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A New Technique for Probing Chirality 

Supporting Information 

 

J. Miles, D. Fernandes, A. Young, C.M.M. Bond, S. W. Crane, O. Ghafur, D. Townsend, J. Sá and J. B. 

Greenwood 

 

Experimental Methods 

 

Laser Pulses 

Laser pulses at a rate of 200 kHz were produced from a Coherent titanium:sapphire Mira oscillator and 

RegA amplifier. Frequency doubling in a BBO crystal gave pulse energies of 125 nJ, a pulse length of 

250 fs and a central wavelength of 394 nm (See Figure S1 in supplementary material). The linearly 

polarized pulses were converted to circular polarization using a zero-order quarter wave-plate (Halle 

Optics) and focused by a fused silica lens with a focal length of 15 cm. By driving a knife edge attached 

to a stepper motor perpendicular to the focus and measuring the transmitted intensity, a waist radius of 20 

µm was measured. This corresponds to a peak intensity of 4 × 1010 Wcm-2 at the centre of the interaction 

region where it intersected the gas jet emerging from a 0.9 mm diameter capillary in one of the plates 

sandwiching the interaction region. The base pressure in the chamber was less than 10-7 mbar rising to a 

few 10-6 mbar during measurements. 

To measure the degree of circular polarization, the method of Schaefer et al.1 was used to determine 

the Stokes S3 parameter. For this method a second quarter waveplate was placed after the first one and the 

power transmission through a Glan-laser polarizing prism measured as a function of the angle of the 

second waveplate using a photodiode. This can be expressed in terms of the Stokes parameters which 

fully describe the polarization state of the pulses.  
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A typical measurement, shown in Figure S2, has been fitted with the above expression from which a 

value of �� = 0.993 was obtained showing that our pulses possessed a high degree of circular 

polarization. 
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Magnetic Field 

The magnetic field was generated in the instrument using a pair of coils with 320 turns, a radius of 69 mm 

and separation distance of 135mm. For the present results, a current of 1.5-2.0 A was passed through the 

coils generating a B-field of 30-40 Gauss in the interaction region. At a B-field strength of 30 Gauss, the 

Larmor radius of an electron with kinetic energy of 0.77 eV (the excess energy from 2 + 1 REMPI of 

camphor at 394 nm using an ionisation energy of 8.7eV 2) is 1.0 mm. The repeller and extraction plates 

sandwiching the interaction region are separated by 10 mm while the apertures seen by the electrons as 

they emerge from the interaction region have a diameter of 9 mm. Therefore, the electrons’ maximum 

Larmor diameter is well within these dimensions ensuring none of the electrons impinge on these plates. 

Similarly the E × B deflection plates have a separation of 15 mm to avoid collisions. The front sections of 

the two channel electron multipliers (Photonis CEM 5901 Magnum) used for the electron detection were 

biased with a +500 V potential to accelerate the electrons onto an active area of 9 mm diameter. The 

voltages of the deflection plates were varied so that all the electrons were hitting the active area of the 

detector. To validate this supposition, the magnetic field was increased from 30 to 40 Gauss with 

concomitant adjustment of the deflection plate potentials. This reduction in the electrons’ Larmor radius 

produced no change in the G-value for both fenchone and camphor within the statistical uncertainties.  

 

With a magnetic field of 30 Gauss, simulations show that transmission of all the photoelectrons is 

achievable for emission energies up to 3.5 eV. This upper limit can be extended to higher energies if a 

larger magnetic field is used to reduce the Larmor radius. This would allow collection of all 

photoelectrons even if a short wavelength light source such as from a synchrotron were used. However, 

since the PECD asymmetry changes (and can reverse) for ionisation of different electronic and vibrational 

states and it is the low energy electrons which are most sensitive to the chiral potential, it desirable to 

choose a wavelength which just exceeds the ionisation threshold. In this way the maximum asymmetry 

can usually be achieved.  

 

The application of the magnetic field ensures that there is 100% confinement of the emitted electrons. 

Due to a slight dip in the magnetic field strength at the interaction region, electrons with emission angles 

in the range 89.5-90.5° can be trapped in a weak magnetic mirror. However, these electrons constitute 

less than 1% of the solid angle and have a negligible contribution to the asymmetry since the odd terms in 

equation (1) depend on cos�. Similarly, very low energy electrons (< 5 meV) which are susceptible to 

stray electric fields and non-uniformities in the magnetic field may fail to reach a detector. 
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Samples 

All samples were purchased from Sigma-Aldrich and used without further purification. The quoted 

purities for these samples were R-Camphor 98%, S-Camphor 99%, R-Fenchone 98% (this purity is 

questionable, see main paper), and S-Fenchone 99.5%. To create samples with a range of enantiomer 

excesses, equal quantities (200µg) of the R- and S-enantiomers were measured with an accurate 

microbalance (Metler Toledo AT20), dissolved in 2 ml of acetone, and mixed in set ratios with a pipette 

of µL precision. Evaporation of the solvent left a sample with well-mixed samples of defined enantiomer 

excess. 

