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Abstract—Logic optimization over the logic basis (AND, XOR, 

NOT) has received increased attention in recent works due to 

the potential in low gate count logic circuit implementation. 

Previous logic minimization heuristic in this logic basis 

involved randomized selection processes and thus exhibits 

uncontrolled variations in the results produced and algorithm 

execution time. In this work, we demonstrate a novel approach 

to the same problem using Positive Polarity Reed-Muller 

factorization. The proposed algorithm eliminates the reliance 

on randomness and produces all optimal solutions obtainable 

through the factorization method. This enables the application 

of different selection criteria post-optimization to maximize 

circuit sharing between functions. The proposed algorithm is 

aimed towards optimizing the S-boxes of lightweight 

cryptographic schemes. 

Keywords-logic minimization; positive polarity reed-muller; 

multiplicative complexity; lightweight cryptography 

I.  INTRODUCTION 

Logic design is an exercise of interconnecting basic logic 
building blocks to perform a specific function. The goal is to 
design an economical circuit for a desired function which is 
optimal in regards to a meaningful metric. Depending on the 
application, the meaningful metric ranges from gate count to 
circuit depth or even power consumption. Conventional 
methods of logic simplification, such as Karnaugh mapping 
and Quine-McCluskey procedure, operate over the logic 
basis (AND, OR, NOT). However, recent works have begun 
exploring logic design over the logic basis (AND, XOR, 
NOT). In general, it has been observed that logic expressions 
over the logic basis (AND, XOR, NOT) require fewer 
product terms than their alternative expressions over the 
logic basis (AND, XOR, NOT) [1]. This property gives the 
potential for lower gate count logic circuits which are crucial 
for resource constrained applications. As such, the potential 
of an efficient logic minimization algorithm may aid the 
purpose of optimizing the Substitution boxes (S-boxes) of 
popular lightweight cryptographic schemes. 

Works in [2] observed that a logic circuit constructed 
over the logic basis (AND, XOR, NOT) using the minimal 

number of AND gates usually results in very low gate count. 
This observation inspired a heuristic approach to logic 
minimization patented in [3]. Although the algorithm has 
been demonstrated to produce good results on popular 

cryptographic S-boxes such as the  42GF  AES S-box [4] 

and the PRESENT S-box [5], it experiences consistency 
issues due to the nature of the randomized selection process 
involved. Even with improvements proposed in [6], we are 
unable to completely eliminate the relevance of randomness 
in the algorithm. 

In this work, we propose a novel approach to solving low 
multiplicative complexity logic minimization problem 
through Positive Polarity Reed-Muller (PPRM) factorization. 
This method is aimed towards solving logic design problems 
for S-boxes of lightweight cryptographic schemes. Therefore, 
we limit our discussion to logic problems with 4-bit inputs as 
most popular lightweight cryptographic schemes utilize one 
or more 4x4-bit S-boxes for their non-linear substitution 
processes. 

The structure of the paper is organized as follows: 
Section II and III provide preliminary knowledge regarding 
the PPRM expressions and the concept of multiplicative 
complexity in this context. In Section IV, we demonstrate the 
role of PPRM factorization in achieving optimal 
multiplicative complexity in logic design. The proposed 
logic minimization algorithm is described in Section V. In 
Section VI, we present optimal expressions for each 
individual function in the PRESENT S-box. Section VII 
explains the benefits of the proposed algorithm in relation to 
the previous algorithm. Finally, concluding remarks and 
potential future works are discussed in Section VIII. 

II. POSITIVE POLARITY REED-MULLER EXPRESSIONS 

The first step to solving any logic design problem is to 
derive a logic equation which describes the circuit outputs as 
a function of the circuit inputs. Similar to expressing a 
function in its sum-of-product (SOP) form in the logic basis 
(AND, OR, NOT), a PPRM expression is the function's 
equivalent in the logic basis (AND, XOR, NOT). The term 
"Positive Polarity" implies that all literals in the Reed-Muller 
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expression appear uncomplemented. In general, given a 

function with n -bit inputs nxxx ,,, 21  , its PPRM 

expressions can be defined as shown in (1) where 

 1,0,,,
1210 
naaa   and 

1243210 ,,,,,,
n   

1131221 ,,,,,,1 xxxxxxxx nn    fully describe f . 

