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We show that in a nonlinear microscopy system the effects of chromatic and spherical aberrations are revealed by 
a difference in the focal positions corresponding to the shortest pulse duration and the minimum lateral 
resolution.  By interpreting experimental results from a high-numerical-aperture two-photon microscope using a 
previously reported spatio-temporal model, we conclude that the two-photon autocorrelation of the pulses at the 
focal plane can be used to minimize both the chromatic and spherical aberrations of the system.  Based on these 
results, a possible optimization strategy is proposed whereby the objective lens is first adjusted for minimum 
autocorrelation duration, then the wavefront before the objective is modified to maximize the autocorrelation 
intensity.   © 2017 Optical Society of America 

OCIS codes: (110.0110) Imaging systems; (180.4315) Nonlinear microscopy; (320.0320) Ultrafast optics; (320.5540) Pulse shaping; (320.5550) 
Pulses. 
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1. INTRODUCTION 
Modern microscope objective lenses are normally well corrected for all 
spatial aberrations, however in certain implementations, such as deep 
sub-surface microscopy, aberrations arise elsewhere in the imaging 
system which were not anticipated in the original lens design. Existing 
aberration estimation and compensation techniques take many forms, 
but can be characterized as sensor-based and sensor-free.  Guide-star 
methods have been used successfully in two-photon fluorescence 
microscopy, and proceed by generating a point source of fluorescence 
whose wavefront aberrations can be detected by a Shack-Hartmann 
sensor [1].  While very effective for fluorescence microscopy, this 
approach cannot be extended to two-photon optical beam induced 
current microscopy because no fluorescence signal is generated in this 
microscopy modality.  In the absence of a fluorescence signal, sensor-
free approaches are needed.  Previous examples include optimizing the 
image quality metric based upon the low spatial frequency content of 
the image [2] or by making intensity measurements under different 
compensation conditions [3].  In this paper we show how time-domain 
measurements made using the nonlinear response of the sample itself 
can be used to reveal the presence of aberrations, and potentially 
inform a new aberration compensation strategy.   

In a nonlinear microscope using femtosecond pulses to illuminate 
the sample, uncorrected spatial aberrations not only degrade the 
lateral and axial resolution of the system, but also couple into the time 
domain to stretch the pulses beyond their minimum transform-limited 
durations [4].  In particular, two common spatial aberrations 

significantly affect the pulse durations: chromatic aberration remaps 
the arrival times at the focal plane of the different colors in the pulse, 
while spherical aberration leads to another remapping based on the 
radial position of components of the pulse [5].  This insight led us to 
examine the question of whether time-domain measurements could 
be applied to diagnose the presence of spatial aberrations, and even to 
inform an experimental strategy for minimizing their impact. 

The context of this work is the sub-surface microscopy of 
complementary metal-oxide semiconductor (CMOS) integrated 
circuits (ICs), whose progressively decreasing feature sizes mean that 
optical solutions for spatial fault localization in these devices are 
continually challenged to maintain sufficient resolving power.  
Nonlinear microscopy has been applied to sub-surface imaging of 
CMOS ICs using the two-photon optical beam induced current (TOBIC) 
technique [6-8], and also for fault localization using the two-photon 
laser-assisted device alteration (2pLADA) method [9-11].  In both 
scenarios, optical resolutions of around 100 nm have been achieved by 
combining solid-immersion lens (SIL) imaging [12]—which provides 
an exceptionally high numerical aperture (NA)—with the √2 reduction 
in the lateral point-spread function achieved by two-photon 
excitation [13]. 

Optically-based fault localization normally proceeds by imaging 
through the silicon substrate of the IC and into the device layer of the 
chip, because frontside imaging is no longer practical due to the 
multitude of metallization layers which obscure access from this 
direction in modern devices.  SIL microscopy in a high refractive index 
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Fig. 8. Effects of defocusing for a system comprising an objective lens, 
SIL but no aperture. (a) Pulse-duration dependence on defocus, and (b) 
autocorrelation amplitude dependence on defocus.  For definitions of 
symbols and lines see Fig. 7. 

3. Objective lens with no SIL or aperture 
The analysis was repeated for a final time using data obtained with 
only the objective lens and with no SIL or aperture.  In Fig. 9a, the pulse 
duration is plotted as a function of relative focal position z.  In Fig. 9b 
the experimentally measured autocorrelation amplitude is plotted as a 
function of relative focal position z, together with a least-squares 
Gaussian fit to the data.  

A second-order polynomial fit reveals that pulse duration changes 
very little with defocus which can be contrasted with the results using 
the SIL (Fig. 7 and Fig. 8) whereas the Gaussian fit to the 
autocorrelation amplitude shows the maximum amplitude located at 
z=0 µm. 

