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Highlights 

 Ambient pressure continuous conversion of carvone to carvacrol over Pd/Al2O3. 

 Hydrogenation to carvotanacetone/carvomenthone at H2/carvone≥0.5. 

 Exclusive isomerisation to carvacrol in H2O.  

 100% yield of carvacrol in H2 with H2O as promoter. 

 

 

Abstract 

We have studied the effect of water on the selective conversion of biomass-derived 

carvone to carvacrol over Pd/Al2O3 (mean Pd size = 3 nm). Full selectivity to 

carvacrol was observed in H2O (H2O:Carvone = 1:12-6:1) without H2 or at an inlet 

H2:Carvone = 1:6. Carvacrol generation from carvone involves double bond migration 

with keto-enol tauromerisation. The formation of hydrogenation products 

(carvotanacetone and carvomenthone) was a feature of reaction at higher H2 content. 

The incorporation of water (H2O:Carvone ≤ 1:3) with hydrogen (H2:Carvone = 

1:6-2:1) increased carvacrol production rate to deliver 100% yield. A higher H2O 

content lowered rate due to competition with carvone for surface active sites. Our 

results demonstrate the benefits of carvacrol production in continuous flow relative to 

conventional batch processes allowing full selective transformation under mild 
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reaction conditions.  
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1 Introduction 

Biomass offers an alternative carbon source to supplant current dependence on crude 

oil and natural gas for the production of fine chemicals [1]. Biomass upgrading can 

enhance process sustainability but is still at an early stage of development [2]. The 

flavour and fragrance industry is based on terpenes [3], which are derived from the 

paper pulp and citric juice industries [4]. Natural terpenes contain -C=C- bonds and 

chemo-catalytic isomerisation can produce more valuable products [5]. Reviews by 

Swift in 2004 [3], Corma et al. in 2007 [5], Schwab and co-workers in 2013 [4] and 

Sanchez et al. in 2016 [6] covered terpene isomerisation by homogeneous catalysts in 

batch liquid systems where product selectivity was identified as the main challenge. 

Heterogeneous catalysis reduces separation costs and the volume of toxic waste [4] 

while operation in continuous flow offers clear benefits in terms of reduced downtime 

and higher throughput [7]. Carvacrol is a mono-terpenoid phenol used as a flavoring 

agent and intermediate for the production of drugs, fungicides and pesticides [6]. The 

main routes to carvacrol include (i) supercritical (300 bar) CO2 extraction from 

oregano essential oils [8] and (ii) isopropylation of o-cresol with propylene over 

activated alumina at 50 bar and 633 K [9]. The requirements for high operating 

temperatures and pressures are major drawbacks. Carvacrol generation from carvone 

in hydrogen over supported metal catalysts is an alternative but studies to date are 

limited and inconclusive with work focused on batch systems in organic solvents (e.g. 

toluene, alcohols) [10-16]. 
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Carvone transformation in hydrogen generates a range of products (Figure 1). 

The formation of unsaturated (carvotanacetone) and saturated (carvomenthone) 

ketones and alcohol (carvomenthol) occurs via path (II); the endo-cyclic double bond 

and carbonyl functionalities are more resistant to attack [17,18]. We have reported the 

results of continuous catalytic carvone hydrogenation over bulk and (oxide and 

carbon) supported Pd catalysts where Pd/Al2O3 delivered the highest combined 

activity and carvacrol selectivity [19]. In that work, we established carvone → 

carvacrol transformation in hydrogen and a dependence of isomerisation (to carvacrol, 

path (IA) in Figure 1) vs. hydrogenation (path (II)) on H2 content in the feed.  

Water has been shown to impact on gas phase catalytic hydrogenation [20] and 

isomerisation mechanisms [21], which are critical steps in carvone transformation 

(Figure 1). A promoting effect of water has been reported in the hydrogenation (of 

carbonyl (acetone → isopropanol [22] and acetic acid → ethanol [20]) and -C=C- 

functionalities [23]) and isomerisation (oleic acid → isostearates [24,25]). We could 

not find any report that has examined the role of water in the catalytic transformation 

of a reactant containing both -C=C- and -C=O groups. Cao et al. [26] provided 

theoretical evidence that water can lower the energy barrier in the isomerisation of 

fulminic acid (HCNO) and isocyanic acid (HNCO). Water has, however, been found 

to have no effect or to inhibit hydrogenation (levulinic acid [27] and maleic anhydride 

[28]) and isomerisation (oleic acid [29]). In this study, we evaluate the effect of water 

in determining the selective continuous gas phase conversion of carvone to carvacrol 

over Pd/Al2O3.     
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2 Experimental 

2.1 Catalyst Activation and Characterisation 

A commercial (Sigma-Aldrich) 1.2% wt. Pd/Al2O3 was sieved to mean diameter 

= 75 μm and activated in 60 cm3 min-1 H2 at 10 K min-1 to 573 K. The sample was 

passivated in 1% v/v O2/He at ambient temperature for ex-situ characterisation. 