  
1212110021 ,,,


 nnaaaxxxf n     (1) 

One important property of the PPRM expression is that 
for each unique function, there is only one unique 
representation in PPRM form. This unique PPRM expression 
can be derived easily by multiplying the truth vector of the 

function with the n -variable transform matrix nT  given in 

(2) where  10 T . 
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Logical and mathematical notations in PPRM 
expressions are similar to the operations in modulo-2 
arithmetic. In this work, we express logic XOR (mod-2 
addition) using notations shown in (3). In this case, c  

represents the sum resulting from the addition of a  and b . 

 cbaba   (3) 

Similarly, logic AND (mod-2 multiplication) is expressed 
using notations shown in (4), where c  is the product 

resulting from the multiplication of a  and b . 

 cabba   (4) 

III. MULTIPLICATIVE COMPLEXITY 

Multiplicative complexity  fc  of a function is defined 

as the minimal number of multiplication (AND gates) 
required to realize the function over the basis (AND, XOR, 
NOT). It has been demonstrated in [7] that for a function of 

degree d , the multiplicative complexity is at least 1d , i.e. 

  1 dfc . Although a definite upper bound for the 

multiplicative complexity of a function has yet to be 
established, [8] has proven that for a function with n  inputs, 

its multiplicative complexity is at most 1n  as long as 

5n , i.e.   1 nfc  given 5n . 

Low multiplicative complexity logic minimization aims 
to achieve low gate count circuits for a desired function by 
using the minimal number of AND gates required to 
construct the circuit. As such, the proposed algorithm can be 
described as a logic minimization heuristic that produces 
logic circuits which are optimal in terms of multiplicative 
complexity. 

IV. POSITIVE POLARITY REED-MULLER FACTORIZATION 

FOR LOW MULTIPLICATIVE COMPLEXITY 

Previous approach to low multiplicative complexity logic 
minimization requires performing addition and 
multiplication on random selection of signals within an 
expanding sample space until the desired truth vector is 
found. In this section, we demonstrate a different approach to 

achieving minimal AND gates through PPRM factorization. 
As mentioned previously, we consider four inputs logic 
functions for application in lightweight cryptographic S-
boxes. 

Let 421 ,,, xxx   be the four logic inputs of a function. 

Consider the PPRM expression given in (5). 

   4121321 xxxxxxxxf   (5) 

Using the lower bound rule, it is easy to see that the 
function has a multiplicative complexity of 

  21 dfc . In this case, it is obvious that we can 

achieve optimal AND gates by factorizing the literal 1x  as 

shown in (6). 

    42321 xxxxxxf   (6) 

However, actual logic problems are often not solvable by 
a single-staged factorization. Consider the PPRM expression 
in (7), which describes the function for the most significant 
output bit of the PRESENT S-box [9]. 

   142132431421321  xxxxxxxxxxxxxxxf  

  (7) 

The multiplicative complexity of the function is known 

to be   2 fc . However, there is no obvious way to 

manipulate the PPRM expression into a form that requires 
two AND gates to realize. To solve the problem, we first 

remove any literals with a degree of 1d  to form  xf ' . 

These literals are completely linear (no multiplication) and 
thus can be reintroduced into the equation through additions 

once  xf '  is optimized.  

   32431421321' xxxxxxxxxxxxf   (8) 

From (8), we proceed with the first step of factorization. 
There are no specific rules in choosing the literal to be 
factorized at this stage as each may potentially lead to an 

optimal solution. Factorizing 2x  will result in the expression 

in (9). 

    
  

cba

xxxxxxxxxxf 431341312'   (9) 

Notice the three important sections for the resultant 
expression as indicated in (9). a  includes the factorized 

literal, b  includes the factorized clauses, while c  represents 

the remaining clauses that do not contain the factorized 

literal. At this stage, if ab  can be achieved with AND gates 

less than or equal to   2 fc , there is a possibility that an 

optimal solution can be derived from the expression. As 

shown in (10), ab  can be realized with two AND gates in 

this case. 

   34312 xxxxxab   (10) 

The next objective is to manipulate the expression in 
such as way that c  requires no extra AND gates to realize. In 

other words, c  needs to become either (a) free of 

multiplication or (b) has the same clauses as b . This can be 

done by adding another literal into a . For example, by 



adding 1x  into a , a new string of clauses d  has to be added 

to c  for cancellation. This is shown in (11). 

    
  

ba

xxxxxxxxf 3413112'   

 
  

dc

xxxxxxxxx 314131431   (11) 

Completing the XOR operations between c  and d  

results in (12). 

     
    

cba

xxxxxxxxxxxxxf 414313413112'  (12) 

With the expression manipulation method above, we are 
able to change the clauses in c  without introducing 

additional AND gates to ab . Since c  in (12) still requires 

additional AND gates after ab , by adding the literal 3x  into 

a  and completing the addition between c  and d , we arrive 

at the expression in (13). 

