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This paper describes a relatively inexpensive laser-based process for the fabrication of enclosed 

three-dimensional micro-structures in borosilicate glass substrates. The micro-structures will be 

used as customized ‘models’ of subsurface systems for the investigation and the validation of simu-

lations of gas/liquid flow and reactive transport processes occurring in porous media at the pore 

scale level. The fabrication process of these microfluidic devices uses the same picosecond laser for 

the generation of micro-structures on glass and for sealing the structures with another glass plate. 

The laser processing parameters used for micro-machining and welding of glass substrates are de-

scribed, and the challenges associated with the overall manufacturing process discussed. 
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1. Introduction 

The high transparency, thermal stability, hardness, 

chemical resistance and chemical inertness of glass often 

make this material a preferred substrate over silicon or pol-

ymers for the manufacturing of microfluidic devices, in 

particular for applications in advanced chemistry, biology, 

medicine and geological research [1]. 

The conventional manufacturing of glass-based micro-

fluidic devices is a complex, multi-step process that utilizes 

photolithography, wet etching and anodic bonding [2]. The 

combination of photolithography and etching processes 

enables the precision generation of micro-structures, such 

as micro-channels and reservoirs, on the surface of glass. 

Although this fabrication method enables the generation of 

optically-smooth surfaces (with Ra values < 10nm) and 

steep (almost vertical) walls [3], the etching process per-

mits the manufacturing of only two-dimensional structures 

(i.e. all etched features have a constant depth). Moreover, 

low etching rates (less than 1μm per minute) and the re-

quirement of using customized masks make this process 

rather slow and expensive, and hence less desirable for 

rapid prototyping of microfluidic devices at low volume. 

Another drawback of the etching process is the use of haz-

ardous chemicals (e.g. hydrofluoric acid HF) that are often 

toxic and dangerous to work with.  

Anodic, also known as electrostatic or field-assisted 

bonding, is commonly used to seal the etched glass struc-

tures to either silicon or a metal plate without using any 

intermediate bonding layer. Anodic bonding of two glass 

substrates is also feasible, but then a thin (typically < 1μm) 

metallic or silicon-based layer must be applied between the 

glass substrates prior to bonding [4]. This, unfortunately, 

limits the optical access to the etched micro-channels from 

the metallic side. Furthermore, successful anodic bonding 

can only be achieved if the surfaces are very clean and flat 

in order to ensure atomic contact between the bonding sub-

strates through a sufficiently powerful electrostatic field. 

This paper presents a novel laser-based approach for 

the fabrication of enclosed glass-based microfluidic devices 

using a single tool, making the fabrication process very 

attractive for rapid prototyping of microfluidics at low cost. 

The entire fabrication process is performed with a single 

ultrashort-pulsed laser which is used both for the genera-

tion of micro-structures on glass and for sealing the struc-

tures with another glass plate, without using any intermedi-

ate bonding layers. Ultrashort-pulsed lasers have been 

demonstrated as effective tools for micro-machining a wide 

range of materials, including glass which is normally trans-

parent for most lasers [3, 5-9], as well as for joining glass 

to glass [10-14] or even glass to metal [14, 15].  

In this paper, for the first time, we demonstrate a purely 

laser-based fabrication process of enclosed 3D micro-

structures in glass. We believe that this process in the future 

can be used as an alternative fabrication approach for rapid 

prototyping of microfluidics. In our case, we aim to use 

such enclosed micro-structures as ‘physical models’ of sub-

surface systems to investigate fluid flow and reactive 

transport at the pore scale level.  

 

2. Experimental 

2.1 Glass substrate 

The microfluidic devices presented in this paper have 

been fabricated from 1.1mm thick Schott Borofloat®33 

glass substrates. This glass contains 81% of SiO2, 13% of 

B2O3, 4% of Na2O/K2O, and approximately 2% of Al2O3 

[16]. This floated borosilicate glass has similar optical 

properties to fused silica, but it is less expensive. It is used 

in many industrial and scientific areas, e.g. chemistry, op-

tics, micro-electronics, photovoltaics and biotechnology. 

2.2 Laser micro-machining system 

Figure 1 shows the laser setup used for the generation 

of micro-structures on the glass surface. The laser source is 
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a 50W Trumpf TruMicro 5x50 laser that provides 6ps long 

pulses (FWHM). The laser has three outputs, enabling pro-

cessing of different materials at one of the three available 

wavelengths (λ): 1030nm, 515nm, or 343nm. Laser pulses 

can be provided with a maximum pulse repetition frequen-

cy (PRF) of 400kHz. The laser beam is delivered to the 

work piece via a galvo scan head and a 160mm focal length 

F-theta lens. The laser beam delivery is very similar for 

each wavelength. The focused laser beam diameters were 

measured (at 1/e2 of its maximum intensity) to be 20μm at 

λ = 343nm, 20μm at λ = 515nm, and 35μm at λ = 1030nm. 

