
 1 

 

Investigating the Challenges of Measuring Combination 

Mechanics in Textile Fabrics 

 

M. Issam Yousef 1 (miy30@hw.ac.uk) and George K. Stylios (g.stylios@hw.ac.uk)  

Research Institute for Flexible Materials RiFlEX, Heriot Watt University, UK 

 

Abstract 

Measurements of the mechanical behaviour of fabrics started during the Zeppelin 

ear in the 1900s, where tensile, shear and biaxial behaviour of the airship’s envelope 

fabric were measured. More measurement methods were developed later when there 

was a need to measure fabric handle and behaviour. Although measurements of 

tensile, shear, buckling and bending have been established and being used; their 

combinations, which represents a more realistic approach, are still being developed. 

But these multi-axial measurements pose challenges not only in apparatus design but 

in determining the measurement parameters also. Here these challenges are being put 

forward and further research requirements are identified and discussed.   

 

Keywords: Fabric measurements, fabric mechanics, biaxial testing, tensile, shear, 

and buckling. 

1 - Introduction 

Many ancient Greek and Roman sculptors displayed fabric behaviour manifested 

in the drape of their artifacts in a very realistic way, this topic is still in research until 

the present day (1). Engineering fabric properties has always been a vital need for the 

industry and it was boosted during the Zeppelin era in the 1900s (2), where the work 

of Haas in 1912 established fabric as engineering material by pioneering the study of 

fabric measurements and their mechanical properties (3). However, Pierce in 1930s 
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followed with the measurement of fabric properties such as bending to determine 

fabric handle (1).  

Fabrics are defined in many ways and their specification takes several forms. At 

the very basic level, which is regarded as basic but necessary for manufacturing, 

buying and selling, there is fabric weight, yarn type and count and weave or knit type. 

And then, depending on the fabric’s end use, performance data will follow. Garment 

fabrics will have different data than upholstery, which will have different data from 

geotextiles. This enables fabric specification to determine its end application, but at 

the same time, it also creates difficulties determining what these requirements may be.  

But all these specifications are based on properties measured in a single axis and at 

different loads depending on where the fabric will be used. This is generally 

acceptable and there is little argument that can be made. However fabrics as flexible 

materials, whether they are used for garments or for high performance, and they do 

not behave under one mode of deformation i.e. not in one axis but in combinations 

(4). This is irrespective to the load applied, which is low in garments and high in 

composites.     

This area, although recognized, is still at its infancy. Attempts have been made to 

provide methods of measurement, of combined properties, but these have not enabled 

their further development and ultimate use. This is an attempt to critically investigate 

that research to establish its challenges and to provide suggestions for future 

measurement and instrumentations.   

2 - Literature Review  

Stylios (1) concluded that despite all the advances in nanotechnology and smart 

textile research fields, fabric measurement technologies are still very important and 

vital for the textile industry. He broadly outlined the developments of fabric 

measurements from the research of TEFO in Sweden in the 60’s where the 

measurement fundamentals where established and reported, to the early 70’s where 

the Kawabata Evaluation System (KES) was developed for accurate prediction of 

fabric handle and then to the creation of Fabric Assurance by Simple Testing (FAST) 

by CSIRO to predict the tailorability of fabrics. 
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In the early 70s, Kawabata studied fabric mechanics elaborately and produced 

detailed models, not only for the biaxial behaviour of woven fabric but also for 

bending, tensile and shear. With relating the system developed in these research to the 

handling properties of fabrics, the Kawabata Evaluation System (KES) was created 

and used as an approach to measure fabric mechanics in relation to apparel handling.  

The KES measures the mechanical properties of textile fabrics at small 

deformation and low stress level, and it has been significantly studied in many 

publications (5-8). The system consists of four machine blocks, the tensile and shear 

tester that measures linearity of the curve, tensile energy, resilience, shear stiffness, 

hysteresis at 0.5°and hysteresis at 5° . The pure bending tester measures bending 

rigidity and the hysteresis of the moment. The compressibility tester also measures 

linearity of curve, compression energy and resilience. The KES surface tester 

measures the coefficient of friction and geometrical roughness.   