Palladium content was measured by ICP-OES (Vista-Pro, Varian Inc.). Temperature 

programmed reduction (TPR, in 5% v/v H2/N2 at 10 K min-1 to 573 K), H2 

chemisorption (at 298 K) and total specific surface area (SSA, in 30% v/v N2/He 

using the single point BET method) measurements were conducted on the commercial 

CHEM-BET 3000 (Quantachrome) unit as described elsewhere [30]; results were 

reproducible to ±7%. Bulk catalyst structure was determined by X-ray diffraction 

(XRD) analysis, using a Bruker/Siemens D500 incident X-ray diffractometer with Cu 

K radiation (0.02º step-1 at 5 s step-1 over the range 20º ≤ 2 ≤ 90º). Palladium 

particle morphology was determined by scanning transmission electron microscopy 

(STEM, JEOL 2200FS field emission gun-equipped TEM), employing Gatan Digital 

Micrograph 1.82 for data acquisition/manipulation. Samples for analysis were crushed 

and deposited (dry) on a holey carbon/Cu grid (300 Mesh). Surface area-weighted 

mean Pd sizes (d) were measured from a count of 800 particles [30]. For comparison 

purposes, Pd size was also determined from H2 chemisorption (at 298 K) [31] 

considering dissociative adsorption (Pd:H stoichiometry = 1:1) and assuming 

spherical morphology [32]. 
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2.2 Catalytic Procedure 

Carvone (98%), carvacrol (98%), dihydrocarvone (99%) and carveol (98%) were 

obtained from Sigma-Aldrich and used as supplied. Carvotanacetone, carvomenthone 

and carvomenthol were synthesised following published methods [33]. All gases (H2, 

N2, O2 and He) were ultra-high purity (BOC, 99.9%). Reactions were conducted at 

atmospheric pressure and isothermal conditions (423 K) in situ after activation in a 

continuous flow fixed bed vertical tubular glass reactor (15 mm i.d.). A layer of 

borosilicate glass beads served as preheating zone where the organic reactant was 

vaporised and reached reaction temperature before contacting the catalyst. 

Temperature was continuously monitored by a thermocouple inserted in a thermowell 

within the catalyst bed. The organic reactant and H2O were delivered via two 

glass/teflon air-tight syringes and teflon lines using two microprocessor controlled 

infusion pumps (Model 100 kd Scientific). A co-current flow of N2, H2 or H2+N2 with 

carvone (N2:Carvone = 20:1 mol mol-1, H2:Carvone = 1:6 – 20:1 mol mol-1) or 

H2O+carvone (H2O:Carvone = 1:12 – 6:1 mol mol-1) was maintained at GHSV = 2 × 

104 h-1. Palladium (n) to reactant (F) molar ratio spanned the range 3 × 10-5 – 3 × 10-3 

h. In blank tests, reactions in the absence of catalyst or over the Al2O3 support alone 

did not result in any measurable conversion. The reactor effluent was frozen in a 

liquid N2 trap for analysis using a Perkin-Elmer Auto System XL gas chromatograph 

with split/splitless injector, FID and Stabilwax capillary column (RESTEK). Data 

acquisition/manipulation used the TotalChrom data system. Fractional carvone 

conversion (X) is given by: 
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Catalytic activity is also quantified in terms of carvacrol production rate (R, min-1), 

extracted from time on-stream measurements [34]. Repeated reactions with different 

samples from the same batch of catalyst delivered raw data reproducibility and carbon 

mass balances within ±5%. 

 

3 Results and discussion 

3.1 Catalyst Characterization 

The physico-chemical characteristics of the Pd/Al2O3 catalyst are given in Table 

1. Temperature programmed reduction (TPR) generated the profile shown in Figure 

2(A) with H2 release (negative peak) at 375 K due to the decomposition of Pd hydride 

formed by room temperature H2 absorption [35]. The XRD diffractogram of the 

activated catalyst (Figure 2(B)) shows two broad peaks at 2 = 45.8º and 66.8º 

characteristic of the main planes of cubic -Al2O3 (JCPDS-ICDD Card No. 10-0425). 