 

Data Acquisition 

The two channel electron multipliers were operated in counting mode and the raw count rate in each was 

monitored to ensure an average of less than 0.1 electrons were detected in each per laser pulse. G-values 

with σ of around 0.2% were obtained from 20 seconds of acquisition for each polarization state and 

repeated 20 times. Differences in the efficiencies of the two electron detectors had the potential to 

introduce instrumental asymmetry to the measurements. Therefore G has been defined so that the detector 

efficiencies cancel out in equation 2. The main source of uncertainty in the measurements originates from 

variations in the laser power and target gas pressure between changes in the polarization state.  

Mass spectra were obtained before and after the stereo-electron detection measurements by biassing 

one of the plates in the interaction region (repeller) to +4 kV and the other (extraction) to +2.9 kV. Mass 

spectra for camphor and fenchone are shown in Figure S3.  Since a low laser intensity was used, the 

spectrum is dominated by the parent ion (C��H��O
!, 152 amu) with a small contribution from fragment 

ions identified as C�H"
! in both molecules, and C#H��

! in camphor. There are no other masses in the 

spectrum confirming that our measurements of G contain no photoelectrons originating from background 

gas or other contaminants. 
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Figure S1: Spectrum of the 2
nd

 harmonic laser pulses measured with an Ocean Optics USB4000 

spectrometer, fitted with a gaussian profile. The bandwidth is 2.1 nm at full width half maximum. 
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Figure S2: Transmitted laser power as a function of analysing waveplate angle fitted using Equation 3 to 

determine the Stokes parameters.   

 

 

Figure S3: Mass spectra obtained for (a) fenchone and (b) camphor which have been shifted relative to 

each other for clarity. These are dominated by the parent ion C��H��O
! at 152u (with an isotope peak 

at 153u) while fragment ions at 81u and 95u can be attributed to C�H"
!

 in both molecules, and C#H��
!

 

in camphor, respectively.  

Appendix A 

Numerical data for Figure 2 (main paper) 

 

Enantiomer Excess (%) G (%) ∆∆∆∆G (2σσσσ) 

-100 -8.6814 0.41601 

-60 -5.4657 0.53682 

-33 -3.4493 0.44962 

-30 -3.0737 0.6458 

-2.5 -0.5584 0.74914 

0 0.18023 0.79603 

30 2.1077 0.73278 

33 2.7446 0.53429 

0 20 40 60 80 100 120 140

Mass-to-charge ratio [m/q]

(b) - camphor

(a) - fenchone
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60.8 5.1239 0.23338 

100 8.0946 0.51336 
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Numerical data for Figure S2 

 

QWP 

Angle 

[Rads] 

Intensity 

[Arb. 

Units] 

0 0.14929 

0.087266 0.15064 

0.17453 0.15012 

0.2618 0.14538 

0.34907 0.13984 

0.43633 0.13172 

0.5236 0.12289 

0.61087 0.11283 

0.69813 0.1014 

0.7854 0.089133 

0.87266 0.077823 

0.95993 0.064802 

1.0472 0.052963 

1.1345 0.041457 

1.2217 0.030487 

1.309 0.021564 

1.3963 0.012552 

1.4835 0.005342 

1.5708 1.81E-05 

1.6581 -0.00434 

1.7453 -0.00651 

1.8326 -0.00599 

1.9199 -0.00353 

2.0071 0.00045 

2.0944 0.008058 

2.1817 0.017719 

2.2689 0.028395 

2.3562 0.042162 

2.4435 0.056577 

2.5307 0.072204 

2.618 0.0878 

2.7053 0.10208 

2.7925 0.11673 

2.8798 0.1279 

2.9671 0.13779 

3.0543 0.14423 

3.1416 0.1504 

3.2289 0.15119 

3.3161 0.15041 

3.4034 0.14731 

3.4907 0.1408 

3.5779 0.13293 

3.6652 0.12381 

3.7525 0.11288 

3.8397 0.10148 

3.927 0.088875 

4.0143 0.077371 

4.1015 0.064281 

4.1888 0.052857 

4.2761 0.04123 

4.3633 0.030882 

4.4506 0.021235 

4.5379 0.012457 

4.6251 0.005621 

4.7124 -0.00073 

4.7997 -0.00441 

4.8869 -0.00662 

4.9742 -0.00664 

5.0615 -0.00404 

5.1487 0.001284 

5.236 0.007815 

5.3233 0.018758 

5.4105 0.030167 

5.4978 0.04349 

5.5851 0.058298 

5.6723 0.073276 

5.7596 0.088338 

5.8469 0.10308 

5.9341 0.11628 

6.0214 0.1274 

6.1087 0.13716 

6.1959 0.14427 

6.2832 0.14882 
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Numerical data for Figure S3 

