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Quantum nonlocality, i.e. the presence of strong correlations in spatially separated systems which
are forbidden by local realism, lies at the heart of quantum communications and quantum com-
puting. Here, we use polarization-entangled photon pairs to demonstrate a nonlocal interaction of
light with a plasmonic structure. Through the detection of one photon with a polarization-sensitive
device, we can prevent or allow absorption of a second, remotely located photon. We demonstrate
this with pairs of entangled photons in polarization, one of which is coupled into a plasmon of a
thin metamaterial absorber in the path of a standing wave of an interferometer. Thus, we realize
a quantum eraser experiment using photons and plasmonic resonances from metamaterials which
promises opportunities for probabilistic quantum gating and controlling plasmon-photon conversion
and entanglement. Moreover, by using the so-called coherent perfect absorption effect, we can
expect near perfect interaction.

Keywords: Plasmonic metamaterials, Coherent Perfect Absorption, Quantum interferometry,
Quantum optics

One of the quintessential aspects of quantum mechan-
ics is the existence of entangled states whereby the clas-
sical description of a particle being in a well-defined
state is replaced with a quantum description based on
superposition of states. Moreover, quantum entangle-
ment provides a unique route for nonlocal correlations
between remote particles such as photons. Beyond
the relevance to the fundamental questions of quantum
physics1−4, nonlocality is a resource for a number of ap-
plications such as quantum teleportation, quantum era-
sure, and interaction-free measurements5−11. In addi-
tion to demonstrating a new application of nonlocality,
our work presented here is also relevant to the field of
quantum plasmonics. This rather recent field emerged in
2002 when Altewischer et al.12 showed that light passing
through a metallic nanohole array conserved the quan-
tum state of entangled photons. In parallel, Lukin and
co-workers demonstrated that single plasmons can be
generated from single photons as a process that can be
deterministic13,14. More recently, Hong-Ou-Mandel two-
photon quantum interference with plasmons was theoret-
ically studied15 and experiments were carried out16−18,
thereby providing experimental proof that propagating
plasmons retained the quantum coherency of the photons
that launched them.

In this work, we demonstrate that entangled photons
can be used to achieve a remote interaction of photons,
in the form of a quantum eraser, with the excitation of
plasmonic modes resulting in coherent perfect absorption
of light. In order to do so with polarization-entangled

photons, we constructed a polarization-sensitive ’quan-
tum eraser’ interferometer for which we show that the
conditions for interference can be non-locally modified
through a polarization-sensitive detection of the entan-
gled photons. We previously demonstrated that the level
of coupling to plasmons by using a thin metamaterial
placed in a single photon interferometer can be varied
from nearly 0% (’perfect transmission’) to 100% (’perfect
absorption’), depending on the position in the standing
wave, whereas only 50% absorption is observed, when the
standing wave is not formed19,20.

The concept.— In a simplified Sagnac interferome-
ter, an input beamsplitter creates two optical paths A
and B (see Fig.1). To render the device polarization-
sensitive we introduce a half-wave plate only in path A
and orient its main axis to be 45◦ to the plane of the
interferometer21. In what follows we will refer to light
linearly polarized in the plane of the interferometer as
horizontally polarized (H-polarized) light and light po-
larized perpendicular to the plane as vertically polar-
ized (V-polarized) light. Such an interferometer creates
standing waves only for light polarized along the fast and
slow axis of the waveplate. Input linear polarizations of
+45◦ or −45◦ to the plane of the interferometer will not
be affected by the wave-plate and will evolve through
both paths A and B as identically polarized traveling
waves forming two standing waves in the interferometer
with the antinode for +45◦ corresponding to the node
for −45◦. Conversely, the half-wave plate converts a ver-
tical polarization into a horizontal one, and vice versa:
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2

so if vertically or horizontally polarized light is launched
in the interferometer, optical paths A and B will contain
counter-propagating orthogonal waves that do not inter-
fere: a standing wave is not formed in the interferometer.