The borosilicate glass substrates have been machined at 

the 515nm wavelength; chosen because at this wavelength 

the material is machined efficiently at a relatively high res-

olution and processing speed. Laser processing was carried 

out in air. The mounting arrangement for the glass provided 

a clear aperture underneath the machining region.  

2.3 Laser micro-welding setup 

The same laser has been used for sealing the laser-

generated micro-structures with another glass plate without 

using any intermediate joining layers. This time, however, 

the laser process was carried out at the 1030nm wavelength, 

using a stationary laser beam delivered via a 10mm focal 

length lens (NA 0.5). 

In order to successfully bond two glass plates together, 

the picosecond laser pulses with a PRF of 400kHz were 

propagated through the first (blank) glass, and focused to a 

very small (approx. 3μm diameter) spot slightly below (ap-

prox. 100μm underneath) the glass-glass interface. Due to 

the nonlinear interactions at the focus, the laser beam gen-

erated a localized heated zone (in both glass plates) and a 

plasma that mixed the molten glass to form a solid ‘tear-

shaped’ join. 

The key challenge in laser micro-welding is to bring the 

two glass plates into sufficiently close contact that they are 

both within the effective focal depth of the laser and can 

confine the plasma once it is generated [14]. Too large a 

gap between the two materials allows the plasma to escape 

and ablation rather than a weld formation occurs. 

Ideal optical contact without a gap between the two 

glass plates can be achieved when both glass surfaces are 

perfectly clean and flat. Then it is only necessary to place 

one glass on top of the other and Van der Waals forces are 

capable of holding the two materials together. Unfortunate-

ly, in reality such a scenario is unlikely to happen because 

the glass substrates are often contaminated by dust and 

possess surface imperfections, such us little surface wavi-

ness or chips at glass edges, which often lead to the crea-

tion of gaps at the glass-glass interface. Then it is necessary 

to carefully clean the glass substrates before placing them 

on top of the other and to use a force to obtain optical con-

tact (i.e. a gap of < 0.25 of the wavelength) between them. 

Figure 2 shows a sample with partially good contact be-

tween the two glass plates, indicating the areas of optical 

contact and the areas containing small gaps (e.g. due to 

dust particles). 

The laser setup used for sealing the laser generated mi-

cro-structures with the other (blank) glass plate is shown in 

Fig. 3. Prior to laser micro-welding, the glass surfaces were 

carefully cleaned using lens tissues saturated with methanol 

and then dried by a stream of ionized nitrogen. This pro-

vides effective removal of the dust particles before forcing 

the glass plates into optical contact. To maintain this con-

 

 

Fig. 1. Laser setup used for micro-machining glass substrates. 
 

Fig. 2. Inappropriate preparation of glass samples for welding. 

 

Fig. 3. Laser setup used for joining two glass plates together. 
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tact during the laser micro-welding process, the two mate-

rials were later clamped together by use of a pneumatic 

piston (bellow) that was pressurized to approximately 1bar. 

To ensure a uniform pressure across the glass plates and 

avoid damage of the bellow by a focused laser beam, a 

9mm thick glass plate was inserted between the second 

glass plate and the bellow. 

2.4 Testing rig 

The hermeticity of the laser-generated enclosed micro-

structures was tested using the simple setup shown in Fig. 4. 

The test was performed by injecting a tap water into the 

micro-structure channels through one of the two inlets that 

were generated in the cover (top) glass using the picosec-

ond laser. The water was injected at pressures of up 1.5bar. 

 

3. Results 

3.1 Laser micromachining results 

Figure 5 shows an example of a micro-channel pro-

duced on the surface of Borofloat®33 glass by using pico-

second laser pulses of energy (EP) 34.4μJ. This micro-

channel was measured to be 14μm deep and 14μm wide (at 

FWHM). In comparison to the chemically-etched micro-

channels, this example does not have steep walls (due to 

the Gaussian shape of the laser beam intensity profile) and 

smooth surfaces (with a typical Ra value of 0.9μm as 

measured for 0.2mm long channels).  

The depth of the micro-channels can be controlled by 

the laser pulse energy, scanning speed, and the number of 

laser beam passes. Figure 6 shows that the depth of the 

micro-channels increases in almost a linear manner with 

increasing pulse energy, and the micro-channels with a 

depth of up to 40μm can be produced by applying multiple 

laser beam passes. The width of these micro-channels can 

be as small as 14±3μm, as measured at FWHM by using a 

3D surface profilometer (InfiniteFocus® Alicona). 

Small reservoirs can also be generated on the surface of 

Borofloat®33 glass by using a picosecond laser. Figure 7 

shows a 1mm × 1mm × 50μm deep pocket that was gener-

ated by raster scanning the laser beam at a 150mm/s speed 

and 26.9μJ pulse energy. The spacing distance between the 

scanning lines was chosen to be 3.6μm. The surface rough-

ness (Sa) within a 0.8mm × 0.8mm machined area was 

measured to be approximately 1.8μm (using the Alicona 

surface profilometer). 

