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Highlights 

 Development of a pore-network extraction method for rocks with intersecting 

fractures embedded in a porous matrix 

 Implementation of an efficient shrinking algorithm for simultaneous extraction of 

medial axes and medial surfaces for arbitrary complex geometries 

 Conversion of the skeleton of axes and surfaces into an integrated pore-network 

model suitable for single- and two-phase flow simulation in fractured rocks 
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Abstract 

Although flow through fractured rocks involves many different length-scales, it is crucial for 

the prediction of continuum-scale single- and multi-phase flow functions to understand, at the 

pore-scale, the interaction between the rock matrix and fractures. Here we present a pore-

network extraction method in which the pore diameters and fracture apertures are of similar 

size. The method involves a shrinking algorithm to extract a hybrid skeleton of medial axes 

and surfaces, and it includes a workflow to convert the medial surfaces of fractures into dense 

networks of virtual medial axes, allowing generation of an integrated pore-network for the 

entire pore space. Appropriate single- and two-phase flow properties are assigned to network 

elements representing the fractures. We validate the method via comparisons between pore 

network flow simulations and an analytical solution, direct flow simulations and experimental 

observations. The network calculations are several orders of magnitude faster than the direct 

simulations. 

Key words:  Fracture; Aperture; Medial surface; Pore-network 

1 Introduction 

Natural fractures are a common feature in rock masses. They can play a major role in fluid 

flow, thus affecting heat and mass transfer through the bulk mass, with particular effects 

associated with local transfers between the rock matrix and the fractures (e.g. Berkowitz 2002; 

Geiger and Emmanuel, 2010; Spence et al., 2014). In many applications, there is a need to 

understand how multiple, immiscible fluid phases are exchanged between fractures and the 

matrix pore system (e.g. Schmid and Geiger, 2012), in order to derive relative permeability 

functions or trapping models at macroscopic scales. Fig. 1(a) shows a fractured limestone 

core sample that illustrates a heterogeneous rock matrix that is disrupted by a fracture, whose 

movement has led to non-uniform amounts of opening (aperture) along the fracture. This 

example demonstrates some key characteristics: a fracture often possesses a complicated 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3 
 

morphology, e.g. variable apertures, non-planarity, and being partly closed. Fractures will 

typically form a complex network, with other fractures at the same or at different length-

scales (Bonnet et al., 2001). It is reasonable to suppose that the fracture segments created 

during hydraulic fracturing operations will have similar features and relationships. Because of 

the many interactions that are possible (Couples, 2014; Ebrahimi et al., 2014), both natural 

and induced fractures may exhibit intricate geometrical and topological relationships between 

their void space and the adjacent matrix pore system. This paper focuses on the pore-scale of 

the matrix-fracture interactions, and it introduces models of this particular pore space that 

enable simulations of fluid exchange between the matrix and adjacent fractures.    

Advances in imaging technology make it possible to obtain 3D images of fractured rock 

samples, for example by using X-ray computed tomography (CT) (e.g., Flannery et al., 1987; 

Wildenschild and Sheppard, 2012; Karpyn, et al., 2007), as illustrated in Fig. 1(b). It is also 

possible to acquire high resolution 2D images, such as by optical microscopy, or via the 

scanning electron microscopes (SEM) (e.g., Lemmens at al., 2010). A simplification that can 

be useful (and one that is employed here) is to express the model of the sample as a binary 

image which depicts only the separation of solids and pores (see Fig. 1(c)), and to use this 

image to characterise the geometry and topology of the fracture void and matrix pore space.   

 

                          (a)                                        (b)                            (c) 

Fig. 1. A fracture-matrix system in a limestone core: (a) a picture of the core sample with a 

natural fracture penetrating most of the sample; (b) an X-ray CT section image (in grey scale) 

perpendicular to the fracture; (c) its segmented binary image (pores and fractures in white and 

solid in black).  

Based on a 3D binary image of a porous medium, its flow properties can be calculated from 

numerical solutions of the Navier-Stokes equations, combined with evolution equations for 

the interfaces between multiple fluid phases, directly on the discretised pore space.  Examples 

of such direct approaches include finite element and finite volume methods (e.g. Zaretskiy et 

al., 2010; Armanini et al., 2014) and Lattice Boltzmann methods (e.g. Shan and Chen, 1993; 
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Ma et al., 2010), as well as volume of fluid methods (e.g. López et al., 2010; Raeini et al., 

2012) and level-set methods (e.g. Prodanovic´ and Bryant, 2006) for multi-phase flow. A key 

limiting factor of these direct methods is that they are computationally expensive, and that 

cost increases when multiple fluid phases are considered (Blunt et al., 2013; Friedrich, 1989). 