Mass/charge 
(u) 

Ion Yield 
Camphor 

Mass/charge 
(u) 

Ion Yield 
Fenchone 

79.94 2.46 79.98 3.58 
80.03 2.93 80.08 2.94 
80.13 2.09 80.18 3.06 
80.23 2.91 80.28 3.15 
80.33 2.16 80.39 3.04 
80.42 3.00 80.49 2.89 
80.52 3.12 80.59 2.67 
80.62 2.35 80.69 3.15 
80.72 2.62 80.79 5.73 
80.81 3.31 80.90 8.27 
80.91 5.88 81.00 7.39 
81.01 5.86 81.10 3.78 
81.11 4.60 81.20 2.84 
81.20 3.39 81.31 2.76 
81.30 2.63 81.41 2.07 
81.40 2.44 81.51 3.70 
81.50 2.95 81.62 3.06 
81.59 2.57 81.72 3.22 
81.69 3.07 81.82 3.08 
81.79 2.92 81.92 2.81 
81.89 2.40 82.03 2.96 
81.99 3.12 82.13 2.83 
82.09 2.22 82.23 2.83 
82.18 2.94 82.34 3.67 
82.28 2.59 82.44 3.07 
82.38 3.14 82.54 2.68 
82.48 2.90 82.65 2.38 
82.58 2.05 82.75 2.71 
82.68 2.19 82.86 3.67 
82.78 2.66 82.96 2.72 
82.87 2.88 83.06 2.88 
82.97 3.18 83.17 3.17 
83.07 2.78 83.27 2.62 
83.17 2.93 83.37 2.72 
83.27 2.81 83.48 2.05 
83.37 1.97 83.58 3.52 
83.47 2.81 83.69 3.38 
83.57 2.63 83.79 3.01 
83.67 3.68 83.90 2.42 
83.77 2.79 84.00 2.81 
83.86 2.32 84.10 2.74 
83.96 2.77 84.21 3.14 
84.06 2.57 84.31 2.60 
84.16 2.66 84.42 3.46 
84.26 2.35 84.52 3.32 
84.36 2.83 84.63 2.83 
84.46 3.01 84.73 2.56 
84.56 2.26 84.84 2.50 
84.66 1.80 84.94 3.59 
84.76 2.66 85.05 2.94 
84.86 2.62 85.15 3.04 
84.96 3.17 85.26 3.16 
85.06 2.45 85.36 2.57 
85.16 2.37 85.47 2.75 
85.26 2.88 85.57 2.29 
85.36 2.05 85.68 3.21 
85.46 2.80 85.78 3.29 
85.56 2.62 85.89 2.73 
85.66 3.07 86.00 2.36 
85.76 3.17 86.10 2.59 
85.86 2.13 86.21 2.20 
85.96 2.52 86.31 2.96 
86.06 2.47 86.42 2.16 
86.17 2.42 86.52 3.54 
86.27 2.86 86.63 2.93 
86.37 2.82 86.74 2.39 
86.47 2.71 86.84 2.39 
86.57 2.37 86.95 2.36 
86.67 1.86 87.06 3.52 
86.77 2.83 87.16 2.97 
86.87 2.23 87.27 2.62 
86.97 2.84 87.37 3.05 
87.07 2.54 87.48 2.61 
87.18 2.13 87.59 2.49 
87.28 2.76 87.69 2.27 
87.38 1.81 87.80 2.88 
87.48 2.61 87.91 3.41 
87.58 2.75 88.01 2.73 
87.68 3.13 88.12 2.03 
87.78 2.84 88.23 2.60 
87.89 2.05 88.34 2.40 
87.99 2.44 88.44 3.16 
88.09 2.80 88.55 2.16 