The depth of the reservoirs can be controlled by apply-

ing laser pulses of an appropriate energy, as can be seen in 

Fig. 8. The spacing distance between the scanning lines 

also was found to have a significant impact on the ablation 

depth. The results in Fig. 8 demonstrate that the ablation 

depth can be well controlled by adjusting the pulse energy 

and the spacing between the laser beam scan lines. 

 

Fig. 4. Hermeticity test of the micromodel. 

 

Fig. 5. Example of the laser-generated micro-channel: 14μm deep 

and 14μm wide (measured as FWHM). This channel was meas-

ured using an Alicona 3D surface profilometer. 

 

Fig. 6. Depth of micro-channels generated at different value of 

laser pulse energy.  Results presented for a different number of 

laser beam passes. 

 

Fig. 7. Example of the picosecond laser-machined area, generated 

at pulse energy of 26.9μJ. 
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3.2 Laser welding results 

Successful welds were generated by focusing the laser 

radiation a 100μm distance below the glass-glass interface, 

moving the samples with a 2mm/s scan speed. An average 

laser power used for welding was 2W.  

Figure 9 shows a cross-section of the laser-generated 

welds that were measured to be approximately 140μm long 

and 80μm wide. The cross-section view was obtained by 

dicing the laser-welded glass plates, polishing the facets, 

and imaging by using a Leica optical microscope.  

 

4. Fabrication and testing of microfluidics 

A microfluidic device manufactured using the picosec-

ond laser processes described above is shown in Fig. 10. 

This device contains a grid of 16μm deep and 14μm wide 

micro-channels and two 5mm × 5mm reservoirs that are 

connected with the grid via two 1mm wide and 10mm long 

channels. The reservoirs along with channels are normally 

used for delivering fluids and/or gases to the area of inter-

est, i.e., the grid of micro-channels. 

Here, it must be noticed that the microfluidic device 

shown in Fig. 10 does not have an external access to the 

pockets through which fluids and/or gasses can be injected. 

In our later microfluidic devices, such access was provided 

by drilling small holes in the cover (top) glass plate using 

the picosecond laser. 

One of the challenges in the laser-based manufacturing 

of microfluidic devices is avoidance of debris and surface 

contamination produced during the laser micro-machining 

process. Such debris and contaminants can be very difficult 

to remove following machining, in particular these debris 

that firmly stick to the glass surface. 

Figure 10d) shows a case when a glass substrate affect-

ed by the laser-induced debris was welded to the other 

glass plate. Although the welds were successfully generated 

everywhere around the laser-machined area, thereby clos-

ing nearly all air gaps between the two glass plates, inside 

and near the laser-machined area the air-gaps were left un-

closed. The gaps are indicated by optical fringes, also 

known as Newton’s rings. 

The fluid flow tests performed on the laser-generated 

microfluidic devices has shown that the welds provided a 

good sealing of the micro-structures, i.e. water leakage was 

not detected, even though water was injected to the micro-

channels at 1bar pressure. During the test, it was noticed 

that the positive pressure applied to the micro-structure was 

able to increase slightly the gap within the laser-machined 

area. This was observed because the optical fringes started 

to move. Since we did not use dyed water, we were not 

 

Fig. 8. Average depth of the laser machined areas obtained with 

different values of pulse energy. Results are presented for three 

different values of spacing between the laser beam scan lines. 

 

Fig. 9. Cross-section of the welds. 

 

Fig. 10. Microfluidic device fabricated by using a picosecond 

laser: a) design, b) Alicona 3D surface profile of the grid of mi-

cro-channels, c) cross-section of the micro-channels, d) photo-

graph of the manufactured microfluidic device. 
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able to confirm if the gaps were sufficiently large for the 

fluid to flow into them. 

Figure 11a) shows the distribution of water within the 

grid of micro-channels while performing one of the fluid 

flow test experiments. Under the optical microscope objec-

tive, as shown in Figure 11b), it was possible to clearly 

differentiate between those micro-channels filled in with 

water and those still filled in with air. 

 

5. Conclusions 

This paper has demonstrated a relatively inexpensive 

laser-based process for the manufacture of enclosed glass-

based microfluidics. The liquid fluid tests have proven that 

a good sealing of the micro-structures can be achieved by a 

picosecond laser welding process. The optical fringes that 

were clearly visible indicate that there is a small (approxi-

mately a couple of μm) gap between the laser-machined 

area and the cover glass substrate. This gap results from the 

laser-generated debris. In order to remove these debris, the 

glass substrates have to properly clean following the laser 

micro-machining process either using chemical or thermal 

treatment. The fabricated micro-structures are planned to 

be used as customized ‘models’ of subsurface systems for 

the investigation of various processes occurring inside po-

rous media (e.g. rocks) at the pore scale level. 
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Fig. 11. Microfluidic devices during the fluid flow test experi-

ment: a) photograph and b) optical microscope image showing 

some micro-channels filled in with water. 

http://www.schott.com/borofloat/english/