The total specific surface area (SSA = 145 m2 g-1) is consistent with -Al2O3 [36]. The 

absence of reflections due to Pd (main reflection at 2 = 40.1º for (111); 

JCPDS-ICDD Card No. 05-0681) suggests the presence of Pd nanoparticles (≤3 nm) 

below XRD detection limits [37]. A Pd particle size of 2.4 nm was obtained from H2 

chemisorption. The representative STEM image in Figure 2(C) further confirms the 

occurrence of Pd as nano-particles (≤6 nm, see Figure 2(D)) with a mean size of 3 
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nm.  

 

3.2 Gas Phase Catalytic Conversion of Carvone 

The formation of carvacrol can occur either via direct conversion of carvone (path (IA) 

in Figure 1) or through transformation of the carvotanacetone intermediate (path 

(IB)). There was no detectable carvone conversion for reaction in N2 (without H2 or 

H2O), a result that deviates from the reported formation of several products (including 

carvacrol) over Pd/C in batch operation (for up to 12 h) at 506 K [38]. The shorter 

contact time (0.2 s) and lower reaction temperature (423 K) employed in this work did 

not result in carvone to carvacrol transformation in the absence of hydrogen or water 

in continuous gas phase operation. 

At a low hydrogen content in the feed (H2:Carvone = 1:6), we achieved full 

selectivity to carvacrol (Figure 3(A)) over Pd/Al2O3. This is an important result 

considering the reported low carvacrol selectivity (≤38%) in batch systems over Pd 

catalysts [15,39]. To probe reaction pathway, carvone and carvotanacetone were used 

as reactants under the same reaction conditions. Negligible carvotanacetone 

conversion (<5%) for reaction over Pd/Al2O3 in H2 suggests that carvacrol formation 

through path (IB) is not promoted. Carvacrol formation can proceed by carvone 

interaction with Pd sites via the exo -C=C- group [40] (Figure 4(A)). Dissociative 

adsorption of H2 on Pd [41] generates reactive atomic hydrogen that attacks the 

exo-double bond. This results in the formation of an allyl intermediate that undergoes 

H elimination with bond migration and keto-enol tautomerisation to generate 

carvacrol [42,43]. At higher H2:Carvone (= 1:2-20:1) the increase in surface hydrogen 
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from H2 dissociation [44] favours H insertion [19] that directs the reaction along path 

(II) with the formation of carvontanacetone (SCarvotanacetone ≤ 25%) and carvomenthone 

(SCarvomenthone ≤ 10%). 

Reaction in H2O (without H2) gave carvacrol as the only detected product. Strauss 

et al. [45,46] reported carvone isomerisation in water with no catalyst using a 

pressurised microwave batch reactor operated at 523 K. Water has been deemed 

essential for carvacrol isomerisation (at 373 K) with homogeneous Rh catalysts, 

where there was no conversion under anhydrous conditions; no explanation was 

provided to account for this [43]. We envision a reaction mechanism (Figure 4(B)) 

where water adsorbs associatively on Pd through the oxygen atom [22,47] and can 

coordinate with carvone, acting as both hydrogen donor and acceptor [21]. A surface 

water-carvone complex is formed with proton donation from O-H to the 

carbonyl-oxygen [48,49] and back donation from carvone to the water oxygen (Lewis 

base [21]). Enolisation of the carbonyl function favours aromatisation via migration of 

the isopropenyl double bond to generate carvacrol. A higher rate was evident for 

reaction in hydrogen (H2:Carvone = 1:6) compared with water (in N2, Figure 3(B)) 

where fractional carvone conversion was less than 0.15 and carvacrol production rate 

was insensitive to H2O:Carvone molar ratio. 

We considered the combined effect of H2O and H2 in terms of rate and carvacrol 

selectivity. Varying H2O:Carvone (from pure carvone (0:1) to 1:3) under hydrogen 

lean conditions (H2:Carvone = 1:6), reaction over Pd/Al2O3 was fully selective to 

carvacrol to give 100% yield (Figure 3(A)). The presence of H2O served to 
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significantly raise carvacrol production rate (150 min-1 → 320 min-1), which increased 

with increasing water content (Figure 3(B)). Ngo et al. [24] also reported water 

promotion in the isomerisation of oleic acid to isostearates over zeolites but they did 

not propose a possible cause. At H2O:Carvone = 1:3, the rate was appreciably greater 

than that recorded for reaction in H2 without H2O (150 min-1) or in H2O without H2 

(35 min-1). We propose that double bond migration following exo -C=C- bond 

hydrogen addition is facilitated by an increased reactivity of the ring due to 

water-assisted -C=O group enolisation with a resultant increase in carvacrol 

production rate. We examined the effect of water addition at higher H2:Carvone (= 2:1) 

under conditions where hydrogenation is promoted (SCavotanacetone = 14%). 