Pan et al (9) concluded that the high inter-correlation between the measured 

parameters may duplicate the information and make it hard to interpret.  On the other 

hand, Hu el al (10) referred to the shear property measured on the KES as not a pure 

shear thus can not be used to calculate the shear modulus and developed a calculation  

on their own to get the modulus from the shear rigidity calculated from KES.  

The KES is a complex system, difficult to use and considered to be a scientific 

device for research (11-13).  It is also very expensive equipment due to the 

sophisticated structure (1, 9) and the need of an experienced operator in order to run 

the tests and give effective implementation of the readings (14) That is why it has not 

been adopted by the industry (13).   

In the 80s the Fabric Assurance System by Simple Testing system (FAST) was 

designed to measure the mechanical properties of fabric at low stress and the 

dimensional stability of fabrics (15), the system is used to predict performance and 

appearance in wear (11, 16, 17). The system has three testers; FAST1 is the 

compression meter, where the thickness at 2 g/cm2  and 100 g/cm2  are measured. 

FAST2, the bending meter, measures the bending rigidity using the cantilever 

concept, where a light cell measures the bending length. The extension meter, FAST3, 

measures the extension of fabric stripe in warp and weft direction and in biased under 
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5, 20 and 100 g/cm2.  From these values the Shear rigidity G and Formability can be 

calculated (11, 14, 16).  The system doesn’t provide enough data for complete stress-

strain profile because it is limited to the given goods and it is considered to be more 

suitable for industry (1).   

The shear in the FAST system uses a different shear concept from the KES system, 

the two concepts are illustrated in Figure 1. The KES shear is a simple shear in 

principle, where shearing force F is applied in the direction of one of the yarns set, W 

is the tensile force applied during the test and θ is the shearing angle making the shear 

resistance R (18)   

𝑅 =  
𝐹−𝑊𝑡𝑎𝑛𝜃

𝑑
 𝑔𝑓/𝑐𝑚   (1) 

In the bias extension test applied in the FAST shear equipment, the sample is cut at 

45° bisecting the right angle between warp and weft in the fabric and F, the tensile 

force is applied to one side. The resistance in this case is calculated (18)    

𝑅 =  
𝐹

2𝑑
 𝑔𝑓/𝑐𝑚    (2) 

The bias extension test is simple, easy and can be carried out on any extensometer 

and thus considered to be more suitable for industrial use (19, 20). 

 

Figure 1: Concept of simple shear in (KES) (a), and bias extension (FAST) (b), 

image adapted from (19) 
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It is worth mentioning that a high correlation was found between the measurement 

of the extension and shear rigidity of the FAST 3 and the Kawabata tensile and shear 

meter KES 1 (21, 22).  Moreover, a high correlation was reported in bending rigidity 

between FAST2 and KES-FB2 (12). 

Pan et al (9) also used the bias cut sample to measure the shear properties on an 

extensometer, in an attempt to produce similar mechanical properties as the KES 

system. The tensile test was carried out normally by choosing a proper load or 

extension; the stress was kept lower than the breaking stress where the non-linear 

behaviour of the fabric is detected. For pure bending, a compression cell on a tubular 

sewn sample was used, to apply compression force to a given displacement. 

Compression and friction properties were measured by means of compression cell and 

a set of, pulley and sliding surface for the friction test. He concluded that the shear 

and bending curves he generated, were not similar to the Kawabata curves, as they 

were plotting different values, even though they reveal the same physical information. 

Leung et al (23) considered 7.5% extension as representative for a shear angle of 8°. 