88.19 2.42 88.66 3.02 
88.29 2.70 88.76 3.01 
88.40 2.77 88.87 2.25 
88.50 2.63 88.98 2.30 
88.60 2.57 89.09 2.27 
88.70 1.57 89.19 3.36 
88.80 2.91 89.30 3.12 
88.91 2.50 89.41 2.58 
89.01 3.21 89.52 2.75 
89.11 2.44 89.63 2.64 
89.21 2.13 89.73 2.43 
89.32 2.53 89.84 2.76 
89.42 2.23 89.95 2.72 
89.52 2.27 90.06 3.40 
89.62 2.67 90.17 2.99 
89.73 2.85 90.27 2.11 
89.83 2.82 90.38 2.77 
89.93 2.22 90.49 2.20 
90.03 2.04 90.60 3.26 
90.14 2.72 90.71 2.47 
90.24 2.49 90.82 3.06 
90.34 3.10 90.92 2.94 
90.45 2.66 91.03 2.21 
90.55 2.48 91.14 2.27 
90.65 2.73 91.25 2.64 
90.76 1.95 91.36 2.95 
90.86 2.98 91.47 3.09 
90.96 2.65 91.58 2.56 
91.07 2.78 91.69 2.71 
91.17 2.73 91.80 2.80 
91.27 2.21 91.90 2.24 
91.38 2.23 92.01 2.85 
91.48 2.16 92.12 2.82 
91.59 2.30 92.23 3.56 
91.69 3.03 92.34 2.73 
91.79 2.75 92.45 2.05 
91.90 2.41 92.56 2.80 
92.00 2.14 92.67 2.46 
92.11 1.95 92.78 3.18 
92.21 2.95 92.89 2.56 
92.31 2.08 93.00 2.90 
92.42 2.80 93.11 3.03 
92.52 2.81 93.22 2.51 
92.63 2.29 93.33 1.97 
92.73 2.69 93.44 2.97 
92.84 1.75 93.55 2.93 
92.94 2.98 93.66 3.41 
93.05 2.83 93.77 2.42 
93.15 2.91 93.88 2.53 
93.25 2.54 93.99 2.76 
93.36 2.27 94.10 2.30 
93.46 2.32 94.21 2.88 
93.57 2.90 94.32 2.71 
93.67 2.17 94.43 3.06 
93.78 2.95 94.54 2.96 
93.88 2.78 94.66 2.02 
93.99 2.39 94.77 2.64 
94.09 2.28 94.88 2.68 
94.20 1.76 94.99 3.25 
94.31 2.83 95.10 3.05 
94.41 2.51 95.21 2.86 
94.52 3.03 95.32 2.82 
94.62 2.75 95.43 2.65 
94.73 2.30 95.54 2.12 
94.83 2.63 95.66 3.11 
94.94 2.98 95.77 2.71 
95.04 3.32 95.88 3.12 
95.15 4.00 95.99 2.61 
95.26 3.45 96.10 2.48 
95.36 3.15 96.21 2.85 
95.47 2.68 96.33 1.96 
95.57 2.29 96.44 2.89 
95.68 2.85 96.55 2.96 
95.79 2.33 96.66 3.03 
95.89 3.49 96.77 2.85 
96.00 2.77 96.89 2.13 
96.10 2.22 97.00 2.68 
96.21 2.50 97.11 2.87 
96.32 2.19 97.22 2.72 
96.42 2.98 97.33 2.83 
96.53 2.40 97.45 2.74 
96.64 2.59 97.56 2.67 
96.74 2.86 97.67 2.62 
96.85 2.37 97.78 1.77 
96.96 2.27 97.90 3.34 
97.06 2.56 98.01 2.73 
97.17 2.52 98.12 3.33 
97.28 3.24 98.24 2.50 
97.39 2.54 98.35 2.41 
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97.49 2.39 98.46 2.66 
97.60 2.62 98.58 2.38 
97.71 2.11 98.69 2.69 
97.81 3.19 98.80 3.04 
97.92 2.16 98.91 2.91 
98.03 3.01 99.03 2.63 
98.14 3.20 99.14 2.03 
98.24 2.15 99.26 2.44 
98.35 2.39 99.37 2.86 
98.46 1.95 99.48 2.63 
98.57 2.87 99.60 3.13 
98.67 2.73 99.71 2.92 
98.78 2.62 99.82 2.63 
98.89 2.67 99.94 2.68 
99.00 2.27 100.05 2.00 
99.11 2.17 100.16 3.33 
99.21 2.53 100.28 2.87 
99.32 2.35 100.39 3.00 
99.43 2.93 100.51 2.61 
99.54 2.84 100.62 2.58 
99.65 2.30 100.74 2.70 
99.76 2.73 100.85 2.39 
99.86 1.94 100.96 2.72 
99.97 2.83 101.08 3.48 