    
  

ba

xxxxxxxxxf 34131312'   

 
  

c

xxxxx 34131   (13) 

      
  

ba

xxxxxxxxf 3431312'   

  
  

c

xxxx 3431   (14) 

Since the clauses in c  is exactly identical to the clauses 

in b , no extra AND gates are required and the entire 

expression in (14) can be realized with two AND gates, i.e. 
optimal in terms of multiplicative complexity. The final step 
is to reintroduce the linear section of the circuit removed in 
the first step to obtain the optimized expression (15). 

      3431312 xxxxxxxxf   

   14213431  xxxxxxx  (15) 

This example demonstrates the procedure to derive an 
optimal solution for a low multiplicative complexity logic 
design problem without relying on randomness. It is 
important to note that although the length of (15) may 
suggest a large logic circuit, a huge portion of the equation 
are linear strings of XORs which share repeated terms. As 
such, the actual logic circuit required to realize the 
expression is much smaller due to circuit sharing. The 
challenge now is to derive an efficient algorithm that 
produces all optimal solutions achievable through this 
method for a given problem. 

V. PROPOSED ALGORITHM FOR LOW MULTIPLICATIVE 

COMPLEXITY LOGIC MINIMIZATION 

In this section, we describe the proposed algorithm 
designed using concept demonstrated in Section IV. A 
pseudocode for the algorithm is provided in Algorithm 1. 

 

TABLE I.  FREQUENCIES OF LITERALS IN EACH DEGREE FOR (8) 

Literal 
Degree 

Total 
4 3 2 1 

1x  0 3 0 0 3 

2x  0 2 1 0 3 

3x  0 2 1 0 3 

4x  0 2 0 0 2 

A. Step 1: Select the First Literal for Factorization 

The algorithm selects a literal to be factorized from the 
available n  inputs. The selection is done sequentially as all 

literals need to be factorized eventually to discover all 
possible solutions unless they are interchangeable (see 
Subsection V-F). 

B. Step 2: Form a , b  and c  

Once the literal to be factorized is chosen, the algorithm 

forms a , b  and c  as demonstrated in (9). Note that after the 

factorization of the first literal, b  will remain constant 

throughout the subsequent steps of the algorithm. 

C. Step 3: Form All Possible Variations of id  

Excluding the factorized literal, there are 1n  possible 

literals to be added into a . As such, there are 1n  possible 

variations of id  to be added into c . The algorithm forms all 

variations in a set D , in which Dddd n 121 ,,,  . 

D. Step 4: Form All Possible Combinations of id  

There are 12 n  possible combinations of elements in set 
D  through addition (including 0), i.e. 

1212121 ,,,,,0  nddddddd  . The algorithm 

forms all possible combinations in a new set 'D , in which 

',,,,,0 1212121 Dddddddd n   . 

E. Step 5: Check If Any Elements of 'D  Solve c  

The algorithm then adds each of the 12 n  elements in 'D  

into c  and determine if (a) the sum is free of 1d  clauses 

or (b) the sum can be implemented without additional AND 

gates after ab . Elements of 'D  that satisfy (a) or (b) will 

give an optimal solution for the problem. 

F. Step 6: Return to Step 1 for the Next Literal 

For a given problem, the algorithm needs to attempt 
factorization of all literals to discover all possible solutions. 
As such, the algorithm needs to perform multiple loops of 
the previous steps equal to the number of inputs n . However, 

if two or more literals have the same frequencies in every 
degree of the clauses (in the PPRM expression), they are 
mutually interchangeable and the algorithm need only 
attempt factorization for one the interchangeable literals. 
For example, Table I gives the frequency spread of literals 

for (8). Notice that 2x  and 3x  have the identical frequency 

spread and are thus mutually interchangeable. Since 

factorizing 2x  produced the result in (14), by nature of the 



interchangeable property, we can replace all instances of 2x  

with 3x  in (14) and vice versa to obtain an alternative 

optimal solution (16). 

         24212421213' xxxxxxxxxxxxf   

 (16) 

As such, when interchangeable literals are present, the 
algorithm only needs to repeat the factorization process for 
the non-interchangeable literals. 