The shear rigidity G is calculated from the slop of the linear regions of the curve, 

Figure 2. Despite the fact that they concluded high correlation between shear rigidity 

from the KES system and shear rigidity from the bias extension, they also highlighted 

that there is a difference between the Kawabata and the bias test, not due to the 

structure but due to the difference in method referring to Buckenham trellis 

deformation during shear (19, 23). 

 

Figure 2: Shear graph produced by a bias sample on an extensometer, image 

adapted from (19) 
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However, there is a drawback in using bias samples to measure shear. The stress 

distribution is not homogeneous since the clamps do not allow any constrain near the 

end of the sample (24). The sample during the bias extension will have three major 

zones of deformation (20). On the other hand, Spivak (18) concluded that there is no 

relation between bias extension and shear, since shear is parallel to the warp and weft 

direction. Similarly, Pan et al (9) concluded that they are not similar to the Kawabata 

curves as they plot different values, however; they reveal the same physical 

information that shear curves do in the KES system. Hearle (25) studied different 

shear values and properties from different methods and he concluded that it is not 

worth describing all shear instruments as they share the same principle, this however, 

does not mean that there are no differences, but that they all can be reasonably 

ignored.  

The bias extension concept is also used in the CHES-FY system developed by 

Zhaoqun (26-29), where the fabric is fixed by a pair of jaws and hung between a fixed 

pin connected to a sensor and U-shaped pins that lift the sample to stretch it between 

the U pins and the pin sensor. The tensile applied in this combination can be used to 

measure tensile with a normal sample and shear with a bias cut sample. Although 

Zhaoqun (29) concluded that the CHES-FY results were in correlation with the KES 

and FAST results, only bending was discussed in details while data for shear rigidity 

measurements were not reported. 

Measuring shear properties did not start with the KES system, although it is 

currently the most common testing method. During the Zeppelin era in the early 

1900s, Haas (3) used a novel method to measure the fabric shear properties by means 

of cylindrical fabric test.  Later, Ckhadwic in 1949 used this method to calculate shear 

modulus by applying uniaxial tensile on a cylinder mountained at a bias angle (30), 

which according to Zheng et al (31) they could not present any results, Figure 3.  In 

this test, a 24 cm length sample is being formed into a 4 cm diameter cylinder and 

clamped between two jaws, where one of them is attached to a balance arm with a 

protractor to indicate the twist angle of the fabric. Weights are added to a pan to twist 

the fabric to 30 - 35 degree in both directions, and the shear stress and shear strain are 

calculated according to Subramaniam and Sivakumar (30) as in Equation 1 and 

Equation 2 respectively. 
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𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑒𝑠𝑠 =  
𝐹𝑑𝑐𝑜𝑠𝛼

2𝜋𝑟𝑇
       (3) 

Where, F is the weight, d is the arm length between the weight F and the center, T 

is the specimen thickness and α is twist angle read by the protractor. 

𝑆ℎ𝑒𝑎𝑟 𝐴𝑛𝑔𝑙𝑒 𝜙 =  𝑡𝑎𝑛−1 (
𝑟𝜋𝑑

180𝐿
)   (4) 

Where, L is the distance between the clamps and r is the clamps radius. 

 

Figure 3: Cylindrical shear test, image adapted from (30) 

Subramaniam and Sivakumar (30) concluded that this method gives realistic shear 

behaviour since it is being measured as its actual use in a cylinder form not as a flat 

specimen.  In a later research, Subramaniam et al (32) concluded that applied torsion, 

specimen size, fabric sett and shear strain are the main factors that affect shear 

property. This method also considered as a method to measure the biaxial tensile 

when the cylindrically shaped fabric undergoes a compressive stress and internal 

surface pressure (33), but this measurement is not satisfactory because it doesn't cover 

all biaxial tensile aspects (34).  

