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ABSTRACT. 

The motive of this research to present a systematic study in context of implementation of 

gas hydrate inhibitors that are obtained via naturally occurring amino acids (L-Alanine, 

Glycine, L-Histidine, L-Phenylalanine and L-Asparagine). These materials are tested for 

methane (CH4) hydrate inhibition purposes from both thermodynamically and kinetically 

perspectives at wide process conditions. In this presented work, all studied amino acids 

have been tested at both 1 wt % as low dosage inhibitors as well as at highger 

concentrations up to 5 wt %. Furthermore, Polyethylene-oxide (PEO) and Vinyl 

Caprolactum (VCap) were used at 1 wt % in studied aqueous solutions as synergetic 

compounds to enhance the inhibition performance for CH4 hydrate inhibition. Gas hydrate 

experiments were carried out by using rocking cell apparatus, from which pressure, 

temperature equilibrium data were obtained at recorded time and these data were translated 

into inhibitor performance evaluation from both thermodynamics and kinetic inhibition 

perspectives. This study includes the discussions of the effect of solubility limitation of 

studied amino acids, the effect of inhibitor concentration effect on the thermodynamic shift 

of the hydrate equilibrium curve, the role of side chain in amino acids in kinetic hydrate 

inhibition, the hydrophobic interactions of alkyl chain in water for synergistic point of 
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view. The results showed that the suitability of amino acids combined with synergistic 

materials for high kinetic inhibition performance, which provided an additional time shift 

up to 35 hours in hydrate formation at moderate process conditions up to 55 bars, 

specifically when L-Alanine was used. 

 

Keywords: Gas hydrates; flow assurance; kinetic inhibitors; thermodynamic inhibitors; 

amino acids; synergetic compounds 
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1. INTRODUCTION 

Natural gas exists in abundant quantities and being replaced coal for power generation in 

both industrial and residential applications due to its clean nature. Moreover, chemical 

process industries utilize natural gas as a starting material to produce syngas in various 

processes such as gas to liquid (GTL) and ethylene processes, where natural gas is the 

source of hydrogen gas.[1] The consumption of natural gas has been increased dramatically 

in the past couple of decades.[2] Typical natural gas production starts by drilling either at 

the seafloor or at onshore reservoirs and once the gas reservoir is tapped the gas is 

transported through the pipelines to a larger distribution pipe networks or direct to the gas 

processing facilities. During the course of gas transmission through the pipelines, there is 

a risk of gas hydrate cluster formation inside the pipeline and at other process equipment 

at low temperature and high pressure conditions,[3, 4] which leads to blockage in the 

pipelines and hinders the transportation of the flow the gas causing substantial economic 

losses and even catastrophic pipeline failures that might result in complete operation 

shutdowns. 

Gas hydrates are crystalline and ice-like structures, which are formed by the 

coexistence of water molecules and gas hydrate former molecules (e.g. methane, ethane 

etc…). The favorable process conditions for the gas hydrate cages to occur is low 

temperatures and high pressures, which leads the formation of a network of hydrogen 

bonds (HO--H) in which gas hydrate former molecules are trapped and encapsulated within 

three-dimensional frameworks. The X-ray determination[5, 6] reveals that gas hydrate 

clusters mainly found in three types of molecular arrangements, cubic structure I (sI), cubic 

structure II (sII) and hexagonal structure H (sH), and the hydrate cage type depends upon 

the shape and/or size of the host gas or hydrate former gas molecule. For instance, CH4, 

CO2 and C2H6 leads to sI type hydrates, whereas C3H8 and iso-C4H10 molecules leads to 

sII type hydrate cage structure[7]. In order to prevent hydrate formation inside the gas 

transmission pipelines and provide flow assurance, gas hydrate inhibitors have been 

injected into the pipelines. Hydrate inhibitors are typically charged or polar compounds 

such as electrolytes, alcohols and glycols, which are classified as thermodynamic hydrate 

inhibitors. Amongst those typical inhibitors, methanol and mono-ethylene glycol have been 

proven to be the most effective ones.[8] On the other hand, unlike thermodynamic 
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inhibitors, kinetic hydrate inhibitors (typically water-soluble polymers) do not show 

significant shifting effect on the pressure (P) and temperature (T) hydrate equilibrium curve 

towards the hydrate safe region. Nevertheless, they show the effect of time delay for the 

growth of hydrate crystals in which the hydrate inhibition is applied[9]. Some surfactants 

act as anti-agglomerates via forming aggregates leaving the hydrate particles as tiny 

particles and hinder their growth within the pipeline.[10] Such conventional inhibitors 

injected in large quantities during pipeline operations and the risk of toxic materials 

spillage to the surrounding aquatic system is high and dangers the habitat. Therefore, in 

order to prevent environmental hazards due to the excessive usage of high toxic nature 

chemicals in the pipelines, environmentally benign chemicals have been searched by both 

academia and industry in order to replace the toxic ones. It is also aimed to reduce the cost 

of the intervention in the case pipeline is under the hydrate formation risk by reducing the 

amount of the used chemicals as well as reduce or eliminate the cost of the recovery of the 

injected chemicals to the pipeline. Search for alternative thermodynamic and kinetic 

inhibitors such as urea,[11] chitosan,[12] proteins[9] and synthetic bio-molecules have 

been used as gas hydrate inhibitors in recent years as being alternative inhibitors in order 

to tackle above-mentioned challenges.[13-16]  