100.08 2.37 101.19 2.83 
100.19 3.24 101.31 2.39 
100.30 2.75 101.42 2.22 
100.41 2.22 101.54 2.65 
100.51 2.24 101.65 3.39 
100.62 2.68 101.77 2.54 
100.73 2.62 101.88 2.80 
100.84 2.79 102.00 2.99 
100.95 2.59 102.11 2.45 
101.06 2.70 102.23 2.60 
101.17 2.48 102.34 1.73 
101.28 1.79 102.46 3.22 
101.39 2.54 102.57 3.18 
101.50 2.33 102.69 3.01 
101.61 3.14 102.80 2.44 
101.71 2.59 102.92 2.54 
101.82 1.89 103.04 2.76 
101.93 2.51 103.15 3.06 
102.04 2.09 103.27 2.36 
102.15 2.61 103.38 3.35 
102.26 2.49 103.50 2.89 
102.37 2.66 103.61 2.43 
102.48 3.11 103.73 2.40 
102.59 2.34 103.85 2.12 
102.70 2.04 103.96 3.52 
102.81 2.64 104.08 2.62 
102.92 2.64 104.20 2.91 
103.03 3.21 104.31 2.70 
103.14 2.42 104.43 2.53 
103.25 2.39 104.54 2.52 
103.36 2.69 104.66 2.17 
103.47 1.86 104.78 3.16 
103.58 2.60 104.89 3.14 
103.69 2.30 105.01 2.79 
103.80 2.86 105.13 2.41 
103.91 2.73 105.24 2.62 
104.03 1.84 105.36 2.20 
104.14 2.42 105.48 3.06 
104.25 2.23 105.60 2.30 
104.36 2.61 105.71 3.53 
104.47 2.80 105.83 2.96 
104.58 2.75 105.95 2.41 
104.69 2.65 106.06 2.32 
104.80 2.32 106.18 2.51 
104.91 2.04 106.30 3.26 
105.02 2.82 106.42 2.83 
105.14 2.41 106.53 2.44 
105.25 2.95 106.65 2.95 
105.36 2.85 106.77 2.51 
105.47 2.41 106.89 2.49 
105.58 2.71 107.01 2.32 
105.69 2.03 107.12 2.89 
105.80 2.57 107.24 3.54 
105.92 2.60 107.36 2.64 
106.03 2.98 107.48 2.19 
106.14 2.59 107.60 2.52 
106.25 1.94 107.71 2.57 
106.36 2.24 107.83 3.38 
106.47 2.47 107.95 2.34 
106.59 2.34 108.07 3.31 
106.70 2.46 108.19 3.18 
106.81 2.67 108.31 2.32 
106.92 2.55 108.42 2.21 
107.03 2.49 108.54 2.20 
107.15 1.59 108.66 3.31 

107.26 2.77 108.78 3.07 
107.37 2.44 108.90 2.73 
107.48 3.22 109.02 2.86 
107.60 2.63 109.14 2.63 
107.71 2.16 109.26 2.62 
107.82 2.94 109.38 2.63 
107.93 2.51 109.49 2.75 
108.05 3.27 109.61 3.19 
108.16 3.23 109.73 2.76 
108.27 3.24 109.85 2.17 
108.39 3.09 109.97 2.95 
108.50 2.36 110.09 2.28 
108.61 2.00 110.21 3.41 
108.73 2.64 110.33 2.47 
108.84 2.59 110.45 3.32 
108.95 3.19 110.57 2.91 
109.06 2.94 110.69 2.30 
109.18 2.67 110.81 2.30 
109.29 2.92 110.93 2.69 
109.40 1.77 111.05 3.02 
109.52 2.93 111.17 3.00 
109.63 2.46 111.29 2.49 
109.75 2.75 111.41 2.62 
109.86 2.81 111.53 2.61 
109.97 2.20 111.65 2.17 
110.09 2.71 111.77 2.66 
110.20 2.33 111.89 2.67 
110.31 2.53 112.01 3.46 
110.43 3.19 112.13 2.69 
110.54 3.02 112.25 2.10 
110.66 2.63 112.37 2.72 
110.77 2.22 112.50 2.55 
110.89 2.26 112.62 3.11 
111.00 2.86 112.74 2.56 
111.11 2.33 112.86 3.04 
111.23 2.68 112.98 2.95 
111.34 2.90 113.10 2.40 
111.46 2.30 113.22 2.03 
111.57 2.53 113.34 2.74 
111.69 1.74 113.46 3.01 
111.80 2.59 113.59 3.44 
111.92 2.60 113.71 2.35 
112.03 2.81 113.83 2.43 
112.15 2.48 113.95 2.70 
112.26 2.19 114.07 2.16 
112.38 2.41 114.19 2.88 
112.49 2.60 114.32 2.62 
112.61 2.24 114.44 3.12 
112.72 2.97 114.56 2.81 
112.84 2.84 114.68 1.92 
112.95 2.40 114.80 2.58 
113.07 2.46 114.93 2.36 
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138.34 2.01 141.73 2.91 
138.46 2.72 141.87 2.89 
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• Chiral analysis remains a challenging proposition in modern analytical chemistry 