An alternative approach is to simulate fluid flow in a pore-network, which is a reduced-

dimension representation of the pore space, and, in its simplest form, consists of an 

interconnected set of pore nodes and bonds. Initial pore-networks were developed as regular 

lattices (Fatt, 1965), but current pore-networks are capable of capturing much of the known 

pore space topology and geometry (Jiang et al., 2007; 2013). Because fluid movement and 

fluid-phase configurations in each of the pore-network elements can be efficiently determined 

analytically, subject to local and global constraints on mass and momentum conservation, 

pore-network flow modelling is computationally much more efficient than the direct 

simulation approaches. Pore-network methods are naturally well-suited to simulate capillary-

dominated multi-phase flow and have been applied successfully to calculate effective flow 

properties of a wide range of porous media (Vogel and Roth, 2001; Valvatne and Blunt, 2004; 

Øren and Bakke, 2003; Ryazanov et al., 2009; Jiang et al., 2013). Pore-network flow 

modelling has also been extended to flow processes where viscous forces are not negligible, 

although the efficiency of these so-called dynamic network models is significantly reduced 

compared to the capillary-dominated models (e.g. Yiotsis et al., 2001; Joekar-Niasar and 

Hassanizadeh, 2012; Blunt, 2017). 

The key to the success of pore-network modelling is to extract a network that strictly 

preserves the pore connectivity expressed in the pore space images and assigns to each 

(network) element a set of geometric properties (e.g. size and shape) that closely match the 

values measured directly from the images. The assigned geometrical properties are used to 

calculate flow characteristics such as conductance and capillary entry pressure. Several 

methods have been developed for extraction of pore networks from 3D binary images. The 

maximum ball method identifies the locally widest parts of the pore space as nodes and the 

remainder as bonds (Silin and Patzek 2006; Dong and Blunt, 2009). A different class of 

extraction methods identifies the Medial Axis (MA) or skeleton of the pore space and 

identifies junctions of the MA as nodes (e.g. Lindquist et al., 1996; Øren et al., 1998; 

Lindquist and Venkatarangan, 1999; Jiang et al., 2007). However, the complex reality of the 

pore space means that there is no unique way of extracting a pore network and different 
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extraction methods may lead to significantly different flow properties (Bondino and Kallel, 

2013).   

According to Leymarie and Levine (1992), the skeleton of an object (here, the object is the 

pore space) can be determined by the grassfire transformation. In 2D this can be explained by 

a simple analogy: set fire simultaneously to the entire object boundary (pore walls) and 

assume that the resulting fire fronts advance into the object at a uniform rate in all directions. 

The locations where the fire fronts meet form a set of (curved) line segments and/or planes 

that define the skeleton of the object. The connectivity of the skeleton is the same as that of 

the original object and the skeleton is located in the centre of the object. In 3D the method 

leads to the identification of a set of both lines and planes that together define the skeleton. 

The set of lines is the MA, and the set of planes is called the medial surface (MS). Although 

the grassfire idea sounds very simple, its implementation in the discrete space (i.e. voxellated 

images) has proved to be challenging (e.g. Bertrand, 1995; Pudney, 1998; Palágyi, 2002; 

Telea and Jalba, 2012).  

In our previous network generation method (Jiang et al., 2007), we developed a technique 

that transforms the pore space into an MA (see Fig. 2(a)). This technique is based on an 

improved distance-ordered shrinking (often called thinning) algorithm (Pudney, 1998) that 

makes use of the Euclidean distances map of the pore space. The algorithm extracts the MA 

from any 3D object by sequentially removing so-called simple voxels (Bertrand and 

Malandain, 1992). The resulting MA is indeed located in the centre of the pore space, 

preserves the pore space topology and has single-voxel thickness. Subsequently, the MA is 

then separated into node backbones, which are contained within the maximum inscribed balls 

centred at axis junctions, and bond backbones (see Fig. 2(b)). Then, the entire pore space is 

partitioned into nodes and bonds by the (geodesic) distance transformation (see Fig. 2(c)). 

Additionally, the geometrical properties associated with the nodes and bonds are determined 

for the use in flow simulations.    
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              (a)                              (b)                                  (c)                              

Fig. 2. Visualisation of the pore network extraction workflow of Jiang et al. (2007): (a) 

extracted MA (blue line) for the pore space (pink); (b) embedded maximum inscribed balls, 

centred at axis junctions (yellow) as well as at all remaining MA voxels (brown), delineating 

the node and bond backbones respectively; (c) pore space partitioned as actual nodes (grey) 

and bonds (light blue). 

However, this kind of algorithms also reduces platy objects such as fractures, or other voids 

with high aspect ratios, into lines, which significantly influences the resulting flow properties. 

For a proper representation of fractures, it is necessary to extract the MS explicitly (Lee et al., 

1994). In digital topology a MS is defined as a set of so-called surface voxels that are 

characterised locally by topological numbers (Kong et al., 1992; Bertrand, 1995). This 

definition ensures that the extracted surface is topologically correct, but it gives no indication 

of how to actually extract the MS. Existing MS extraction methods, such as template-based 

(e.g. Lee et al., 1994; Bertrand, 1995) and the MLSEC-ST (López et al., 2000) algorithms are 

more suitable for regular geometries, such as (ideal) fractures with smooth parallel walls. 

