of id

Excluding the factorized literal, there are 1n possible

literals to be added into a . As such, there are 1n possible

variations of id to be added into c . The algorithm forms all

variations in a set D , in which Dddd n 121 ,,, .

D. Step 4: Form All Possible Combinations of id

There are 12 n possible combinations of elements in set
D through addition (including 0), i.e.

1212121 ,,,,,0 nddddddd . The algorithm

forms all possible combinations in a new set 'D , in which

',,,,,0 1212121 Dddddddd n .

E. Step 5: Check If Any Elements of 'D Solve c

The algorithm then adds each of the 12 n elements in 'D

into c and determine if (a) the sum is free of 1d clauses

or (b) the sum can be implemented without additional AND

gates after ab . Elements of 'D that satisfy (a) or (b) will

give an optimal solution for the problem.

F. Step 6: Return to Step 1 for the Next Literal

For a given problem, the algorithm needs to attempt
factorization of all literals to discover all possible solutions.
As such, the algorithm needs to perform multiple loops of
the previous steps equal to the number of inputs n . However,

if two or more literals have the same frequencies in every
degree of the clauses (in the PPRM expression), they are
mutually interchangeable and the algorithm need only
attempt factorization for one the interchangeable literals.
For example, Table I gives the frequency spread of literals

for (8). Notice that 2x and 3x have the identical frequency

spread and are thus mutually interchangeable. Since

factorizing 2x produced the result in (14), by nature of the

interchangeable property, we can replace all instances of 2x

with 3x in (14) and vice versa to obtain an alternative

optimal solution (16).

 24212421213' xxxxxxxxxxxxf

 (16)

As such, when interchangeable literals are present, the
algorithm only needs to repeat the factorization process for
the non-interchangeable literals.

TABLE II. OPTIMAL EXPRESSIONS FOR PRESENT S-BOX FUNCTIONS

Function fc Optimal expression

1f 1 43132 xxxxx

2f 2
 424431312 xxxxxxxxx

 424421213 xxxxxxxxx

3f 2

 1232441 xxxxxxx

 13324 xxxx

 1232114 xxxxxxx

 1431321 xxxxxx

4f 2

 3431312 xxxxxxx

 14213431 xxxxxxx

 2421213 xxxxxxx

 141421 xxxxx

VI. RESULTS ON PRESENT S-BOX

We performed optimization on each individual function
in the PRESENT S-box [9] independently using the

proposed algorithm. 1f represents the least significant

output bit of the S-box while 4f describes the most

significant bit. This demonstration is not meant to produce
the smallest PRESENT S-box for comparison but rather to
verify the ability of the proposed algorithm to find the
optimal expressions for each individual functions.

TABLE III. COMPARISON OF EXECUTION TIME BETWEEN ORIGINAL

AND PROPOSED ALGORITHMS WHEN SOLVING (7)

Algorithm Time (s)

Original [6] 7.3758

Proposed 0.0081

All optimal expressions produced in Table II can be

realized with the minimum number of AND gates as given

by their respective fc values, i.e. they are optimal in

terms of multiplicative complexity. 2f , 3f and 4f each

have two possible optimal solutions. Therefore, additional
selection criteria can be implemented post-optimization to
identify the ideal solution for each function which enables
the greatest degree of circuit sharing between the four
functions for the construction of the full S-box.

VII. ADVANTAGES OF PROPOSED ALGORITHM

In this section, we highlight the advantages of the
proposed algorithm in cryptographic or similar applications.
They are mostly done in comparison to the original
algorithm described in [3] and the improved version in [6].

A. Consistent Results

As mentioned previously, the main motivation to derive a
new heuristic algorithm to solve the low multiplicative
complexity logic design problem is to attempt to eliminate
the need for randomized selection present in the previous
algorithm. In this regard, the proposed algorithm succeeds in
producing consistent results in every execution. As opposed
to the previous algorithm where each execution presents a
random optimal result, the proposed algorithm produces all
possible optimal results achievable through PPRM
factorization.