• The phenomenon of Photoelectron Circular Dichroism offers a route to faster more sensitive 

analysis 

• Electrons are ionised with circular polarized femtosecond laser pulses 

• The asymmetry in electron angular emission is measured with a novel stereo-detection 

system 

• In identifying chiral molecules,  speed and sensitivity equivalent to mass spectrometry can 

be achieved  
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Abstract 

We present a proof-of-principle approach for discriminating chiral enantiomers based on the phenomenon 

of multiphoton photoelectron circular dichroism. A novel stereo detection setup was used to measure the 

number of photoelectrons emitted from chiral molecules in directions parallel or anti-parallel to the 

propagation of the ionising femtosecond laser pulses. In this study, we show how these asymmetries in 

the ketones camphor and fenchone depend upon the ellipticity of the laser pulses and the enantiomeric 

excess of the sample.  By using a high repetition rate femtosecond laser, enantiomer excesses with 

uncertainties at the few-percent level could be measured in close to real-time. As the instrument is 

compact, and commercial turnkey femtosecond lasers are readily available, the development of a stand-

alone chiral analysis instrument for a range of applications is now possible.  
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1. Introduction  

Many molecules exhibit a specific handedness or chirality, a property which extends to biologically 

essential molecules such as amino acids and sugars. Molecular handedness directly influences organism 

response to the specific molecule since it determines how the molecule binds to a particular site on a 

receptor. Applications of advanced chemicals and pharmaceuticals necessitates the use of a pure active 

isomer, making the development of enantiomerically pure synthesis processes a persistent and extremely 

active research area. Detection of chiral excess post-reaction is an equally important but challenging 

proposition. Currently, there is not a simple, quick, and cost-effective method for chiral excess analysis 

that can be universally applied on a regular basis. 

The difficulty is that the physical properties of enantiomeric pairs are almost identical or have very 

small differences, so that existing techniques such as optical rotation, circular dichroism (CD) and NMR 

peak height spectroscopy usually lack the speed, sensitivity and selectivity typically expected in analytical 

chemistry.  Meanwhile, finding suitable host chiral compounds for identification by complexation or for 

the stationary phase in chiral chromatography usually has to be undertaken empirically on a case-by-case 

basis. As a result, there is considerable current research into alternative approaches which could be faster, 

more sensitive, and can be used on mixtures of compounds.  

The discovery of a phenomenon known as photoelectron circular dichroism (PECD) has dramatically 

altered this landscape. Whereas conventional CD relies on very small differences in the excitation rates of 

electronic transitions between enantiomers (usually  < 0.1%), the asymmetry in photoelectron angular 

emission relative to the direction of light propagation from chiral enantiomers, has been found to be 

orders of magnitude higher (typically 10%). Since PECD is also measured with particle counting 

techniques in the gas phase, it potentially offers a route to chiral analysis with sensitivity and speed on a 

par or better than mass spectrometric chemical analysis. This PECD asymmetry has been investigated for 

single photon and multi-photon ionization through sophisticated velocity map imaging and analysis.  

This asymmetry in the angular distribution of electrons is manifested via electric dipole transitions in 

the ionization process, hence it is orders of magnitude larger than conventional CD which depends on the 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

3 

 

weak contribution from the magnetic dipole moment in the transition matrix 1,2,3. The multiphoton PECD 

angular distributions are described by a partial wave expansion of the photoelectron wavefunction which 

results in an angular distribution with 2� terms (where � is the number of photons absorbed and P� are 

Legendre polynomials). 

																																���	 = 1 +��P��cos�	
��

���
																										�1	 

It is the odd coefficients of this expansion �� which produce the asymmetry in the forward-to-

backward electron emission with respect to the light propagation direction. They are non-zero only for 

chiral molecules irradiated with circularly polarized light. Theoretical calculations and experimental 

verification of PECD were first conducted around 2000 for single photon ionization with vacuum 

ultraviolet radiation4,5,6. Subsequent studies have demonstrated PECD in a range of chiral molecules and 

for ionization of valence and core electrons7,8,9,10,11,12,13. The origin of the PECD asymmetry is attributed 

to the scattering of the outgoing electron wavefunction by the chiral potential of the molecule which, due 

to interferences, is sensitive to the emission energy, the initial orbital ionized, and small structural 

variations. However, the inherent asymmetry is primarily manifested through the simple ratio of 

photoemission into the forward and backward hemispheres, largely due to the �� coefficient. Therefore, 

we have developed a simple and elegant stereo-detection method by which the forward and backward 

emission rates are directly measured. 

Most of these studies have been undertaken at synchrotron beamlines with adjustable helical 

undulators, which can produce left- or right-handed circularly polarized light14,15. Elliptically polarized 

light produced from high harmonics of optical lasers has also been successfully used for PECD 

measurements16. However, direct application of femtosecond lasers via multi-photon ionization PECD 

(MP-PECD) has also been established recently, which has opened up the possibility of a table-top 

analysis device.  

By acquiring 2D projections with a velocity map imager and reconstructing the electron angular 

distribution, in 2012 Lux et al. were able to show a substantial asymmetry for the enantiomers of camphor 
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via resonant 2+1 photon ionization at 398 nm17. Similar results were acquired by Lehmann et al.18 using a 

set-up for which the 3D distribution was obtained directly using a delay-line imaging detector.  These 

groups have demonstrated PECD in a few other molecules, and by fitting the distributions with Legendre 

polynomials, the odd coefficients �� arising from the chirality of the target were obtained19,20,21,22,23,24,25. 