Amino acids are model compounds of proteins and they are also found in genetic 

coding as the fundamental building blocks known life forms in our planet.[17] Among 500 

known amino acids, only 20 of those appear in genetic coding and these synthesized amino 

acids are frequently used in animal feed additives, flavor enhancers, cosmetics ingredients 

and medicinal products.[18] Moreover, amino acids were also used as corrosion inhibitors 

and due to their negligible negative impact on aquatic systems.[19-21] Chemically, amino 

acids have zwitterion, which contains carboxylic (-COOH) and ammonium (-NH2) groups 

attached to the center C atom, and yet some amino acids also contain an additional 

carboxylic acid, amide, phenyl, imidazolium and alkyl chains. These additional groups 

determine the nature of amino acid such as acidity/basicity or hydrophilicity/ 

hydrophobicity. Amino acid molecules in water accessing zwitterion-ion, zwitterion-

water-dipoles, ions-water-dipole interactions with water molecule as well as other ions 

present in aqueous systems.[17, 22-24] The electrostatic force of attraction capability of an 

amino acid can have an effect on liquid water structure and might lead to a prevention of 
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hydrogen bonding during the hydrate cage formation around the hydrate former and guest 

gas molecule. Raman spectroscopy technique has been proven that, hydrophilic or 

hydrophobic moieties disrupt or strengthening the water structures.[25] Sloan and Koh[26] 

also postulated that hydrogen bonding and electrostatic interactions lower the activity 

coefficient of water, and thus thermodynamic inhibition takes place.  

Natural gas consists of complex multi-component gas mixtures and as documented 

elsewhere[27-29] methane (CH4) is the major constituent of natural gas reservoirs. In this 

work, rather than dealing with complex multi component gas mixtures, which can lead to 

different hydrate cage formations, CH4 has been studied as a representative model for 

natural gas to study gas hydrate inhibition performance of amino acids. Having said that, 

in the case of actual pipeline conditions gas hydrates are formed in both sI and sII type; in this 

proof of concept experimental work, methane is used and only sI type of hydrate formation is 

observed. A number of researchers presented their reports using amino acids as inhibitor 

for kinetic, thermodynamic studies for CO2, CH4 and tetrahydrofuran gas hydrates.[13, 14, 

16, 30] This study provides a detailed study of thermodynamic and kinetic methane hydrate 

inhibition performance together by using Glycine, L-Alanine, L-Histidine, L-

Phenylalanine and L- Asparagine amino acids as inhibitors at both low and high doses at 

various process conditions that includes pressures between 40 to 120 bars. Moreover, a 

combined synergized behavior of amino acids was also studied for enhanced kinetic 

inhibition purposes by adding 1 wt% of water soluble polymer/monomer (polyethylene 

oxide/vinyl caprolactum) into the L-Alanine Glycine and L-Histidine solutions at above-

mentioned pressure ranges. 

 

2. EXPERIMENTAL SECTION 

2.1. Materials 

CH4 gas with the purity of 99.9% was purchased from Buzware Scientific and Technical 

Gases, Doha (Qatar). Amino acids and synergents were purchased from Sigma-Aldrich and 

the details of the purities, structures and molar masses of these samples are provided in 

Table 1. All the aqueous samples were prepared in Millipore quality distilled water (Milli-

Q, Millipore, resistivity 18.2 MΩ cm) by weighing on an Mettler Toledo XS105 electronic 

balance with a precision of ± 0.00001 g. 
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Table 1: 

2.2. Apparatus and Methods 

Rocking cell is an assembly of five cells parallel working at a same skid (RC-5) has been 

purchased from PSL SystemtechniK GmbH, Germany. RC-5 assembly is capable of 

operating at pressures up to 200 bar (2900 psi) and has temperature rating of −10 °C to 60 

°C. Each high-pressure rocking cell has a volume of 40.13 cm3 and it encapsulates a 

stainless steel ball with the diameter of 17 mm, which moves back and forth and provides 

agitation within the cell. There are total 5 rocking cells installed on a metal plate and the 

assembly is submerged in a cooling-heating bath for thermostating purposes. The mixing 

inside the cells is carried out by rocking with a pre-defined frequency of 10 rocks/min and 

with the rocking angle of 30°.[31] Cells were pressurized directly with cylinder pressure 

of gas in the range of 30 to 120 bars at different desired pressure intervals and pressures 

within the cells were fine-tuned with high pressure hand pump. Operational method of RC-

5 during the course of experiments, programmed protocol for temperature cycle and sample 

loading have been described in detail elsewhere.[31-38] Cooling-heating bath was 

connected to an external cooling circulator, Huber Ministat 125w, and is capable of 

operating temperatures between -25 and 150 °C. Apparatus temperature sensors have an 

accuracy of ±0.25 °C and pressure sensors of the apparatus have an accuracy of 0.1% of 

pressure full scale (standard uncertainties, u, are u(P) = 0.02 bar, u(T) = 0.25 °C). 