Many other methods to measure shear properties were also developed,  according 

to Behre (35), Derby then Morner and Eeg-Olofsson were the first to use the disk 

attachment on Instron named as Planoflex.  The measurement was made by means of 

an attachment to measure the angle between two shear limits when the fabric wrinkle, 



 8 

Figure 4. The shear deformation is achieved by a wheel to transform the movement of 

the cross head of the Instron into circular movement for the wheel, which by mean of 

bars, bearing and weights will apply shearing force on a sample that is clamped to 

these mechanisms (35, 36). 

 

Figure 4: Shear using a disk on extensometer, image adapted from (36) 

Other attachment on extensometers was also created by Culpin (37), where a 

square clamping frame is installed diagonally on tensile testing machine, Figure 5.  

However, Bassett et al (24, 38) considered that this method fail to achieve a 

homogeneous strain due to the wrong positioning of the pivots of the clamps, which 

cause buckling and slippage of the fabric edges near the clamped region.    
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Figure 5: Culpin frame, image adapted from (37) 

Bassett (24) also concluded that in the conventional two clamped sides shear tester, 

it is very difficult to apply homogeneous stress on the specimen, thus suggesting the 

need for more accurate measurement with four sides clamping to impose a uniform 

distribution. 

Others worked to increase the complexity of the standard shear test by studying 

biaxial behaviour. Chang et al (39) measured the biaxial shear of fabrics by testing a 

bias cut cruciform sample on a biaxial tester, a microscope was used to highlight the 

microscopic changes of the geometry. Later, Harrison and Potluri (40) and Abdiwi et 

al (41) used the same method to investigate the effect of tension on the shear 

behaviour.  Similarly, Prasad et al (42) applied biaxial tensile on a bias sample but in 

a rectangular shape, Figure 6, and claimed that this method eliminated the 

disadvantages of having a non-uniform shear distribution that comes form the other 

methods that uses cruciform. 
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Figure 6: Bi-shear test scheme 

This method can’t compute the shear angle from the cross head movement as in the 

bias extension test but it can be calculated from the center square by drawing a cross 

on the sample prior the test as the center square is the one which indicates a full shear 

angle, while other areas can have half the shear angle and others no shear at all (43).  

Harrison et al (40, 43) used this method to measure the shear-tension coupling in a 

fabric and the onset of wrinkling as the shear angle of the fabric used can be up to 60° 

(42).  

Early in the 19th century and specifically during the Zeppelin era, Haas (3) had to 

measure fabric strength, creep and biaxial stress/strain of rubber-coated linen fabrics 

(2, 44).  Amongst these measurments, he was the first to develop and use a biaxial 

tester in 1912 for Siemens-Schukert (3, 24, 45).  This device used a metal frame 

where two tensions can be applied on the cruciform fabric sample by means of two 

weights of sandbags, Figure 7. Haas was able to produce different results and was 

also able to calculate the distribution of the tension in the sample, as illustrated in 

Figure 8. 
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Figure 7: Haas biaxial tester 

schematic drawing. image adapted from 

(2) 

 

Figure 8: Stress distribution in the 

sample, image adapted from (2) 

The development of biaxial testers continued with the measurement of rubber 

films, they were based on two perpendicular directions according to (46), but rubber 

being isometric provided little challenges in providing data results. Later, Checkland 

et al (47) developed a two direction tester based on a lathe chuck to strain the sample, 

Figure 9.   Klein (48) created a biaxial tester that used a cruciform sample with flat 

clamps to hold the sample and were able to measure the stress and strain in both warp 

and weft directions, Figure 10.  Clulow and Taylor (49) also developed a biaxial tester 

that used a cruciform sample, able to measure stress/strain of plain woven fabric, 

Figure 11.  
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Figure 9: Checkland biaxial straining device, image adapted from (47) 

 

Figure 10: Klein biaxial tester, image adapted from (48) 
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Figure 11: Clulow and Taylor tester, image adapted from (49) 

Biaxial testers have a similar concept, two perpendicular loads to be applied on a 

specimen; however, the difference between these designs is the measurement 

accuracy, which is depended upon the sample shape and the clamping method used to 

hold the specimen. Clamping the specimen on a biaxial tester is a major problem 

because gripping the specimen allows the fabric near the clamps to undergo tensile 

strain in the direction of the clamps (24, 38).  