The sensitivity of these parameters to molecular structure is evident for the isomers camphor and 

fenchone for which the �� coefficient has opposite signs. 

From these formative studies it can be concluded that molecular chirality can be sensitively probed by 

the PECD �� parameters through acquisition of the photoelectron’s angular and energy distributions. 

However, such detailed information is not essential for identification of enantiomeric proportions or 

observing ultrafast chiral changes when a single parameter would be more expedient. Such a parameter 

(G) can be expressed through the ratio of the forward F (0°-90° to the laser propagation) to backward B 

(90°-180°) emission obtained from the integrated electron yields. In practice results are acquired for both 

left-(L) and right-hand(R) circularly polarized pulses to remove any instrumental asymmetries, so that G 

is defined as 18 

																								� = �� − ��
��� + ��	/2 −

�� − ��
��� + ��	/2																						�2	 

This definition benefits from the fact that any instrumental asymmetry, such as differences in the 

detector efficiencies, is eliminated. As a result, it is not necessary to use sophisticated image detection and 

analysis to characterize the chirality of a sample when a simple stereo electron detection scheme could be 

just as effective. To this end we have developed a novel instrument which has been specifically designed 

to measure G values integrated over all electron energies of the forward and backward emitted electrons. 

 

2. Experimental 

A schematic of the experimental design is shown in Figure 1 26. Femtosecond laser pulses are focused 

through apertures into an interaction region which is sandwiched between two grounded rectangular 

plates where they intersect an effusive gas jet at room temperature. A magnetic field of 30-40 gauss is 
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applied along the laser propagation direction, so that photoelectrons spiral along the field lines with a net 

motion parallel or anti-parallel to the laser direction depending on whether they are emitted at less than or 

greater than 90°. Once the electrons have passed through grounded apertures at the entrance and exit of 

the interaction region, they are accelerated by a positive electric potential into E × B deflection plates 

which separate the electrons from the laser beam and direct them onto separate channel electron 

multipliers. In this way all the electrons emitted in each hemisphere are steered into their respective 

detectors regardless of their initial angle or energy. 

The instrument can also be configured as a mass spectrometer with the two plates in the interaction 

region used to repel and extract the ions perpendicular to the laser direction into a short, linear time-of-

flight tube. A microchannel plate was used to detect the ions and the mass spectra were used to confirm 

that photoelectrons were only being produced from the sample molecules. For the present results the 

instrument was set to detect either electrons or ions only, but simultaneous detection is possible if the 

interaction plates are pulsed after the electrons have left the interaction region. This coincidence detection 

mode will allow multiple component samples to be tested for chiral and chemical content concurrently. 

The potential of this type of analysis has been demonstrated previously for a velocity map imaging (VMI) 

set-up27. Although a VMI device provides highly detailed energy and angular information of the PECD, a 

position sensitive detector/imaging system and sophisticated analysis of the data is required. In the 

present innovative design, chiral analysis is also achieved, but by using a much simpler concept whereby 

the forward and backward emitted electrons are physically separated using magnetic and electric fields. 

As the electron detection is accomplished by two cheap, robust channel electron multipliers and the 

analysis required is very simple, the instrument is much smaller, costs less, and is capable of real-time 

analysis.   

The number of counts obtained from left and right circularly polarized pulses in each detector were 

input into equation (2) to obtain values of the G parameter. Detailed information on the preparation of the 

laser pulses, samples and analysis can be found in the supporting information. 
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Figure 1: Schematics of the Interaction region of the instrument. (a) Simulated trajectories produced by 

SIMION 8.0 charge particle optics software28. Blue – forward emitted electrons, red – backward emitted 

electrons, green – ions. (b) 3D-CAD drawing of the mechanical design.  

 

(b) 

(a) 
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3. Results 

The PECD asymmetries present in the enantiomers of the isomers camphor and fenchone were measured 

in this study. Both these molecules undergo 2+1 resonantly enhanced multiphoton ionisation at 394 nm. 

Results for the enantiomers of camphor and fenchone presented in Table 1 are in good agreement with the 

equivalent parameter measured in previous studies by the velocity map imaging technique.  For the 

present measurements much lower intensities were used, mitigating saturation effects which can be a 

problem at higher intensities (see Table 1 and supplementary material of Lux et al.19). 

 

Table 1: Current and previous G values for enantiomers of camphor and fenchone. Statistical 

uncertainties at the 2σ level are given for the present results. (*) Note that the current and previous results 

for R-fenchone used samples which were not enantiomerically pure.  