Prior to each experiment, rocking cells are carefully flushed and purged with the sample 

that will be used during the new experiments. Rocking cells are pressurized up to the target 

pressures for each rocking cell. Then temperature/pressure stabilization is obtained within 

each rocking cell, only after that data acquisition is started to execute the experimental 

protocol. The experimental protocol follows: (i) initialization phase of the rocking cells 

experiment was started to stabilize the cell temperature around 20 °C initial temperature 

for over a two hours. During this period any pressure losses and gas leaks are also observed. 

(ii) The experimental runs were then started by cooling the fluid inside vessel (in which 

the rocking cells are submerged) with the cooling rate of (1.8 °C/hr) from 20 °C to 2 °C with 

an agitation of 10 rocks/min, then the system was left for 24 hours at 2 °C to form hydrates. 

Targeted sub-cooling temperature is around 6 to 8 °C, which depends on the hydrate former 

as well as the initial starting pressure. Once the hydrate is formed within the rocking cell 
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(observed via pressure drop), the rocking ball stop rolling and plugs the cell. (c) Heating 

process was started back to the initial temperature with very slow rate (0.18 °C/hr) for 

complete hydrate melting, after the hydrate is obtained within the cell. A controlled step-

wise heating was used for hydrate dissociation and 12 hours of intermission has been given 

at every 12 hours. This makes an approximate heating rate of 1.44 °C per day. 

A typical experimental presedue on how to obtain hdyrate Pressure-Temperature loop in 

an isochoric pressure search method using rocking cell assembly is given in a previous 

work.[39] The hydrate equilibirum point is obtained after solving the intersection point of 

hydrate dissociation trace and cooling trace linear fittings.[39] Collected hydrate 

equilibrium pressure-temperature data is reported as the typical data set not as average 

values in this manuscript. 

Density of aqueous solutions was measured at different temperatures using Anton Paar 

DMA 4500M apparatus, which operates by using oscillating U-tube sensor principle and 

only 1 mL of sample required to get density results. The standard uncertainties, u, for 

density measurements are u(P) = 0.05 bar, u(T) = 0.05 K, combined standard uncertainty 

in density is u(ρ) = 0.00005 g m-3.[40]  

 

3. METHODOLOGY 

The study of phase equilibrium of gas hydrate formation and dissociation has been done to 

show the thermodynamics effect and determine induction time in order to solve kinetics of 

the inhibitor effect by plotting temperature-pressure (P-T) and time-pressure (t-P) results 

respectively.[41, 42] Through the processing of P-T or t-P data curves, the effect of 

additives used as inhibitors can be identified and their effect with respect to alternating 

pressure conditions can also be identified. In order to meet certain environmental 

regulations that are explained in the introduction section of this manuscript, naturally 

occurring bio-molecules such as amino acids as neat alternative inhibitors were introduced 

to the hydrate inhibition experiments in this work. The variation in molecular structure of 

the amino acids directly affects hydrogen bonding and electrostatic interactions in aqueous 

environment in which they are utilized. Hydrophobicity and hydrophilicity of amino acid 

related to charged side, or alkyl chain or group that alters the interaction with water 

molecule causes aqueous solubility. In water bulk, carboxylic (–COOH) and amine (–NH2) 
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group of amino acid turn into zwitterion (-COO- and NH3
+), [23] where water molecule 

binds with zwitterion from their opposite pole sites and form a strong hydration shell 

around, as a result disruption of hydrogen bond occurs. On the basis of unique molecular 

structures of each amino acid (side chain), five different amino acids have been targeted as 

inhibitor for CH4 hydrate at different pressures, and programmed via high-low-high 

temperature cycles at identical water cuts in each high pressure cell. CH4 hydrate inhibition 

studied firstly by adding amino acids as 1 wt% as low dosage inhibitors. Later, this 

concentration has been increased to higher doses of either 4 wt% or 5 wt% based on the 

solubility values at room temperature for each amino acid.  

On the other hand, few studies have been described the action of a PEO polymer in 

water, which acts as a synergistic compound. PEO is not hazardous and is not dangerous 

in the form in which it is placed on commercial market and PEO; moreover in terms of 

ecological toxicity, PEO is not considered to be toxic in the aquatic environment. 