B. Enables Selection Criteria for Multiple-Output

Problems

In this work, we have limited our discussion to single-
output problem (one function) to demonstrate the PPRM
factorization process in detail. However, most actual
applications such as cryptographic S-boxes have multiple
outputs expressed as functions of the same set of inputs. An
optimal solution for a single function may not be optimal
when considered as part of the multiple-output problem.
Since the proposed algorithm produces all possible optimal
solutions achievable through PPRM factorization, selection
criteria can be introduced to select the best solutions once
each function has been optimized. In general, selection
criteria that enables the most circuit sharing between the
multiple functions are the most desirable.

C. Faster and Consistent Execution Time

Due to the randomness involved in the original algorithm,
comparing the algorithmic complexity of both algorithms is
difficult. To make a comparison on the execution time, both
algorithms are applied to optimize function (7) using
MATLAB R2012b. The original algorithm is sampled for
100 trials to obtain the average value. The execution time for
the proposed algorithm showed negligible variances between
samples.

In Table III, the proposed algorithm showed a significant
improvement in terms of execution time compared to the
original algorithm. Although execution time varies with the
function under optimization, we observed similar degree of
difference when comparing both algorithms using random
functions. Also, it is important to note that the proposed
algorithm produced two optimal solutions within the

duration of the execution time (see 4f in Table II) while the

original algorithm produced one random optimal result.

VIII. CONCLUSION AND FUTURE WORK

We present a novel approach to low multiplicative
complexity logic minimization based on the concept of
PPRM factorization. The proposed algorithm enabled logic
minimization over the logic basis (AND, XOR, NOT) to be
achieved without reliance on randomness. Multiple optimal
solutions produced by the algorithm allow the use of
selection criteria when solving for multiple-output problems.
This enables the potential for a greater degree of circuit
sharing when optimizing logic circuits for lightweight
cryptography. The proposed algorithm also showed
significant improvement in execution time when compared
to the original algorithm under the same logic problem.

The main motivation of this work is to derive an efficient
logic minimization algorithm for applications in lightweight
cryptography. As such, the current algorithm is insufficient
as it is only capable of optimally solving single-output
problems. However, by experimenting with different
selection criteria to promote circuit sharing between multiple
functions that share the same input set, we hope to expand
the algorithm into producing economical logic circuits that
are optimal in terms of multiplicative complexity for
multiple-output problems. Similarly, we see potential in

expanding the algorithm to solve logic problems with higher
number of inputs using the same concept.

ACKNOWLEDGMENT

This work has been supported in part of the Melbourne-
Sarawak Research Collaboration Scheme.

REFERENCES

[1] T. Sasao and P. Besslich, "On the complexity of mod-2l sum PLA's,"
IEEE Trans. Comput., vol. 39, no. 2, pp. 262-266, Feb. 1990.

[2] J. Boyar, P. Matthews, and R. Peralta, "Logic Minimization
Techniques with Applications to Cryptology," Journal of Cryptology,
vol. 26, no. 2, pp. 280-312, Apr. 2013.

[3] R. C. Peralta and J. Boyar, "Method of optimizing combinational
circuits," U.S. Patent 8 316 338 B2, Nov. 20, 2012.

[4] J. Boyar and R. Peralta, "A Small Depth-16 Circuit for the AES S-
Box," in IFIP International Information Security Conference, SEC
2012: Information Security and Privacy Research, Heraklion, Crete,
Greece, 2012, pp. 287-298.

[5] N. T. Courtois, D. Hulme, and T. Mourouzis, "Solving Circuit
Optimisation Problems in Cryptography and Cryptanalysis," in IACR
Cryptology ePrint Archive: Report 2011/475, 2011.

[6] J. J. Tay, M. L. D. Wong, M. M. Wong, C. Zhang, and I. Hijazin,
"Low multiplicative complexity logic minimisation over the basis
(AND, XOR, NOT)," Electronics Letters, vol. 52, no. 17, pp. 1438-
1440, Aug. 2016.

[7] C. P. Schnorr, "The multiplicative complexity of boolean functions,"
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes,
vol. 357, pp. 45-58, July 1988.

[8] M. S. Turan and R. Peralta, "The Multiplicative Complexity of
Boolean Functions on Four and Five Variables," in Lightweight
Cryptography for Security and Privacy: Third International
Workshop, LightSec 2014, Istanbul, Turkey, 2014, pp. 21-33.

[9] A. Bogdanov et al., "PRESENT: An Ultra-Lightweight Block
Cipher," in Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, 2007, pp. 450-
466.