  

TABLE II.  OPTIMAL EXPRESSIONS FOR PRESENT S-BOX FUNCTIONS 

Function  fc  Optimal expression 

1f  1 43132 xxxxx   

2f  2 
     424431312 xxxxxxxxx   

     424421213 xxxxxxxxx   

3f  2 

    1232441 xxxxxxx   

  13324  xxxx  

    1232114 xxxxxxx   

  1431321  xxxxxx  

4f  2 

    3431312 xxxxxxx   

  14213431  xxxxxxx  

    2421213 xxxxxxx   

  141421  xxxxx  

VI. RESULTS ON PRESENT S-BOX 

We performed optimization on each individual function 
in the PRESENT S-box [9] independently using the 

proposed algorithm. 1f  represents the least significant 

output bit of the S-box while 4f  describes the most 

significant bit. This demonstration is not meant to produce 
the smallest PRESENT S-box for comparison but rather to 
verify the ability of the proposed algorithm to find the 
optimal expressions for each individual functions. 

TABLE III.  COMPARISON OF EXECUTION TIME BETWEEN ORIGINAL 

AND PROPOSED ALGORITHMS WHEN SOLVING (7) 

Algorithm Time (s) 

Original [6] 7.3758 

Proposed 0.0081 

 
All optimal expressions produced in Table II can be 

realized with the minimum number of AND gates as given 

by their respective  fc  values, i.e. they are optimal in 

terms of multiplicative complexity. 2f , 3f  and 4f  each 

have two possible optimal solutions. Therefore, additional 
selection criteria can be implemented post-optimization to 
identify the ideal solution for each function which enables 
the greatest degree of circuit sharing between the four 
functions for the construction of the full S-box. 

VII. ADVANTAGES OF PROPOSED ALGORITHM 

In this section, we highlight the advantages of the 
proposed algorithm in cryptographic or similar applications. 
They are mostly done in comparison to the original 
algorithm described in [3] and the improved version in [6]. 

A. Consistent Results 

As mentioned previously, the main motivation to derive a 
new heuristic algorithm to solve the low multiplicative 
complexity logic design problem is to attempt to eliminate 
the need for randomized selection present in the previous 
algorithm. In this regard, the proposed algorithm succeeds in 
producing consistent results in every execution. As opposed 
to the previous algorithm where each execution presents a 
random optimal result, the proposed algorithm produces all 
possible optimal results achievable through PPRM 
factorization. 

B. Enables Selection Criteria for Multiple-Output 

Problems 

In this work, we have limited our discussion to single-
output problem (one function) to demonstrate the PPRM 
factorization process in detail. However, most actual 
applications such as cryptographic S-boxes have multiple 
outputs expressed as functions of the same set of inputs. An 
optimal solution for a single function may not be optimal 
when considered as part of the multiple-output problem. 
Since the proposed algorithm produces all possible optimal 
solutions achievable through PPRM factorization, selection 
criteria can be introduced to select the best solutions once 
each function has been optimized. In general, selection 
criteria that enables the most circuit sharing between the 
multiple functions are the most desirable. 

C. Faster and Consistent Execution Time 

Due to the randomness involved in the original algorithm, 
comparing the algorithmic complexity of both algorithms is 
difficult. To make a comparison on the execution time, both 
algorithms are applied to optimize function (7) using 
MATLAB R2012b. The original algorithm is sampled for 
100 trials to obtain the average value. The execution time for 
the proposed algorithm showed negligible variances between 
samples. 



In Table III, the proposed algorithm showed a significant 
improvement in terms of execution time compared to the 
original algorithm. Although execution time varies with the 
function under optimization, we observed similar degree of 
difference when comparing both algorithms using random 
functions. Also, it is important to note that the proposed 
algorithm produced two optimal solutions within the 

duration of the execution time (see 4f  in Table II) while the 

original algorithm produced one random optimal result. 

VIII. CONCLUSION AND FUTURE WORK 

We present a novel approach to low multiplicative 
complexity logic minimization based on the concept of 
PPRM factorization. The proposed algorithm enabled logic 
minimization over the logic basis (AND, XOR, NOT) to be 
achieved without reliance on randomness. Multiple optimal 
solutions produced by the algorithm allow the use of 
selection criteria when solving for multiple-output problems. 
This enables the potential for a greater degree of circuit 
sharing when optimizing logic circuits for lightweight 
cryptography. The proposed algorithm also showed 
significant improvement in execution time when compared 
to the original algorithm under the same logic problem. 

The main motivation of this work is to derive an efficient 
logic minimization algorithm for applications in lightweight 
cryptography. As such, the current algorithm is insufficient 
as it is only capable of optimally solving single-output 
problems. However, by experimenting with different 
selection criteria to promote circuit sharing between multiple 
functions that share the same input set, we hope to expand 
the algorithm into producing economical logic circuits that 
are optimal in terms of multiplicative complexity for 
multiple-output problems. Similarly, we see potential in 

expanding the algorithm to solve logic problems with higher 
number of inputs using the same concept. 
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