Hammouda and Kline[43] described the force interaction driving of PEO with water using 

small-angle neutron scattering as: (i) hydrogen bonding between oxygen atoms with H2O; 

(ii) hydrophobic interaction between polymer-polymer (CH2-CH2) and tend to repel water 

molecule. Boucher and Hines[44, 45] provided breakthrough information that PEO-water 

solution fully soluble at moderate temperature but solution becoming turbid on higher 

temperature. Reven et al.[46] observed best chain mobility of PEO amongst water-

saturated hydrogen-bonded polymer complexes. Thus reasonably good solubility of PEO 

in water at lower temperature and their hydrophobic/hydrophilic action in water facilitates 

to work with inhibitor to achieve new scale of gas hydrate inhibition. Vcap has been used 

as copolymer to prepare commercially available Luvicap 55W polymer for natural gas 

hydrate inhibition purpose.[47] In this work, VCap as monomer was tested to evaluate its 

synergistic property, despite the oxygen atom of VCap disturb the hydrogen bonding via 

making hydrogen bonding by own and hydrophobic caprolactum ring interact with hydrate 

surface with van der van der Waals interactions.[47-49]  

 

4. RESULTS AND DISCUSSIONS 
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4.1 Pure Methane Hydrate Experiments 

The data reproducibility and calibration of RC-5 instrument were previously done by using 

both pure and multi-component gas mixtures and the data for pure CH4 gas-hydrate 

equilibrium calibration experimental data and its comparison with previously published 

data is provided in Table 2. [31, 32, 50, 51]  

Table 2 

For the consistency purposes, all RC-5 cells have been calibrated and validated prior to 

their use for this study. For calibration purposes, experiments have been conducted with 

high-low-high temperature cycle to form and dissociate CH4 hydrates in presence of de-

ionized water within the cells at five different initial starting pressures that ranges from 

approximately 40 to 120 bars. These calibration results were plotted with existing 

published data[50, 51] in Figure S1 (available in supporting information).  

 

4.2 Amino Acids as Thermodynamic Inhibitors 

Aqueous solutions of all amino acids viz., Glycine, L-Alanine, L-Phenylalanine, L-

Histidine and L-Asparagine have been prepared at identical water cuts filled in rocking 

cells, and cells were pressurized with CH4 at different initial starting cell pressures (e.g. 

120, 100, 80, 60 and 40 bars). In low dosage hydrate inhibitor test experiments, 1 wt% of 

each amino acid has been used for CH4 hydrate inhibition, and for higher dosage 

experiments, 5 wt% of Glycine, and L-Alanine and maximum solubility of 4 wt % of L-

Histidine were used for the investigation of the dosage effect (concentration effect) on 

hydrate equilibrium.  

Figure 1: 

In the presence of low and high dosage of amino acids, hydrate dissociation temperature 

values are summarized against pressures in Table 3. Figure 1 and Figure 2 show graphical 

representation of CH4 hydrate equilibrium curves with the absence and presence of amino 

acids and allow comparison of the both conditions. Figure 1 demonstrates hydrate 

inhibition performance at 1 wt% amino acids, where almost null inhibition was observed, 

despite the drop in the hydrate dissociation points on CH4 hydrate curve, which clarify that 

low dosage amino acids cannot be considered as an effective thermodynamic inhibitors at 

this low concentrations.  
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Figure 2: 

Table 3: 

Consequently, increased amount of inhibitor dosages has been tested to evaluate 

inhibition action and those experimental temperature-pressure data points were given in 

Figure 2. It was observed that the dissociation points of CH4 + H2O + amino acid system 

does not show enhancement in hydrate inhibition performance at lower concentrations. 

However, a close perusal of Figure 2 reveals that, 5 wt% Glycine and L-Alanine have 

shown improvement in the inhibition effect significantly, nevertheless L-Histidine found 

to be inactive even at 4 wt% concentration.   

5 wt% Glycine and L-Alanine dissociation points were shifted toward low 

temperature zone of hydrate inhibition. L-Glycine and L-Alanine at pressures lower than 

40 bar, temperature was shifted maximum by 0.8 °C from the original CH4+H2O hydrate 

pressure-temperature equilibrium calibration curve. This improved behavior of equilibrium 

shift at higher concentration of amino acids was expected thermodynamic inhibition 

phenomena. The density plot (Figure S2 of electronic supporting information) of amino 

acids at different concentration and with PEO or VCap shows that on increasing the amount 

of inhibitor means availability of inhibitor’s molecules in per unit volume of H2O 

increased, thus number of hydrogen bonds disruption increases and gas hydrate clustering 

process is inhibited. Indeed, the failure of thermodynamic inhibition with high dosage (4 

wt. %) of L-Histidine occurred due to solubility issues. The solubility index of amino acids 

reveals that maximum solubility of L-Histidine is 4.19 g/100 g at 25 °C[52]. 4 wt.% of L-

Histidine was at the verge of solubility limit in aqueous solution at room temperature (25 

°C) and during the experimental operation temperature starts from 20 °C to lower degree 

of temperature where precipitation takes place within the high pressure cells. With respect 

to the further explanation on structural ground of inhibition via amino acids; glycine is the 

simplest structure of all the amino acids due to presence of a hydrogen atom on side chain 

position, whereas one additional –CH3 group present on side chain. The least side chain 

availability allows them to mix with water molecules completely, therefore methyl group 

of alanine does not have a remarkable effect. Hereupon, glycine and alanine shows similar 

thermodynamic inhibition performance in Figure 2. J-H. Sa and coworkers[16] also studied 

amino acids as CO2 hydrate inhibitors at pressures less than 40 bar and at different mole 
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concentrations. Our thermodynamic inhibition results agreed in parallel with their 

statements; (i) higher the concentration of amino acids better the hydrate inhibition 

performance; (ii) amino acids with solubility limits for which the concentrations exceeded 

aqueous solubility limit leaves undissolved particles and leads to precipitation from the 

aqueous phase; and thus does not take part in the inhibition process and does not show 

remarkable difference in the hydrate pressure-temperature equilibrium curve obtained for 

saturated or supersaturated amino acid aqueous solutions; (iii) Glycine and L-Alanine have 

been identified as potential natural gas hydrate inhibitors for thermodynamic hydrate 

inhibition purposes. 