Now, with polarization-entangled photon pairs (de-
noted idler i and signal s photons for each pair, see Fig.1)
it is possible to nonlocally select the state of the signal
photons inside the interferometer, through a measure-
ment on the idler photons outside (and that never en-
ter) the interferometer. This is achieved by adding a
polarizer on the idler channel. When the idler polar-
izer is set to either an angle of +45◦ or −45◦ to the
plane of the interferometer, the polarization state of the
polarization-entangled signal photon will be polarized at
−45◦ or +45◦ correspondingly. The signal photons path-
entangled wavefunction will form a standing wave in the
interferometer and strong dissipation in the ’coherent
absorption’ regime and zero dissipation in the ’coher-
ent transmission’ regime can be observed22. Conversely,
when the polarizer in the idler channel is set vertically or
horizontally, the polarization state of the signal photon
will be necessarily projected to the horizontal or vertical
polarization, correspondingly. Therefore, due to distin-
guishability of optical paths7,8, no standing wave will be
formed in the interferometer and the coherent absorption
process is no longer visible.

Therefore, the scheme described here is a dissipative
form of a quantum eraser: the interferometer polarizer
rotated to the horizontal or vertical polarizations intro-
duces a ”which-path” information and hence removes any
standing-wave effects at the metamaterial. By selecting
idler photons (i.e., outside the interferometer) at 45◦, the
”which-path” information is nonlocally erased and coher-
ent control of absorption is observed at the metamaterial.

The experiment.— The experimental setup is shown in
Fig.1. We generated pairs of polarization-entangled pho-
tons at the wavelength of 810 nm by spontaneous para-
metric down-conversion (SPDC). A 200-mW laser diode
with emission centered at the wavelength of λp = 405
nm was used to pump a 2mm-thick type-II beta-barium
borate (BBO) nonlinear crystal producing non-collinear,
degenerate photon pairs. Polarization entanglement is
achieved by adding 1mm-thick BBO compensation crys-
tals and half wave plates set at 45◦. The photon pairs col-
lected from the areas of intersections of phase-matching
cones were coupled to single-mode fibres with collima-
tion lenses. A 10-nm bandpass filter centered at 810 nm
was used to block the pump radiation and select ’twin’
SPDC photons. As detailed in Fig.1, the idler channel
was connected to a photon counting avalanche photo-
diode detector and a coincidence counter (IDQuantique
ID800). It was used to control the presence of the signal
photon within the interferometer. The signal photons
were coupled to the interferometer. A variable retarder
was used to compensate for the polarization change in
the signal fiber. The photons enter the interferometer
through a lossless (50 : 50) non-polarizing beam splitter.
The thin metamaterial absorber was placed at the centre

of the interferometer between two x10 microscope objec-
tives producing a spot size of ≈ 10 µm in diameter. The
absorber’s position was scanned using a piezoelectrically
actuated linear translation stage over a few optical wave-
lengths. The sum of the photon counts were detected by
the two avalanche detectors (PDA and PDB) in coin-
cidence with the idler photon PDi within a 10 ns time
window.
The SPDC source creates a quantum superposition of

polarized photons of orthogonal basis. The wavefunc-
tions general form for polarization entangled states of
this type is23:

|Ψ〉 = 1√
2
(|H〉i|V 〉s − |V 〉i|H〉s) (1)

where indices i and s denote the idler and signal photons
respectively and |H〉 and |V 〉 denote the horizontal and
vertical polarization states respectively.
The path entanglement wavefunction of a single pho-

ton that enables interference has the general form:

|Ψ〉 = 1√
2

(

|1〉A|0〉B − eiφ|0〉A|1〉B
)

(2)

By integrating the path entanglement wavefunction
(Eq.2) into the polarization entanglement wavefunction
(Eq.1), in representation of our optical scheme, we ob-
tain:

|Ψ〉 = 1

2

[

|H〉i
(

|H〉A|0〉B − eiφ|0〉A|V 〉B
)

−|V 〉i
(

|V 〉A|0〉B − eiφ|0〉A|H〉B
)]

(3)