CAD (computer-aided design) models (Lee et al., 1994), and MAT (medial axis transform)-

based algorithms (Chatzis and Pitas, 2000; Amenta et al., 2001; Kosinka and Juttler, 2007) 

lack the ability to extract a MS that preserve the complex geometry of the pore space in 

fractured rocks. If well preserved a MS can be used as a computing domain in solving 

controlling (e.g. the Navier-Stokes) equations to calculate the single-phase permeability and 

to simulate two-phase drainage and imbibition processes (Riasi et al., 2016).  

Additionally, a classic pore-network only contains 0D and 1D elements, i.e. nodes and bonds 

respectively, and there is currently a lack of analytical expressions for flow properties of 

essentially 2D network elements representing fractures. Several researchers have simulated 

single- and two-phase flow through a single fracture, by replacing the fracture with a dense 

pore-network, referred to as virtual network (VN) (Pruess and Tsang, 1990; Rossen and 

Kumar, 1992; Hughes and Blunt, 2001; Piri and Karpyn, 2007; Jiang et al., 2012). In the VN 

virtual nodes are placed at local maxima of the fracture aperture connected through a dense 
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system of virtual bonds. Moreover, channel networks have been developed to represent the 

intersecting fractures in fractured rocks (Ebrahimi et al., 2014). However, there are currently 

no suitable methods to construct pore networks that represent fractured rocks with 

intersecting fractures embedded in a porous matrix, in which the fracture openings (i.e. the 

void space) are of similar size as the pores in the surrounding matrix. 

In this paper we present an efficient and robust algorithm to extract pore networks for 

fractured porous media by extending our previous pore-network extraction technique 

developed for non-fractured porous media (Jiang et al., 2007) to fractured porous media.  In 

section 2 we describe the development of the extended shrinking algorithm to extract the MA 

along with the MS. In section 3 we first develop an algorithm to convert each MS into a 

virtual medial axis. Then we describe how to generate an integrated network for the entire 

pore space and how to assign flow-controlling geometric properties to network elements 

representing fractures. In Section 4 we validate the newly developed pore-network extraction 

method by comparing the results of single-phase pore-network flow simulation results with 

an analytical solution, direct flow simulations and experimental observations for a variety of 

fractured rock models. 

2 Medial surface extraction 

The starting point for MA extraction is a binary image consisting of a 3D cubic grid of voxels 

that are either pore or solid. MA extraction (Lee et al., 1994) is the transformation of an 

object (here, the pore space) into one of minimum (single voxel) thickness that preserves 

connectivity. This transformation is carried out by sequentially removing object voxels, i.e. 

converting object voxels to non-object ones.  

The criterion for removal of object voxels is that they are simple. A voxel is, almost trivially, 

defined as simple if its removal does not change the topology of the object (e.g. Bertrand and 

Malandain, 1992). The shrinking operation finishes when no more simple voxels can be 

removed, and only the MA remains. 

During the shrinking operation, exceptions can be made to retain voxels for specific 

applications. In our previous work, object voxels were retained that connected the MA to the 

inlet and outlet faces of the model domain, to facilitate pore-scale flow simulations (Jiang et 

al. 2007). For fractured porous media, also surface voxels, defined below, will be identified 

and retained to form the MS. 
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To ensure the central location of the MA or MS, object voxels are checked for simplicity in 

layers of increasing Euclidean distance to the pore walls (Jiang et al. 2007). However, the 

order in which voxels are checked within a given layer of equal Euclidean distance strongly 

affects the resulting MS and the number of retained surface voxels (e.g. Lee et al., 1994). In 

the following sections, additional rules will be introduced that reduce the dependence on the 

checking order and maximise the number of retained surface voxels.  

2.1 Surface voxels 

A voxel is a surface voxel (see Kong et al., 1992) if its removal leads to the generation of a 

tunnel (a hole in 2D) through a connected set of object voxels (i.e. the pore space). Following 

topological convention (Kong et al., 1992) we assume throughout the paper that object voxels 

have so-called 26-connectivity in 3D, i.e. they are connected if they are face-to-face, edge-to-

edge or corner-to-corner adjacent, i.e. 6-, 18- or 26-adjacent respectively. Therefore, a set of 

connected object voxels is referred to as a 26-component. According to Kong’s space 

partitioning, non-object voxels are assumed to have 6-adjacency, i.e. any two non-object 

voxels are connected only if they are face-to-face adjacent, and a set of connected non-object 

voxels is referred to as a 6-component.   