Furthermore, in order to understand the molecular significance of amino acids 

moles have been calculated from 5 grams of L-Alanine and Glycine, and 4 grams L-

Histidine, which is equal to 5 wt% and 4 wt% respectively and yield to molar amounts of 

0.0561 moles of L-Alanine, 0.0666 moles of Glycine and 0.0258 moles of L-Histidine. 

Among the prepared solutions, the one that contains L-Histidine has the least amount of 

mole, which is due to the existence of an imidazole side chain in its structure. However, 

presence of low mole in water may not lead to form water-amino acid association 

significantly and thus it does not provide appreciable hydrate inhibition effect accordingly. 

 

4.3 Amino Acids as Kinetic Inhibitors 

Kinetics of CH4 hydrate inhibition has been also investigated in this study via observing 

the change in time delay that takes place during the hydrate formation takes place in the 

experimental setup. Time delay is comparted in the case of inhibitor presence and existence 

cases for benchmarking the effect of amino acids as kinetic inhibitors. Like thermodynamic 

inhibition experiments, kinetic inhibition experiments also carried out at different pressures 

that resembles the wide range of actual pipeline operation conditions.  The dissociation 

points of all amino acids have been summarized in Table 4 and plotted in Figure 3 as time 

vs pressure.  

Figure 3: 

Figure 3 shows that every amino acid at 1 wt% has capability to change the time delay 

from solid line (CH4+ H2O) except L-Histidine.  At lower pressures (P < 40 bar) L-

Phenylalanine poses maximum delay among other inhibitors and time delay shift trend 
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observed as L-Phenylalanine > L-Asparagine ≈ Glycine ≈ L-Alanine > L-Histidine. L-

Asparagine shows significant time delay in hydrate formation at 56 bar and 110 bar, 

whereas insignificant time delayed was observed at pressures 75 and 95 bar.  

Table 4: 

There were also some points observed at which no particular time delay trends can be 

obtained. An increased amount of amino acid does not contribute much to the time delay 

effect despite the use of the inhibitor at multiple times more dosages. Contrary, a close 

scrutiny reveals that L-Histidine at 4 wt% delay more nucleation time at 1 wt% at each 

pressure (Figure 4).  

Figure 4: 

Sa et al[15, 25] presented simulation and experimental results on the kinetic inhibition 

studies that uses various amino acids highlighting that Glycine and L-Alanine are the ones 

that provides appreciable kinetic inhibition performance. Moreover, they also reported that 

with the increasing of the concentration of the amino acids they did not encounter 

significant change in the nucleation. Roosta et.al[14] and Naeji[13] also reported that 

Glycine molecule actively participated in kinetic gas hydrate inhibition with CO2 system 

at 30 bar and also with tetrahydrofuran at atmospheric pressure.  

 

4.4 Synergistic Effect Experiments 

In order to test the synergistic gas hydrate inhibition effect; vinylcaprolactum (VCap) and 

poly-ethylene-oxide (PEO) has been added into aqueous solution of 5 wt.% of Glycine, 5 

wt.% of L-Alanine and 4 wt.% of L-Histidine amino acids as 1 wt% and synergistic effect 

experiments were carried out at four different pressures of CH4 with previously  explained 

temperature cooling-heating protocol. Similarly, experimental pressure, temperature and 

time data were collected and used in order to identify the hydrate dissociation point as well 

as the time delay for both thermodynamic and kinetics studies respectively. The 

dissociation points data for VCap + amino acids are summarized in Table 5 and they are 

plotted in Figure 5.  

Figure 5: 

According to the obtained data, VCap + Glycine and VCap + L-Alanine combinations did 

not provide significant effect on the shift of the hydrate equilibrium curve towards 
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inhibition or hydrate safe region and also they did not show capabilities to provide superior 

performance when they are compared with amino acids solely (without VCap) at same 

concentrations.  

Figure 6: 

In Figure 6, PEO + amino acids thermodynamic inhibition data is given. Figure 6 reveals 

weak thermodynamic inhibition performance. This result was expected since PEO has a 

more kinetic effect rather than thermodynamic effect, when it is combined with an 

inhibitor.[53] 

Table 5: 

 The kinetic studies have also been investigated for amino acid + VCap and amino 

acid + PEO combinations in order to evaluate the time delay in hydrate formation and these 

results are given in Figure 7.  