The clamping method used to hold the sample in Checkland and Klein’s biaxial 

testers was with straight, not segmented, solid clamps, which did not allow stress in 

the direction of the clamps near the gripped area (24, 38, 46, 50).  In these biaxial 

testers, a homogenous distribution can’t be achieved. Bassett et al (24, 38, 50) 

discussed different gripping arrangement shown Figure 12. In the cruciform test (A), 

only the central part of the sample undergo as biaxial tensile while the arms undergo a 
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uni-axial tensile loads thus there is no need to have tensile in the other direction near 

the clamps and hence a solid clamp can be used.  To avoid inhomogeneity in this 

method, the cross yarns in the specimen arms are removed to allow the central section 

to carry the load; however, this might produce inhomogeneity caused by the 

difference along the specimen arms yarns stiffness and crimp that is usually 

eliminated when the crossing yarns share the load.  Similarly, the grab test (B) applies 

biaxial forces in the center of the sample, but the sample here is square and the 

cruciform shape is achieved inside the square. Both A and B methods don’t produce a 

homogeneous stress distribution in the sample (24).   

 

Figure 12: Biaxial tensile sample options, image adapted from (24) 

This problem was solved by using segmented clamps of finite areas (24, 46) to 

allow movement along and near the direction of the clamps. Treloar (51) in 1948 was 

the first to use pins or segmented clamps on a square sample of rubber to apply 

homogenous strain.  Kawabata et al (52) followed a similar concept in his work and 

used a square sample to measure the stress/strain in two directions, but he measured 



 15 

the stress over the center sections of the specimen sides. Later, MacRory et al (53) 

adopted the same method and gripped each side of the sample with 4 wire hooks per 

cm. The wires are connected to a coil spring through which a bar is inserted, this 

arrangement measures the fabric load applied on a single direction as a total of the 

spring forces on that direction.  

Although this clamping method proved to have more homogenous stress over the 

sample, there might also be prone to have less stress near or between the clamps than 

in other parts of the sample (24).      

It is appreciated that to measure accurately stress and strain in more than one 

direction, the design of the apparatus, the size and shape of the specimen and its 

clamping are complex and accuracy and efficiency are in question.   

Many tried to simplify the design of biaxial testers and reduce their cost by 

achieving the biaxial straining or movement by a tensile tester attachment or a single 

engine machine.  Reichardt et al (54) had produced a two-dimensional force extension 

tester for woven fabric, which can measure the forces developed in one direction as a 

function of strain in that direction when the fabric is being extended in two 

perpendicular directions. This works as an apparatus attachment to an Instron tensile 

tester. Clay (55) developed a similar attachment. Yasuhiro (56) on the other hand 

based his biaxial tester on a single motion source to provide strain on both direction at 

the same time. Recently, Boisse (57) developed a biaxial tester based on the same 

principal, Figure 13, with solid clamps to measure cruciform samples  from which 

they removed the cross yarns in the sample’s arms.    
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Figure 13: A biaxial device used by Boisse, image adapted from (57) 

Although the biaxial tester attachments that are made to be installed on common 

extensometers can be very convenient and less expensive, the forces in the two 

directions can’t be varied independently since they use one force applied and 

transferred into the sample on both directions. This makes the use of these 

attachments limited, as independent biaxial forces are important in order to fully 

assess the behaviour of the fabric by simulating real end use applications.  