The shrinking operation is based on preservation of the topology within the 3x3x3 

neighbourhood of any voxel, as this has been proven to preserve the global topology (Kong at 

al., 1992; Bertrand et al., 1994, 1995). Consequently, a voxel is a surface voxel in the global 

sense, if it can be identified as a surface voxel in its 333 neighbourhood, i.e. if its removal 

leads to the generation of a tunnel in the neighbourhood. In Fig. 3, six neighbourhood 

configurations are shown that illustrate the surface voxel concept. In the first configuration, 

removal of the central voxel does not break up the single 26-component, but it does create a 

tunnel. In other words, converting the central voxel into non-object creates a 6-connection 

between two non-object 6-components above and below the object component. On the other 

hand, in the fourth configuration of Fig. 3, no tunnel can be formed, while in the fifth 

configuration removal of the central voxel breaks up the object 26-component, hence also no 

tunnel is formed. 
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     (1, 2)             (1, 2)              (1, 2)             (1, 1)               (2, 1)             (1, 1) 

Fig. 3. Illustration of the concept of surface voxel for six configurations of object voxels 

within their 333 neighbourhoods (shown with dotted outlines in the first configuration) 

centred at the black or red voxels, with the values for T26, T6 (see text for explanation) given 

in brackets beneath each configuration. The black voxels are surface voxels but the red ones 

are not. 

Similar to simple voxels, surface voxels can formally be identified in terms of a topological 

number (Kong et al., 1992). The topological number T26(p) is the number of object 26-

components in the 333 neighbourhood of voxel p (excluding p). T6(p) is the number of 

non-object 6-components that consist only of 6- and 18-neighbours of p and that are 6-

adjacent to p. Formally, a voxel is simple if  

T26(p) = T6(p) = 1,                                                            (1) 

and a voxel is a surface voxel if  

T6(p) > 1.                                                                     (2) 

In Fig. 3, T26(p) = 1 for all configurations except the fifth for which T26(p) = 2, while T6(p) = 

2 for the first three configurations and T6(p) = 1 for the last three. Observe that in the third 

configuration the 333 neighbourhood of the central voxel contains only one non-object 6-

component, but there are two components that consist only of 6- and 18-neighbours of p.  

As indicated above, the shrinking operation to extract the MS requires sequential removal of 

all simple object voxels that are not surface voxels, while the latter must be retained. 

However, simple and surface voxels will not be identified as such until a sufficient number of 

adjacent voxels within their 333 neighbourhood have been removed. In particular, surface 

voxels will only be exposed at the later stages of shrinking, when the remaining object 

becomes sufficiently (one or two voxels) thin and surrounded by multiple non-object 

components, as counted by the topological number T6.  

Additionally, the removal of adjacent simple voxels may also prevent identification of a 

surface voxel. For example, the first configuration in Fig. 3 will turn into the fourth or fifth 

configuration through the removal of (at least) one 6-adjacent voxel, as this reduces T6 for the 
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central voxel. Therefore, if it is not previously identified, the central voxel will not be 

retained as a surface voxel in subsequent shrinking steps. Similarly, the removal of the 

bottom 18-adjacent voxel in the third configuration invalidates the surface voxel. On the 

other hand, the removal of the 26-adjacent voxels in the second configuration does not affect 

the surface voxel.  

Consequently, prior to the removal of a voxel, the T6 values of its neighbours need to be 

calculated in order to retain the maximum number of surface voxels. However, this is very 

time-consuming. To avoid the actual calculation of T6 in most cases, we introduce the 

following low-cost pre-checks on 18- and 6-neighbours p of a voxel q.  

I. If p is 18-adjacent to q, check whether their shared 6-neighbours are non-object. 

II. If p is 6-adjacent to q, check whether two 6-adjacent pairs of their shared 6-

neighbours are non-object. 

If the results of both pre-checks are negative, a full calculation of T6(q) is not required, 

because removal of p will not lead to reconnection of two non-object components, as 

illustrated in Fig. 4. 

 
                (a)                                  (b) 

Fig. 4. Illustration of pre-checks to avoid calculation of T6(q) before removing simple voxel p.  

Voxels are represented by vertices, while edges represent the 6-adjacencies within the 18-

neighbourhood. Object voxels are coloured black and red, non-object voxels white. (a) The 

red object voxel p is an 18-neighbour of object voxel q, where removal of p will create a 6-

connection between the white non-object voxels m1 and m2 (pre-check 1); (b) the red object 

voxel p is a 6-neighbour of object voxel q, where removal of p will create a 6-connection 

between the pairs of 6-adjacent non-object voxels {m1, m2} and {n1, n2} (pre-check 2). 

 

 

q 

p 

m2 

m1 

q 

p 

m2 

n2 

m1 

n1 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

11 
 

2.2 Extended shrinking algorithm 

By combining the checks for simple and surface voxels with the above pre-checks, we 

introduce the following extended shrinking algorithm that retains both the MA and the MS. 

Object voxels are checked for removal in layers of increasing Euclidean distance to non-

object voxels (i.e. the pore wall). Within each distance layer voxels are assessed in a raster 

scan order, and each voxel, p, is checked through the following steps: 

1. Check whether p has previously been retained. If so, go to the next voxel. 

2. Calculate T6(p) and check whether p is a surface voxel using Eq. (2). If so, retain p 

and go to the next voxel. 