Figure 7: 

VCap + amino acid combinations show a remarkable time delay at lower pressures (40 to 

60 bar), however these results are not more than the time delay results that was obtained 

for the case that does not include VCap.  Thus, VCap detected as an incapable as synergist 

neither for thermodynamic nor for the kinetic hydrate inhibition applications. Amino acid 

+ PEO case at different pressures have been summarized in Table 6, and plotted in Figure 

8.  

Table 6: 

Figure 8: 

A steep trend was shown in the Figure 8 as the pressure increases, delay in hydrate 

formation reduces. From pressure range 80 to 105 bar insignificant time delay was 

observed comparatively to that of lower pressures. The most remarkable aspect of Figure 

8 was observed for L-Alanine + PEO combination that resulted approximately 35 hr of 

time delay in hydrate formation at a pressure of 56 bars, which was noted as an 

extraordinarily high induction for this study and is equivalent to four folds of time delay 

than L-Alanine posed by itself. Although it has been postulated by Lee and Englezos[54] 

that PEO triggers the kinetic inhibition effect when it is combined with a kinetic inhibitor 

compounds, categorically our case study revealed that at around 55 bars all three amino 

acids that are combined with 1 wt% of PEO have ability to alter the time delay in gas 
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hydrate formation exponentially. The trend of effectiveness of amino acids + PEO system 

as kinetic inhibitor for CH4 hydrates were observed as; L-Alanine > Glycine > L-Histidine. 

At pressure higher than 55 bar, L-Histidine shows better performance than L-Glycine and 

L-Alanine but a systematic trend was not observed due to the difference in experimental 

pressures (e.g. 62, 65 and 72 bars respectively). 

Figure 9: 

Figure 9 shows the composition of PEO combination with L-Histidine at 4% and with 

Glycine at 5%, which represent imidazole side chain help in kinetic inhibition in presence 

synergents rather than to diminishing. Interestingly, L-Alanine, Glycine and L-Histidine 

given same time delay of 12 hr at pressures 86, 81, and 83 bar respectively. Synergism or 

synergistic effect of amino acids + PEO mixture can be described in terms of interactions 

with water molecules. Water-soluble PEO contains hydrophilic oxygen atoms in the center 

and polymerized hydrophobic ethylene chain attached with oxygen atom. At one side 

hydrophobic polymeric chain pushes the water molecule away from CH4 by operating van 

der Waals hydrophobic interactions and provides shield over the potential hydrate cage. 

Whereas at another side, hydrophilic oxygen atoms form hydrogen bonds through 

electrostatic force of attraction (CH2O---HOH---OCH2) causing forward the time of 

nucleation. In the presence of water, amino acid act as hydrate inhibitor due to zwitterions 

(NH3+/CHOO-) solvation, hence disruptions occur within water. The individual effect of 

PEO and amino acids turn into synergistic effect as add them collectively (PEO + amino 

acid) in aqueous environment. In other words, by mixing PEO with amino acids, such 

enhancement of kinetic inhibition of ILs upon addition of polymeric synergents indicates 

that they may have nucleation hydrate inhibition effect rather than hydrate crystal growth 

inhibition effect. And similar conclusion can be made for the PVCap as its molecules 

disrupt the organization of water−gas molecules, increasing the barrier to nucleation with 

less impact then PEO can provide. The increased value of time delay in hydrate growth of 

L-Alanine in comparison with Glycine at similar pressure, temperature and concentration 

indicates that the presence of –CH3 at L-alanine side chain enhance the hydrophobic 

interaction (H3C—CH2) with PEO. The cause of synergistic effect in the presence of duo 

suggested that as soon as PEO enters into water bulk prevent the approach of water 

molecule towards CH4 through hydrophobic interaction and unaffected water molecule 
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disrupt by amino acids at water-CH4 interface. In their isochoric based gas hydrate 

equilibrium experiments, Kang et al.[48] reported twice induction time of CH4 hydrate 

growth with of PVCap + [HEMP][BF4] ionic liquids than that of ionic liquid alone and 

provide an explanation of similar mechanism of synergistic effect of combination.  

Figure 10: 

Figure 10 has been plotted to represent the comparison of induction time between amino 

acids + PEO mixture of this study and recently published results of polyVCap + ionic liquid 

mixture for CH4 and natural gas hydrate inhibition, which were obtained through similar 

isochoric based gas hydrate equilibrium experiments.[48, 55] As a result of examining the 

synergistic effect, hydrophobic chain of a polymer signified as the strongest part to 

synergize the inhibitor performance by repelling water molecule away from gas as a result 

that causes observed time delays.  

Moreover, it is important to mention that 5 wt% VCap and ionic liquids 

composition given a significant thermodynamic synergistic inhibition effect in our 

previous work.[31] Higher amount of inhibitors always support the thermodynamic 

inhibition performance despite the oxygen atom at carbonyl group of VCap attributed to 

hydrogen bonding with water molecule.[49] As far as kinetic of synergistic effect for 

VCap, it has been found to be incapable to do so simply because of the absence of the long 

polymeric chain. 1 wt% of VCap was further investigated with the presence of 5 wt% L-

Alanine for a previously studied quaternary gas mixture (e.g. methane, ethane, nitrogen 

and carbon dioxide)[31] at different pressures to compare with CH4 hydrate inhibition. 