And by expanding, we arrive at the path entanglement
of two polarization wavefunctions:

|Ψ〉 = 1

2
[(|H〉i|H〉A − |V 〉i|V 〉A) |0〉B

−eiφ|0〉A (|H〉i|V 〉B − |V 〉i|H〉B)
]

(4)

We first measured the degree of polarization entangle-
ment of the generated photons . These measurements
were performed for two different polarization basis sets,
|H,V 〉 and ±45〉 which correspond to 1) horizontal and
vertical polarizations and 2) polarizations at +45◦ and
−45◦ to the plane of the interferometer. The Bell param-
eter was then found to be S =

√
2(V1+V2) = 2.66± 0.01

where V1,2 were visibilities calculated from the correla-
tion curves for the two basis sets. Here, according to
the Clauser-Horne-Shimony-Holt inequality23−25, a value
of S greater than 2 implies nonlocal quantum correla-
tions. We note that our measured value of the Bell pa-
rameter of S = 2.66, is close to the maximum value of
S = 2

√
2 ≈ 2.88 that is expected for perfectly entangled

states.
The plasmonic metamaterial absorber made of split

ring resonators was designed to provide a nearly 50%
traveling wave absorption, similarly to work reported
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whilst certainly detrimental for many applications, can
also be harnessed as a resource, in line with other
recent work in quantum plasmonics aimed at controlling
quantum states via a loss mechanism30,31. The approach
shown here can be used not only for the nonlocal cou-
pling of photons to localized plasmons, but can also be
exploited for entangling photons to plasmon polaritons
in polarization-sensitive schemes. Experiments such as
plasmon teleportation5 or entanglement swapping32 can
thus be envisaged in the future since our method based
on coherent perfect absorption can be made quasi-perfect
by optimizing the experimental parameters19. Currently,
one cannot ’use’ the single or entangled plasmons cre-
ated due to their fast decaying behaviors but in the
close future it would be interesting to study plasmons
created at a metamaterial’s interface through pump-
probe measurements or to convert them back to photons

with a photonic structure, for instance with a waveguide.

All experimental data is available at
http://dx.doi.org/10.17861/39643814-5752-4a30-9db1-
6f5d65b5c174
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[7] Scully, M. O.; Drühl, K. Quantum eraser: A proposed
photon correlation experiment concerning observation
and ”delayed choice” in quantum mechanics. Phys. Rev.
A. 1982, 25, 2208.

[8] Scully, M.O.; Englert, B-G.; Walther, H. Quantum opti-
cal tests of complementarity. Nature 1991, 351, 111-116.

[9] Yoon-Ho, K.; Yu, R.; Kulik, S. P.; Shih, Y.; Scully, M.
O. ”Delayed Choice” Quantum Eraser. Phys. Rev. Lett.
2000, 84, 1.

[10] Kwiat, P.G.; Weinfurter, H.; Herzog, T.; Zeilinger, A.
Interaction-free measurement. Phys. Rev. Lett. 1995, 74,
4763.

[11] Barreto Lemos, G.; Borish, V.; Cole, G. D.; Ramelow,
S.; Lapkiewicz, R.; Zeilinger, A. Quantum imaging with
undetected photons. Nature 2014, 512, 409-412.

[12] Altewischer, E.; van Exter, M. P.; Woerdman, J. P.
Plasmon-assisted transmission of entangled photons. Na-
ture 2002, 418, 304-306.

[13] Chang, D. E.; Sorensen, A. S.; Hemmer, P. R.; Lukin,
M. D. Quantum optics with surface plasmons. Phys. Rev.
Lett. 2006, 97, 053002.

[14] Chang, D. E.; Sorensen, A. S.; Demler, E. A.; Lukin,
M. D. A single-photon transistor using nanoscale surface
plasmons. Nat. Phys. 2007, 3, 807-812.

[15] Dutta Gupta, S.; Agarwal, G. S. Two-photon quantum
interference in plasmonics: theory and applications. Opt.
Lett. 2014, 39, 2.

[16] Heeres, R. W.; Kouwenhoven, L. P.; Zwiller, V. Quantum
interference in plasmonic circuits. Nat. Nanotech. 2013,
8, 719-722.