3. Calculate T26(p) and check whether p is a simple voxel using Eq. (1). If not, retain 

p and go to the next voxel. 

4. For each object 6- and 18-neighbour q of p: 

a. Check whether q has already been retained. If so, go to the next neighbour. 

b. Pre-check whether the removal of p would invalidate q as a surface voxel. 

If not, go to the next neighbour. 

c. Calculate T6(q) to check whether q is a surface voxel. If so, retain q. 

5. Remove p, and go to the next voxel.  

To illustrate how the extended shrinking algorithm works, consider the object voxels in Fig. 5, 

where all voxels are assumed to be on the same (innermost) distance layer. When voxel 1 is 

assessed, it is dismissed as a surface voxel in step 2 of the algorithm, but identified as a 

simple voxel in step 3. To prevent any neighbouring voxels from being invalidated as surface 

voxels, both object 18-neighbours of voxel 1, voxels 5 and 7, pass the pre-checks in step 4(b), 

but neither is identified as a surface voxel in step 4(c).  Subsequently, voxel 1 is removed 

(Fig. 5(b)). Voxel 2 is removed similar to voxel 1.  

When assessing voxel 3, its remaining 18-neighbour, voxel 9, and 6-neighbour, voxel 4, pass 

the pre-checks in step 4(b). In step 4(c) voxel 9 is identified and retained as a surface voxel 

(Fig. 5(c)), whereas voxel 4 is not. Similarly, when assessing voxel 4, voxel 11 is identified 

as a surface voxel (Fig. 5(d)). 

When assessing voxel 5, voxel 8 is identified as a surface voxel and voxel 9 is identified as a 

previously retained surface voxel in step 4(a). Similarly, when assessing voxel 6, voxels 8 

and 9 are identified as previously retained surface voxels. When assessing voxel 7, only voxel 

10 is identified as a new surface voxel (Fig. 5(e)). 
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Subsequently, when voxels 8, 9, 10 and 11 are assessed, they are identified as previously 

retained surface voxels in step 1. When voxel 12 is assessed, it is itself identified as a surface 

voxel in step 2, and so is voxel 13. Eventually, a MS of 6 voxels results as shown in Fig. 5(f). 

It is obvious from Fig. 5 that this is the largest surface that can be extracted from this 

configuration. Moreover, it follows easily that for this example any checking order will lead 

to the same retained surface voxels, which is a direct result of pre-checking the neighbours in 

step 4 of the algorithm.  

 

         (a)                   (b)                 (c)                   (d)                   (e)                (f) 

Fig. 5. Illustration of the extended shrinking algorithm for a structure of 18 grey object voxels. 

The numbers indicate the order in which the voxels are accessed. Consecutive configurations 

show the removal of voxels (transparent) and the identification of blue surface voxels. 

To highlight the main features of our extended shrinking algorithm, consider the synthetic 

model of a porous medium shown in Fig. 6(a), in which planar and non-planar “fractures” 

and “matrix” pore channels intersect. The algorithm produces a hybrid skeleton (Fig. 6(b)), in 

which the MA is associated with the pore channels and the MS with the fractures. Next, 

consider the fractured rock model shown in Fig. 6(c), which has been created by 

superimposing the binary image of a rough and non-planar fracture of variable aperture onto 

that of a sandstone image. For this model, Fig. 6(d) shows the extracted hybrid skeleton that 

consists of the MS of the fracture and the MA of the surrounding pore space. These examples 

demonstrate that the algorithm: 

1) automatically distinguishes intersecting, planar and non-planar, fractures and matrix 

pores, as well as their connections, thus preserving the topology of the void structure 

in a fractured rock; 

2) extracts hybrid skeletons of single-voxel thickness;  

3) generates a MS that effectively represent the fractures, in the sense that the fractures 

can be reproduced from the retained surface voxels and their Euclidean distance 

values.  
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Note that the Euclidean distance values for the surface voxels constitute the corresponding 

fracture aperture maps approximately. 

       
             (a)                             (b)                                 (c)                              (d) 

Fig. 6. (a) Synthetic fracture-matrix space (grey) with (b) its hybrid skeleton, (c) a fractured 

rock model with (d) its hybrid skeleton. In (b, d) the rainbow colour scheme is used to 

represent the squared Euclidean distances from the skeleton to the pore walls, ranging from 

blue (smallest) to red (largest).  

3 Network construction 

3.1 VMA generation 

The next step in creating an integrated network for the entire void space in fractured rocks is 

conversion of the MS into virtual medial axes (VMA). This conversion is based on the 

identification of nodes and bonds of virtual networks that approximate the geometry of the 

underlying fractures. To achieve this, the centres of the virtual nodes will be determined by 

local maxima of the Euclidean distance values and they will therefore be identified as 

junctions of the VMA. To ensure that in the resulting network every junction is accessible by 

fluids from as many directions in the fracture “plane” as possible, the number of branches 

emerging from each junction should be maximised, resulting in a dense VMA for each 

fracture. This is achieved through the following three steps, which are illustrated in Fig. 7. 