Figure S3 and Figure S4 illustrate similar trend of inhibition behavior for both 

thermodynamic and kinetic inhibition effects.  

 

5. CONCLUSIONS 

In this work, we showed the capability of gas hydrate inhibitor performances of amino 

acids from both thermodynamic and kinetic inhibition perspectives. Low concentrations of 

amino acids showed poor thermodynamic and kinetic inhibition performances. At higher 

concentrations, some amino acids showed slight improvement in hydrate inhibition. 

However, when amino acids were coupled with synergistic effect additives, they have 

shown extraordinarily superb kinetic inhibition effect, which was explained by the 
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complicated interactions of the prepared compound complex with surrounding water 

molecules. L-Alanine in combination with PEO system has shown remarkably high kinetic 

inhibition performance with approximately 35 hr of time delay in hydrate formation at 

pressure of 56 bar in this study; which is indeed 4 folds of time induction effect when L-

Alanine itself is considered. As a summary, amino acids can be considered as 

environmentally friendly kinetic inhibitors when coupled with select synergistic additives. 
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Table 1: List of Used Inhibitors or Synergents for CH4 Hydrate Inhibition  

Amino Acid Structure 
M.W.  

(g/mol) 
Purity (%) Supplier 

Glycine 

 

75.06 ≥98.5 
Sigma-

Aldrich 

L-Alanine 

 

89.09 ≥99.5 Sigma 

L-Histidine 

 

155.15 ≥99.5 Sigma 

L-Asparagine 

 

132.12 ≥98.0 Sigma 

L-Phenylalanine 

 

165.19 ≥99.0 Sigma 

Polyethylene 

Oxide 
 

≈ 100,000 ≥98.0 
Sigma-

Aldrich 

VinylCaprolactum 

 

139.19 

 
≥98.0 

Sigma-

Aldrich 
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Table 2: Pure CH4 gas-hydrate equilibrium calibration experimental data and literature 

comparison. 

Reference [50] Reference [51] This Work* 

T (°C) P (bars) T (°C) P (bars) T (°C) P (bars) 

1.55 30.5 4.15 38.8 4.098 38.7 
1.65 30.6 10.75 77.7 5.31 42.35 
3.75 37.1 11.65 86.4 7.99 57.63 
5.65 45.8 11.75 86.8 8.87 61.30 
7.75 55.2 14.35 116.5 10.52 75.18 
8.15 57.2 15.35 131.6 12.94 98.59 
8.85 62.9   14.33 119.23 

*Standard uncertainties, u, are u(P) = 0.02 bar, u(T) = 0.25 °C 
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Table 3: CH4 Hydrates Dissociation Points (P-T) Obtained in the Presence of the Amino 

Acids at Different Concentrations. 

Amino Acids P (bars) T (°C) Amino Acids 
P 

(bars) 

T 

(°C) 

L-Alanine at 1 wt. % 

116.69 14.23 

L-Alanine at 5 wt. % 

110.49 12.86 

97.63 12.73 94.80 11.81 

76.95 10.70 75.83 9.76 

57.78 8.04 56.71 7.17 

39.05 4.27 38.08 3.42 

Glycine at 1 wt. % 

118.96 14.40 

Glycine at 5 wt. % 

96.06 11.91 

97.55 12.73 76.99 9.95 

77.04 10.63 57.09 7.26 

58.16 8.01 39.20 3.48 

38.89 4.18 - - 

Histidine at 1 wt. % 

118.40 14.45 

Histidine at 4 wt. % 

113.40 13.66 

97.99 12.84 98.45 12.69 

78.21 10.91 76.17 10.44 

60.28 8.47 58.56 8.02 

40.11 4.51 40.74 4.57 

L-Asparagine at 1 wt. % 

112.33 14.00 

Phenylalanine at 1 wt. % 

105.09 13.48 

95.15 12.57 97.67 12.91 

76.30 10.56 80.29 11.18 

57.43 7.95 60.27 8.50 

38.22 3.88 40.14 4.53 

*Standard uncertainties, u, are u(P) = 0.02 bar, u(T) = 0.25 °C 
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Table 4: CH4 Hydrates Formation or Induction Points (t-P) in the Presence of Amino Acids 

at Different Concentrations. 