4. Discussion 
Previously published modeling results from García-Martínez et al. [4] 
showed that the maximum autocorrelation signal amplitude is located 
at the position where spherical aberration is the smallest, which in turn 
gives the position for the best spatial resolution.  In other words, by 
locating the maximum autocorrelation signal amplitude, the best 
spatial resolution position will be located.  The same authors also 
showed that the positions corresponding to the minimum pulse 
duration and the maximum autocorrelation amplitude always coincide 
for an aberration-free lens, whereas a difference in positions indicates 
the presence of aberrations or group velocity dispersion, GVD.  With 
these theoretical results in mind, the difference in the positions of 
minimum pulse duration and maximum autocorrelation signal 
amplitude with a closed aperture (Fig. 7.) and without an aperture 
(Fig. 8.) indicate that chromatic aberration, spherical aberration or 

GVD are present.  Assuming that the objective lens is an optical system 
highly corrected for spherical aberration and chromatic aberration, the 
aberrations must therefore arise from either the SIL or from an 
aberrated incident wavefront on the objective lens or both.  

The modeling in [4] uses two approximations: (1) scalar diffraction 
theory and, (2) the slowly-varying envelope approximation, which 
states that the bandwidth of the pulse, Δω, is smaller than the angular 
frequency of the carrier, ωο i.e., Δω/ωο << 1.  The numerical apertures, 
NA, for the systems presented in Fig. 8 and Fig. 9 are 1.46 and 0.42 
respectively.  In Fig. 7 the NA is slightly smaller than the NA in Fig. 8. 
Only the system with the NA of 0.42 is well described by the scalar 
diffraction theory, whereas the other two systems with high numerical 
apertures are not.  The second approximation is satisfied in all cases, 
since the ratio between the bandwidth and the angular frequency of 
the carrier of the pulses is Δω/ωο = 0.019, assuming 120 fs @ 1.55 µm 
pulses modulated by a Gaussian envelope.  The experimental results 
presented in Fig. 9a for the objective lens with no SIL show very little 
change of pulse duration with defocus, which can be contrasted with 
the results using the SIL (Fig. 7 and Fig. 8). Previous experiments 
reported in the literature [20,21], with lenses that satisfied both 
approximations, showed that large monochromatic aberrations and 
defocus do not change pulse duration, so the experimental results 
presented in Fig. 9a agree with previous experimental results.  From 
these results we cannot conclude if the incident wavefront on the 
objective lens is well corrected or not.  On the other hand, the other two 
experiments with the objective lens and SIL with a closed and open 
aperture show a change in pulse duration along z, so we can conclude 
that the SIL induces the change in pulse duration along z.  

 
Fig 9. Effects of defocusing for a system comprising an objective lens 
with no SIL or aperture. (a) Pulse-duration dependence on defocus, 
and (b) autocorrelation amplitude dependence on defocus. For 
definitions of symbols and lines see Fig. 7. 

The SIL is 2 mm in radius but only 1.73 mm in thickness (+0.1 mm 
of substrate) so it is not quite operating in the hemispherical condition 
(1.83 mm as opposed to 2 mm).  A ray tracing simulation through an 
objective lens having NA=1.46 and a diameter of 8.4 mm (not 



 

 

presented in this paper) showed that the transverse ray aberration at 
1.55 µm introduced by the SIL is about one wavelength.  This lens will 
also introduce some chromatic aberration and group velocity 
dispersion due to the deviation from the hemispherical condition.  On 
the other hand, a poorly corrected incident wavefront on the objective 
lens will produce an aberrated wavefront incident on the SIL, which in 
turn will increase even more the aberration introduced by not exactly 
satisfying the hemispherical condition.  In the experiment the GVD 
introduced by the thickness of the SIL material is compensated but a 
variation of GVD across the aperture may remain.  On the other hand, 
since the SIL increases the numerical aperture of the system up to 1.46, 
scalar diffraction theory is not perfectly satisfied anymore, and we 
cannot expect the peak of the autocorrelation amplitude to be 
coincident with the position for minimum spherical aberration unless 
this aberration is well corrected.  Further work to extend the modeling 
to high numerical apertures is being carried out. 

Finally, although the SIL introduces spherical and chromatic 
aberrations and a variation of GVD, we cannot exclude the presence of 
large aberrations in the incident wavefront on the objective lens 
potentially introduced in the system by the use of singlet lenses in a 
beam expanding telescope prior to the objective lens.  

4. CONCLUSIONS 
Our results are the first example of applying the theoretical insight 
from [4] in a nonlinear microscope.  The approach offers a potentially 
simple means of minimizing whole-system aberrations by iteratively 
optimizing the objective lens position and the illumination wavefront 
until the minimum difference has been found between the positions of 
minimum pulse duration and maximum autocorrelation signal.  The 
inclusion of a motorized stage to actuate the objective position, 
together with a liquid-crystal spatial light modulator (SLM) to control 
the wavefront before the objective lens would form the basis for this 
approach.  Autocorrelation data recorded in only a few seconds would 
be sufficient to construct amplitude and pulse duration scans similar to 
those in Fig. 8.  The difference in the positions of minimum duration 
and maximum intensity would provide a metric on which an 
optimization strategy could be based.  A simple hill-climbing approach 
in which the SLM was used to apply defocus or another low-order 
aberration could be investigated.  Stochastic optimization methods 
such as simulated annealing or genetic algorithms would offer a more 
general solution [22], in which the SLM would be used to randomly 
perturb the wavefront and gradually drive the error towards smaller 
values.  In this way the optical system before the microscope could be 
adjusted to minimize its contribution to the aberrations of the whole 
system, leaving only the intrinsic aberrations of the sample and 
objective-SIL lens combination. 
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