In real end uses, deformations such as tensile, bending, shear and compression 

rarely happen separately, but they almost always apply in combination during fabric 

processing and usage (4). Combined tensile and shear represent most applications, 

other out of plane deformations occur as well and they cause stresses in fabrics that 

are considered to act in-plane of the fabric, therefore it is not necessary to consider 

them (58).  Many researcher investigated the combined deformation starting with 

Bassett (24, 38), who referred to testing the fabric as a tube, Figure 3, as a combined 

test between biaxial tensile and shear when the compression is applied with torque on 

the edge of the fabric. However, this method has limitation since the seam in this test 

has to be flexible and with negligible differences to the rest of the fabric and is mainly 

designed for industrial applications such as pneumatic structures (24).  

Yendell (59) was the first to build a combined apparatus but Ghosh (46) referred to 

Freeston et al (58) as the first to use a biaxial tester with clamps that rotate around a 

perpendicular axis to apply shear deformation. 



 17 

 

Figure 14: The combined tester used by Freeston, image adapted from (58) 

Freeston’s equipment, Figure 14, uses a cruciform sample clamped by jaws free to 

rotate about an axis perpendicular to the plane of the test, from which the tester can 

apply shear deformation on the sample.  Load is applied by a hydraulic pump and 

strain is being measured photographically.  The sample edges width are 4 inchs, the 

uniform biaxial stress is only 2X2 inch in the center of the sample.  Although 

Freeston et al (58) mentioned that shear can be applied on the sample by rotating the 

clamps, they did not use the tester for combined tests and there is no shear results 

presented, moreover; Freeston and Sebring et al (60, 61) when they described the 

same tester, they did not mention this device’s capability of applying shear, thus its 

capability to apply and measure combined stresses is in question.   

Yendell (59) developed an apparatus that can apply simultaneous shear and biaxial 

tensile on a cruciform sample, Figure 15.  Scardino and Ko (62) have used this 

instrument to investigate the behaviour of triaxial woven fabrics under shear and 

biaxial behaviour to prove that they are superior to normal woven fabrics for 

combined deformation applications.  
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Figure 15: Yendell tester, image adapted from (59) 

Loads in warp or weft direction are applied by spring balances that transfer the 

stresses to the fabric by means of bars (1 and 2).  The bars are pivoted with the clamps 

at (3 and 4).  Shear is achieved when the weft is being rotated in relation to the warp 

by moving the load in the see-saw beam (5), connected to the weft system by arm (6).  

The stress distribution in the sample is unbalanced due to the cruciform specimen and 

the pivots that allow the claps to rotate cause buckling at large deformation.  

Later, Bassett (24) developed a testing machine able to test a biaxial tensile and 

apply shear at one of the axis, Figure 16.  E, W, S, and N are moving crossheads and 

shear occurs in axis NS. 
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Figure 16: Bassett combined biaxial tensile and shear tester, image adapted from 

(24) 

Bassett solved the problem of the inhomogeneity of the cruciform specimen by 

using a square sample and he used hooks in order to avoid the inhomogeneity 

developed by using solid clamps. However, this apparatus still rotates one set of yarns 

to achieve the shear before applying the biaxial deformation, increasing the risk of 

buckling the sample.  

Stylios (1) developed an apparatus, the Fabric Automatic Measurement and 

Optimization Universal System (FAMOUS), Figure 17, that was able to automatically 

measure combined tensile and shear, by being able to move the fabric in two axis and 

at different loads and speed rates.  

 

Figure 17: FAMOUS system, image adapted from (1) 
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Lately, Cavallaro and Sadegh et al (63-65) developed an equipment that applies 

biaxial stress and shear stress simultaneously, Figure 18. 

 

Figure 18: The combined biaxial tension and shear tester. The biaxial test (left).  

The shear test (right), image adapted from (63) 

The up and down movement of the top part will result in pushing the clamps 

holders outward thus applying a biaxial stress, Figure 18 left.  The shear is applied on 

the sample by moving the two sets in respect to the other, Figure 18 right. This tester 

uses a cruciform samples and it hasn’t been used for convention fabrics.   