Amino Acids P (bars) t (hrs) Amino Acids 
P 

(bars) 
t (hrs) 

L-Alanine at 1 wt. % 

115.35 5.06 

L-Alanine at 5 wt. % 

109.22 5.10 

97.02 5.12 93.76 5.77 

76.64 6.04 75.17 7.00 

57.37 7.74 56.30 8.17 

38.80 9.81 37.85 10.10 

Glycine at 1 wt. % 

118.06 4.10 

Glycine at 5 wt. % 

115.14 5.11 

95.92 5.84 95.16 5.40 

76.53 5.96 76.21 6.75 

57.79 7.70 56.03 9.33 

38.68 9.69 39.05 9.98 

Histidine at 1 wt. % 

117.54 4.29 

Histidine at 4 wt. % 

111.96 4.79 

96.93 5.17 96.64 6.17 

77.55 6.06 74.99 7.04 

60.05 6.99 57.76 8.33 

39.90 9.29 40.46 9.62 

L-Asparagine at 1 wt. % 

110.42 5.53 

Phenylalanine at 1 wt. % 

104.25 4.65 

94.52 5.10 95.85 6.13 

75.58 6.58 79.35 6.24 

56.60 8.50 59.66 7.53 

37.97 9.72 40.26 9.99 

*Standard uncertainties, u, are u(P) = 0.02 bar, u(T) = 0.25 °C 
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Table 5: CH4 Hydrates Dissociation Points (P-T) Obtained in the Presence of Amino Acids 

+ 1wt% VCap / PEO 

VCap + 

Amino Acids 
P (bars) T (°C) 

PEO + 

Amino Acids 
P (bars) T (°C) 

 

Alanine at 5wt% 

 

 

39.57 3.34 

5wt% Alanine 

58.25 7.86 

58.263 7.13 76.83 10.84 

97.252 11.87 96.27 12.33 

116.12 13.354 116.47 14.23 

 

Glycine at 5wt% 

 

38.96 3.26 

Glycine at 5wt% 

57.97 8.07 

57.18 6.90 76.47 10.36 

75.90 9.56 94.75 12.20 

94.09 11.53 113.11 13.80 

114.53 13.13 - - 

 

Histidine at 4wt% 

 

38.75 3.44 

Histidine at 4wt% 

57.79 8.19 

58.62 7.59 72.93 10.28 

76.97 10.17 95.55 12.41 

95.62 12.14 114.90 13.93 

113.19 13.56 - - 

*Standard uncertainties, u, are u(P) = 0.02 bar, u(T) = 0.25 °C 
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Table 6: CH4 Hydrates formation or Induction Points (t-P) Obtained in the Presence of 

Amino Acids + 1wt% VCap / PEO 

VCap+ 

Amino Acids 
P (bars) t (hrs) 

PEO + 

Amino Acids 

P 

(bars) 
t (hrs) 

 

Alanine at 5wt% 

 

 

39.39 9.9639 

Alanine at 5wt% 

56.20 35.10 

57.96 7.8167 71.74 13.85 

68.39 6.979 86.06 12.39 

96.58 5.375 98.50 12.75 

Glycine at 5wt% 

 

38.92 9.94 

Glycine at 5wt% 

56.29 30.31 

56.85 7.97 64.84 16.26 

75.87 6.51 81.49 12.61 

94.70 5.39 100.65 11.40 

113.68 4.75 - - 

 

Histidine at 5wt% 

 

38.50 9.90 

Histidine at 4wt% 

55.12 26.94 

58.32 7.54 62.38 18.18 

76.49 6.16 83.54 12.43 

94.96 5.17 104.57 10.61 

112.71 4.52 - - 

*Standard uncertainties, u, are u(P) = 0.02 bar, u(T) = 0.25 °C 
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Figure 1: CH4 hydrate dissociation points plotted against temperature and pressure for 
thermodynamic hydrate inhibition performance in presence of amino acids at 1 wt%. 
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Figure 2: CH4 hydrate dissociation points plotted against temperature and pressure for 
thermodynamic hydrate inhibition performance in presence of amino acids at 5 or 4 wt%. 
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Figure 3: CH4 hydrate induction points plotted against time and pressure for kinetic 
hydrate inhibition performance in presence of amino acids at 1 wt%. 
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Figure 4: CH4 hydrate induction points plotted against time and pressure for kinetic 
hydrate inhibition performance in presence of amino acids at 1, 4 and 5 wt%. 
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Figure 5: CH4 hydrate dissociation points plotted against temperature and pressure for 
thermodynamic hydrate inhibition performance in presence of amino acids at 4 and 5 

wt% + VCap at 1 wt%. 
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Figure 6: CH4 hydrate dissociation points plotted against temperature and pressure for 
thermodynamic hydrate inhibition performance in presence of amino acids at 4 and 5 

wt% + PEO at 1 wt%. 
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Figure 7: CH4 hydrate induction points plotted against time and pressure for kinetic 
hydrate inhibition performance in presence of amino acids at 4 and 5 wt% + VCap at 1 

wt%. 
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Figure 8: CH4 hydrate induction points plotted against time and pressure for kinetic 
hydrate inhibition performance in presence of amino acids at 4 and 5 wt% + PEO at 1 

wt%. 
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Figure 9: Comparative Induction time of amino acids for kinetic inhibition performance 
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Figure 10: Comparative induction time for synergistic effect in presence of amino acids 
+ PEO of this work and ionic liquids + PVCap at different pressures, (Green Bar - RSC 

Adv, 2013, 3(43), pp. 19920-19923), (Pink Bar - Energy & Fuels Energy Fuels, 2016, 30 
(11), pp 9162–9169). 
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