1. Identify surface voxels as junctions of the VMA: Access all surface voxels in decreasing 

order of Euclidean distance value. If a voxel has not yet been marked, determine its 

maximum inscribed ball. Only if the ball does not contain any previously marked voxels, 

mark the voxel as a junction and all other surface voxels within the inscribed ball as being 

contained (within the ball). 

2. Divide all object voxels within the 333 neighbourhood of each junction voxel into as 

many different 26-components (branches) as possible: First, check each simple object 

voxel that is 6-adjacent to the junction voxel and remove it if its removal does not reduce 

the number of 26-components. Then do the same for every 18-neigbhour. 
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3. Extract the VMA: Apply the original shrinking algorithm (see Section 1) to all surface 

voxels that remain after step 2, based on their distance values. 

Observe that step 2 changes the topology of the skeleton (see Figs. 7(b, c)). Consistent with 

this change, shrinking in step 3 creates junctions that connect the branches of the VMA 

initiated in step 2 (see Fig. 7(d)), in addition to the junction voxels identified in step 1. The 

shrinking algorithm ensures that the additional junction voxels also correspond to local 

maxima of the Euclidean distance values. Moreover, shrinking takes into account (retained) 

voxels of the original MA adjacent to surface voxels, which directly ensures proper 

connection with the VMA (see Figs. 7(a, d)). 

 

        (a)                              (b)                             (c)                                (d) 

Fig. 7. Illustration of the three steps in virtual medial axis (VMA) generation. (a) Hybrid 

skeleton with the MA in dark grey and the MS in light grey; (b) the two (black) voxels in the 

MS are identified as VMA junctions (step 1); (c) removal of the neighbouring voxels of the 

junctions (step 2); (d) MS extraction by the original shrinking algorithm (step 3) to generate 

the VMA consisting of black and grey voxels. 

3.2 Hybrid network generation 

Following the VMA generation, the entire pore space is represented by a hybrid MA. 

Subsequently, the original network generation method (see Fig. 2) is used to transform the 

hybrid MA into a network of nodes and bonds. This network is a hybrid of elements 

corresponding to: the matrix pore space, the fracture void spaces, and pores that connect 

fractures and matrix, as illustrated in Fig. 8. Similar to the VMA, we refer to the nodes and 

bonds representing the fractures as the virtual network (VN). 

 
              (a)                         (b)                        (c)                         (d)                         (e) 

Fig. 8.  (a) A close-up of the fractured rock model shown in Fig. 6(d), (b) the network 

extracted from it, with network elements for (c) the matrix pore space (nodes in dark blue, 
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bonds in light blue), (d) the fracture void space (nodes in brown, bonds in green) and (e) the 

fracture-matrix connections (bonds only in green). 

For the matrix and for the fracture-matrix connecting pores, the geometrical properties of the 

nodes and bonds, such as radius, length and shape factor, are determined as usual (Jiang et al. 

2007). For the fractures, the geometrical properties of the nodes and bonds of the VN should 

be assigned to reflect the underlying fracture apertures, as well as the flow properties, such as 

hydraulic conductance and drainage capillary entry pressures, that can be expected in 

fractures.  

To determine their flow properties, we assume that the nodes and bonds of the VN are 

rectangular sections of an ideal fracture with aperture a. Each VN element has a backbone, 

defined as the corresponding section of the VMA, and a is taken as the average of the 

apertures for the VMA voxels on the backbone. The width w of each bond is chosen 

consistent with its actual pore volume V and the path length L of the backbone, i.e. V=awL. 

Because the backbone of a node comprises a number of branches of the VMA, we assume for 

simplicity that each node is a square section of an ideal fracture with side length w, such that 

L=w and V=aw
2
. Consequently, the volumetric flow rate through the rectangular cross-

section of a node or bond for a pressure drop P along its length is given by 

   
   

  
 
 

 

  

 
                                                                (3) 

where  is the dynamic viscosity. In other words, for the VN nodes and bonds the hydraulic 

conductance g satisfies the cubic law for an ideal fracture (Witherspoon et al., 1980, 

Zimmerman et al., 1996)   

  
   

   
                                                                  (4) 

The capillary entry pressure   
  for drainage, e.g. oil displacing water in a water-wet medium, 

in an ideal fracture is given by the Young-Laplace equation 

  
  

      

 
                                                                (5)  

where   denotes the interfacial tension and   denotes the contact angle measured through the 

wetting phase. Although it represents significant simplification, we assume at present that the 

capillary entry pressures for VN nodes and bonds are given by equation (5), as this will be 
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sufficient for the validation presented below. The above adjustments for fracture nodes and 

bonds have been implemented in our capillary-dominated two-phase flow pore-network 

simulator (Ryazanov et al. 2009).  