[17] Fakonas, J. S.; Lee, H.; Kelaita, Y. A.; Atwater, H. A.
Two-plasmon quantum interference. Nat. Photon. 2014,
8, 317-320.

[18] Dheur, M.-C.; Devaux, E.; Ebbesen, T. W.; Baron, A.;
Rodier, J-C.; Hugonin, J-P.; Lalanne, P.; Greffet, J-J.;
Messin, G.; Marquier, F. Single-plasmon interferences.
Sci. Adv. 2016, 2, e1501574.

[19] Roger, T.; Vezzoli, S.; Bolduc, E.; Valente, J.; Heitz,
J.J.F.; Jeffers, J.; Soci, C.; Leach, J.; Couteau, C.; Zhe-
ludev, N. I.; Faccio, D. Coherent perfect absorption in
deeply subwavelength films in the single-photon regime.
Nat. Commun. 2015, 6, 7031.

[20] Huang, S.; Agarwal, G. S. Coherent perfect absorption
of path-entangled single photons. Opt. Exp. 2014, 22,
020936.

[21] Pysher, M. J.; Galvez, E. J.; Misra, K.; Wilson, K. R.;
Melius, B. C.; Malik, M. Nonlocal labeling of paths in
a single-photon interferometer. Phys. Rev. A. 2005, 72,
052327.

[22] Zhang, J.; MacDonald, K. F.; Zheludev, N. I. Controlling
light-with-light without nonlinearity. Light. Sci. Appl.
2012, 1, e18.

[23] Kurtsiefer, C.; Oberparleiter, M.; Weinfurter, H. High ef-
ficiency entangled photon pair collection in type II para-
metric fluorescence. Phys. Rev. A. 2001, 64, 023802.

[24] Clauser, J. F.; Horne, M. A.; Shimony, A.; Holt, R. A.

Page 6 of 7

ACS Paragon Plus Environment

ACS Photonics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

Proposed experiment to test local hidden-variable theo-
ries. Phys. Rev. Lett. 1969, 23, 880-884 (1969).

[25] Kwiat, P. G.; Mattle, K.; Weinfurter, H.; Zeilinger, A.;
Sergienko, A. V.; Shih, Y. New high-intensity source
of polarization-entangled photon pairs. Phys. Rev. Lett.
1995, 75, 4337-4341.

[26] Herbert, N. FLASH-A superluminal communicator based
upon a new kind of quantum measurement. N. Found.
Phys. 1982, 12, 1171.

[27] Peres, A. How the no-cloning theorem got its name.
eprint quant-ph/0205076 2002.

[28] Fang, X.; MacDonald, K. F.; Zheludev, N. I. Control-
ling light with light using coherent metadevices: all-
optical transistor, summator and invertor. Light. Sci.
Appl. 2015, 4, e292.

[29] Papaioannou, M.; Plum, E.; Valente, J.; Rogers, E. T. F.;
Zheludev, N. I. All-optical multichannel logic based on

coherent perfect absorption in a plasmonic metamaterial.
APL Photonics 2016, 1, 090801.

[30] Roger, T.; Restuccia, S.; Lyons, A.; Giovannini, D.;
Romero, J.; Jeffers, J.; Padgett, M.; Faccio, D. Coher-
ent absorption of N00N states. Phys. Rev. Lett. 2016,
117, 023601.

[31] Vest, B.; Dheur, M-C.; Devaux, E.; Ebbesen, T. W.;
Baron, A.; Rousseau, E.; Hugonin, J-P.; Greffet, J-
J.; Messin, G.; Marquier, F. Coalescence and anti-
coalescence of surface plasmons on a lossy beamsplitter.
arXiv:1610.07479 2016.

[32] Pan, J-W.; Bouwmeester, D.; Weinfurter, H.; Zeilinger,
A. Experimental entanglement swapping: entangling
photons that never interacted. Phys. Rev. Lett. 1998,
80, 3891.

Page 7 of 7

ACS Paragon Plus Environment

ACS Photonics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