Incorporation of H2O suppressed hydrogenation (path (II) in Figure 1) and shifted the 

reaction along path (IA) with exclusive isomerisation to carvacrol to reach 100% 

yield (Figure 3(A)). The coordination of water with carvone through the -C=O 

functionality favours ketone enolisation and inhibits carvotanacetone formation (path 

(II) (Figure 1)) directing the reaction to carvacrol via path (IB), i.e. carvone 

isomerisation is promoted in water under conditions of excess hydrogen.  

The rate of carvacrol production declined at a higher H2O content 

(H2O:Carvone > 1:3) regardless of H2:Carvone (see Figure 3(B) for H2:Carvone = 

1:6), a result that suggests inhibited carvone uptake/activation due to competition for 

surface active sites. Chen et al. [22] demonstrated that increased surface coverage by 

water (≥5% coverage) lowers the heat of ketone adsorption, impeding activity. Our 

results demonstrate the advantages of switching from conventional batch systems to a 
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continuous catalytic process where: (i) the reaction can be operated under mild 

reaction conditions (423 K and atmospheric pressure); (ii) 100% yield of carvacrol is 

achieved in a hydrogen lean feed with water as promoter; (iii) sole formation of 

cavacrol reduces production costs associated with downstream separation of 

undesired by-products. 

 

4 Conclusions 

We have evaluated the promotional effect of H2O in the continuous gas phase 

conversion of carvone to carvacrol over Pd/Al2O3 (mean Pd size = 3 nm from STEM). 

Exclusive carvacrol formation was observed in H2O and an inlet H2:Carvone = 1:6. At 

higher H2 content (H2:Carvone = 1:2-20:1), hydrogenation to carvotanacetone and 

carvomenthone was promoted. Where H2O:Carvone ≤ 1:3 (at H2:Carvone = 1:6-2:1), 

carvacrol production rate was greater than conversion in hydrogen alone to give 100% 

carvacrol yield. This is linked to the effect of water on keto-enol tauromerisation that 

favours double bond migration. Higher H2O content (H2O:Carvone > 1:3) lowered 

activity due to competition for surface sites with carvone. The results of this work 

establish viable use of water to promote continuous isomerisation and enable full 

transformation of carvone to carvacrol.  
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Figures   

 

Figure 1: Reaction pathways in the conversion of carvone to (target) carvacrol (path I, solid 

arrows), carvomenthol (path II, open arrows), dihydrocarvone (path III, dashed arrow) and 

carveol (path IV, dotted arrow). 

 

Figure 2: (A) TPR profile, (B) XRD diffractogram with main planes for -Al2O3 from 

JCPDS-ICDD reference (Card No. 10-0425) and (C) representative STEM image with (D) Pd 

particle size distribution for Pd/Al2O3. 

 

Figure 3: (A) Carvacrol selectivity (SCarvacrol, %) as a function of fractional conversion (X) of 

carvone and (B) variation in carvacrol production rate (R, min-1) with inlet H2O:Carvone 

molar ratio for reactions in H2 (H2:Carvone = 1:6 () and = 1:2-20:1 ()) and H2O 

(H2O:Carvone = 1:12-1:6 in N2 () and in H2 (H2:Carvone = 1:6,  and = 2:1, )). Note: 

Arrows in (A) illustrate SCarvacrol vs. X dependence for reactions with increased H2 in the feed 

(dotted line) and the effect of adding water for reactions in N2 (solid line) at H2:Carvone = 

1:6 (dashed line) and 2:1 (dashed-dotted line). Reaction conditions: T = 423 K, n/F = 3 × 10-5 

– 3 × 10-3 h, GHSV = 2 × 104 h-1. 

 

Figure 4: Proposed carvone adsorption/activation and reaction with (A) H2 and (B) H2O. 
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Table 1: Physico-chemical characteristics of the Pd/Al2O3 catalyst. 

Pd loading (% wt.) 1.2 

SSA (m2 g-1) 145 

TPR Tmax (K) 375 

Pd mean size (nm) 2.4a / 3.0b 

afrom H2 chemisorption at 298 K. 

bfrom STEM analysis (d). 

 

 