4 Validation 

To validate the network extraction method, we conduct single-phase and simplified two-

phase (drainage) pore-network simulations for single fractures and fractured rocks, and 

compare these with (1) an analytical solution, based on the cubic law for fracture 

conductance, (2) finite element flow simulations directly on fractured rock images, (3) 

Lattice-Boltzmann flow simulations directly on images and (4) experimental observations of 

fluid occupancies in a rough-walled fracture.   

4.1 Analytical solution 

In the following we validate our method and implementation by checking the single-phase 

permeabilities calculated by our network model against the analytical solution for ideal 

fractures. According to the cubic law, Equation (4), the permeability KA of a square fracture 

with aperture a, side length w and cross-sectional area wa can be calculated as a
2
/12. 

A set of 3D models has been generated for square ideal fractures with fixed aperture and 

varying side lengths. For each fracture model, a VMA has been created and then a VN has 

been generated as shown in Figs. 9(a, b, c).  As can be observed in Fig. 9(c), the positions of 

the virtual nodes do not entirely align with a square grid as expected, as some randomness 

occurs in choosing the VMA junction voxels (see Fig. 7(b)) when all apertures are equal. For 

larger models this finite size effect becomes negligible. For each fracture model, the 

corresponding permeability KN is calculated using the network flow simulator, with no-flow 

conditions on the side boundaries. KN is plotted against the fracture side length in Fig. 9(d), 

along with the analytical solution KA. For sufficiently large side lengths, relative to aperture, 

KN converges to KA, thus validating the virtual network generation. The underestimation for 

small fracture side lengths is due not only to the finite size effect but also to the fact that the 

network operates no-flow side boundaries as opposed to the analytical solution 

(Papanastasiou et al., 1999).  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

17 
 

    
(a)                                         (b)                                      (c) 

 
                                     (d) 

Fig.9. Effect of fracture side length on VN and corresponding permeability: (a) square ideal 

fracture model (void in grey, wall in black) with aperture of 10.5 m (21 voxels) and side 

length of 100 m (200 voxels); (b) the corresponding VMA; (c) the corresponding VN, in 

which green cubes represent nodes and bonds are shown in brown (axis labels indicate voxel 

numbers and flow is simulated in the X-direction); (d) network fracture permeability along 

with the analytical solution according to the cubic law. 

 

4.2 Direct simulations 

In addition to the above validation, we compare permeabilities from our network calculations 

KN with those resulting from finite element KFE and Lattice Boltzmann KLB directly on the 

corresponding pore space images.  

First, we consider the binary image of a sandstone rock with 256
3
 voxels (voxel size is 5.6m) 

on which the image of a natural fracture has been superimposed, similar to Fig. 6(d). The 

fracture has an average aperture of 34.62 m and a maximum aperture of 58.2 m. The 

fracture has variable but spatially correlated apertures and a few tiny areas have zero aperture. 

The sandstone sample has an approximately log-normal pore size distribution with diameters 

ranging from 5.6 m to 148.82 m, with an average of 46.19 m. Consequently, the pore 

diameters and fracture apertures are of similar size. 
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Using the methodology described in this paper, networks are extracted for the rock image and 

the fracture separately, as well as for the fracture-rock combination, which yields a hybrid 

network. For each model, we calculate KN and KFE in the X-direction, as shown in Table 1. 

KFE is calculated from a finite element solution of Stokes equation, using Avizo’s Xlab Hydro 

simulation toolbox (V8.1.1). The deviations for the fracture and the fracture-rock 

combination are similar to that for the rock, whose network has been extracted using the 

established original method (Jiang et al. 2007). On a PC (Intel Core i5 CPU, 12G RAM), the 

computation time for the finite element simulation on the fracture-rock system (27 hours, 42 

minutes) is almost 1000 times greater than that for the corresponding combined network 

extraction and flow simulation (1 minute, 53 seconds). 

 

 

 

 

 

Table 1: Permeabilities KN and KFE of the rock, fracture and fracture-rock systems, calculated 

from pore-network flow and finite volume solutions of Stokes equation, respectively. 

Although the flow direction is taken parallel to the fracture, the permeability of the fracture-

rock system is larger than the sum of the rock and fracture permeabilities. This indicates that 

the fracture-matrix connecting pores reflect additional connectivity resulting from the 

superposition of the two systems. 

 
                      (a)                                              (b) 

Fig.10. A 280280300 binary image with a voxel resolution of 3.2 m (a) and the 

corresponding hybrid network (b) of a naturally fractured rock. Axis labels indicate voxel 

numbers. Brown represents fracture bonds, yellow fracture nodes, dark blue pore nodes, light 

blue pore bonds and green fracture-matrix connections. 

 Rock Fracture Fracture-Rock 

KN (mD) 1859 1494 3632 

KFE (mD) 2038 1380 4108 

Deviation (%) 9.6 -7.6 13.1 
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Second, we consider a binary sub-image derived from a CT scan of a naturally fractured rock, 

the limestone core sample shown in Fig. 1. Fig. 10 shows the binary sub-image and the 

corresponding extracted hybrid network. The extraction method clearly reveals several 

curved, intersecting and (small) parallel fractures. We calculate KN and KLB in the X- Y- and 

Z-directions, as shown in Table 2. KLB is calculated using the SHIFT Lattice-Boltzmann code 

(Ma et al., 2010). Table 2 shows that the KN and KLB values agree reasonably well. 