Sadegh and Cavallaro et al (66) have developed another tester using a two scissor 

jack assemblies, an upper and a bottom one.  The bottom assembly is attached to a 

turntable to allow rotation in respect with the upper assembly.  A cruciform sample is 

attached to load clamps that are connected by the assembly hinges.  Two load screws 

with motors open and close the assemblies in order to apply tensile and in-plane 

compression on the sample, the turntable will rotate by means of another motor and 

turn the bottom assembly to apply shear stress, Figure 19. 
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Figure 19: A combined tester by Sadegh, image adapted from (66) 

In both previous testers, the fabric shear is applied by moving one set of clamps 

opposite to each other and rotating it in respect with the other set, which is a one-

direction shear with the potential of buckling the sample at high shear degrees. These 

testers also measure cruciform specimens with solid clamps meaning that the 

inhomogeneity problems associated with these samples still exist. These testers have 

complicated mechanisms and many moving parts, which might lead to friction and 

complications and increase in operation process, maintenance and cost. The materials 

that these testers are designed to measure are glass fabrics with require high loads and 

low sensitivity, making their application for the standard fabric applications doubtful.   

3 - Discussion and Conclusion  

Measuring fabric’s mechanical behaviour started during the Zeppelin era, before 

the need of measuring fabric handle. During that era there was a great need to 

measure the behaviour of the airship’s envelop under different loads and thus tensile, 

shear and biaxial tension were measured. Later, the need to measure fabric handle for 

garments developed measurement methods for mechanical properties. 

Although these measurements are useful in distinguishing fabrics, they do little in 

determining the behaviour of fabrics, as fabrics are imposed to multi axial loads 

combinations, rather than single axis stresses and strains. To this day researchers have 

been investigating multi-axial testers.  Lynch et al (67) developed a three axis loading 

device to help applying load on three axises.  Cavallaro et al (68) developed a mutli-

plane triaxial tester to carry out shear and biaxial in the textile plane and compression 
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on the vertical plane. Monteiro et al (69) developed an multiaxial tester that measure 

tensile at four axises, with 45° difference between them.  

Du and Yu (26) classified fabric testing systems into two groups; SPST, as Single 

Property through Single Test and MPST, as Multiple Property through Single Test.  

They considered the SPST systems to be time consuming, expensive, but low in error 

(26), examples of the SPST systems are the KES and FAST instruments. MPST 

systems saved time and were less expensive, such as FAMOUS and CHES-FY. 

However both systems measured mechanical properties separately, except in the case 

of FAMOUS, which can measure combined loads.    

The measurement of combined behaviour, and studying the interaction between 

them, has been studied by many researchers. Recently, more equipment that combine 

biaxial testing and different types of deformations have been developed. Although 

these equipment measure similar concepts, they differ in methods of measurement 

that produce different stress distribution in the sample and hence different results. The 

type of sample clamping, the shape and the size of the sample and the application 

method are the main factors that need to be considered when designing new tester that 

would effectively provide combined properties. These testers are not commercially 

available, have a very complicated structure for avoiding frictional interference, and 

have a difficult method of fabric measurement and interpretation of the data. It is 

therefore paramount to find a simple design that is free from any clamping and 

frictional movement of parts. 

In conclusion, a universal apparatus that can measure combined properties at low 

and high loads is needed and the research community should focus its efforts on this 

area. This way, the behaviour of fabrics will be realistically measured and their 

development for fulfilling various end uses will be effective. This new apparatus 

should have a simple design without complicated assemblies, resulting in reliable and 

low cost universal equipment. A clamping method ensuring stability and equal strain 

distribution is necessary, bi-tensile and bi-shear should be applied on both principal 

axis at the same time to generate a homogeneous stress in the sample. This design of 

the apparatus should allow the measurement of standard fabrics at low loads as well 

as high performance fabrics of high loads.  
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