 

Table 2. Permeabilities KN and KLB of naturally fractured rock for the image shown in Fig. 10, 

calculated from our pore-network flow model and our Lattice-Boltzmann model, respectively. 

The comparisons above indicate that the generation of the virtual fracture network and the 

fracture-matrix connecting pores reveals the morphology of fractures, honours the 

connectivity between fractures and the pore space and preserves the permeability. 

4.3 Experimental observations 

Karpyn et al. (2007) visualised the aperture distribution and two-phase fluid occupancy in a 

rough-walled fracture in a Berea sandstone core. Drainage and imbibition experiments were 

carried out for an oil-water system under ambient conditions. Fluids were injected at slow 

rates, such that capillary forces dominated. The fracture was strongly water-wet ( = 10
0
) and 

the mineral oil used had an interfacial tension to water of 41 mN/m. The core was oriented 

horizontally such that gravitational forces could be neglected. For further experimental details, 

see Karpyn et al. (2007). 

 

 

 

 

Flow directions X Y Z 

KN (mD) 2397.61 4963.63 3405.39 

KLB (mD) 2304.44 4674.11 3016.53 

Deviation (%) -3.89 -5.83 -11.42 
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 (a) 

 (b) 

 (c) 

Fig. 11. (a) Fracture aperture map of 8603116 voxels with 0.033 mm per voxel and 

apertures varying from zero (black) to maximum (white) of 1.60 mm; (b) oil distributions 

(green regions) in the experiment (Karpyn et al., 2007) following oil injection from left to 

right; (c) oil distributions (red area) from the network model. In (c) the lines indicate the 

VMA generated from the reconstructed fracture. 

 

From the fracture aperture map (see Fig. 11(a)) we reconstructed a 3D fracture model 

(without matrix connections) that is symmetric about its central plane, similar to the model by 

Karpyn and Piri (2007). Using our new network extraction method, we obtained a VN for the 

fracture. We simulated primary drainage in the VN and compared the resulting oil 

distributions with those visualised by Karpyn et al. (2007) at similar saturations, as shown in 

Figs. 11(b, c). Note that in both the experiment and the simulation the figures show a view of 

the 3D fluid distributions projected onto a plane sensibly parallel to the fracture. 

Overall, the two oil distributions show good agreement, as in both cases oil has invaded the 

fracture areas with larger apertures, where those are accessible. The areas near the inlet, the 

outlet, and the top edge (as shown) have large apertures, and in particular the top edge 

provides connectivity between different interior fracture areas. However, in the experiment, 

the oil distribution is not everywhere connected, as would be expected during drainage, 

which suggests some artefacts related to the experimental procedures. This may explain some 

of the observed discrepancies between the experimental and simulated distributions. 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

21 
 

5 Conclusions 

In this paper we have presented a pore network extraction method for fractured rocks. The 

method comprises an efficient shrinking algorithm that can be used directly on binary images 

of fractured rocks to extract the hybrid skeleton. The skeleton includes the medial axis for the 

pore space in the rock matrix, and the medial surfaces for the fracture void spaces, as well as 

their connections. The new shrinking algorithm has two key features. First, it accurately 

identifies fractures and their aperture maps, in particular in complex porous media, where the 

pore diameters and apertures are of similar size, and in the cases where fractures intersect. 

Secondly, it retains the maximum number of voxels for the medial surfaces to honour the 

original structure of the fractures. Moreover, the extracted surfaces are largely independent of 

the voxel scanning order in the algorithm. 

The method includes a workflow to convert each medial surface into a dense virtual medial 

axis, while retaining its connections with the medial axis for the matrix pore space. This 

allows generation of an integrated network of nodes and bonds for the entire porous medium, 

using our previously developed method for network construction from a medial axis. Single- 

and two-phase flow properties are assigned to network elements representing the fractures, by 

assuming that these elements are sections of an ideal fracture.  

We have validated the extraction method by comparing pore network flow simulation results 

with an analytical solution, with direct flow simulations, and with experimental observations, 

for a variety of fractured rock models. Importantly, our analysis shows that the network 

fracture permeabilities correctly converge to the values obtained from the analytical solution 

and agree well with direct simulations, that our pore-network simulations are several orders 

of magnitude faster than the direct simulations, and that we obtain oil distributions for 

drainage of a rough-walled fracture that are very similar to those observed experimentally.  

We conclude that the presented pore network extraction method for fractured rocks is 

accurate, efficient and robust. In future we will implement more accurate expressions for 

fracture conductances and capillary entry pressures for both drainage and imbibition, and 

present further case studies for complex fractured rocks. 
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