Results 

G (%) 
Wavelength 

(nm) 

Pulse 

length 

(fs) 

Intensity 

(Wcm-2) 
Camphor Fenchone 

R S R* S 

Present +8.1±0.5 -8.7±0.4 +9.2±0.6 -13.9±0.4 394 250 4 × 1010 

Lux et al.17 +6.9 -7.2   398 25 5 × 1013 

Lux et al.19 +8.0 -8.4 9.1 -10.1 398 25 4 × 1012 

Lehmann et al.18 +8.4 -7.4   400 150 1-2 × 1012 

Kastner et al. 20   -11.5 -14.25±0.1 398 25 2 × 1012 

 

It is noted that for fenchone there was no simple sign inversion of G for each enantiomer as values of 

+9.2 ± 0.6% for the R-enantiomer and -13.9 ± 0.4% for the S-enantiomer were obtained. When a 50:50 

mix of these samples was measured, a G value of -2.0 ± 0.6% was obtained suggesting that the R sample 

was not enantiomerically pure. Assuming a pure S sample, we estimate that the R sample had an 
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enantiomeric excess of only 66 ± 5%. Lux et al.19 and Nahon et al.9 had a similar experience with their 

samples of R-fenchone. 

PECD measurements of samples with different enantiomeric excesses have been undertaken in some 

previous measurements9,19,20,27. We have undertaken similar measurements in camphor but from samples 

with a greater range of proportions. The G values acquired from these samples are plotted in Figure 2. A 

straight line was fitted to this data with a gradient of 8.6 ± 0.3%. The intercept for this fit was zero within 

the uncertainties (−0.3 ± 0.3%), as would be expected for a racemic sample. This data demonstrates that 

any inherent instrumental asymmetry is completely eliminated and enantiomer excesses of 5% can be 

measured for acquisition times of less than a minute. Since this stereo-measurement does not require any 

complex processing, these results can also be updated in real time.       

 

Figure 2: PECD G values for samples of camphor with different enantiomer excesses. For the highest 

signal rates, a 1σ statistical uncertainty of 0.2% could be obtained in an acquisition time of 15 minutes. 
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Further tests were performed to determine how G depends upon the degree of circular polarization of 

the pulses, by changing the angle of the quarter waveplate. These results are plotted in Figure 3 with 

respect to the Stokes S3 parameter. As S3 represents the difference in the intensity of the left to right 

circularly polarized components in the pulse, it might be expected that the graph has a linear dependence. 

However, while the trend for positive values of S3 mirrors that for negative values as expected, G 

increases more rapidly for |S3| > 0.4. Clearly detailed subtleties of the ionization process, such as selective 

excitation of certain molecular orientations in the ensemble must be influencing this non-linearity.  

Previous ellipticity measurements by Lux et al.19 for camphor showed a similar trend albeit they 

plotted a parameter which expresses the power rather than amplitude of the forward and backward 

angular distributions. Their data showed a sharp increase for |S3|> 0.99 which might be equivalent to the 

apparent dip in the same region of our spectrum. The �� parameter was found to dominate the forward-

backward asymmetry in camphor indicating that there is preferential excitation of molecules with a 

particular orientation. For perfectly circularly polarized pulses the propagation direction is the preferred 

axis of the coordinate system, but this symmetry is broken as the pulse gains a slight ellipticity and this 

could change the alignment of excited molecules. Therefore �� and hence � could be sensitive to |S3| 

when it is close to 1. 
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Figure 3: Variation in the G value for S-camphor as a function of the magnitude of the Stokes S3 

parameter. 

 

 

4. Discussion 

These results demonstrate that our instrument can measure enantiomer excesses more quickly and 

with a much higher sensitivity than conventional chiral analysis. It is also instructive to compare this 

performance with other laser based methods for chiral analysis which are currently being investigated. 

For instance measurements of the ion yields produced from femtosecond laser ionization have been used 

to distinguish enantiomers, but as the differences arise from the weak circular dichroism present in the 

excitation of an intermediate state, the asymmetry is generally smaller than PECD29,30,31, 32,33,34,35,36. Very 

intense laser pulses (1015 Wcm-2) have also been used to directly identify the absolute enantiomer 

configuration from multi-coincidence detection of the coulomb explosion fragments produced following 

multiple ionization37,38. This has been demonstrated for some simple chiral molecules, but for larger 

systems the complexity of the dissociation processes would make accurate re-construction very 
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challenging. High harmonic spectra generated from femtosecond lasers with elliptical polarization have 

also been shown to be enantiomer dependent39. However, both these intense laser techniques rely on a 

chemically pure target and are unsuitable for multi-component samples. 

 An alternative scheme is based on microwave three-wave mixing for which the enantiomer sensitive 

phase of rotational transitions is measured40,41. This method is capable of determining enantiomer 

excesses of a few percent, and since the rotational excitation is resonant it can potentially be applied to 

chiral mixtures42,43.  This is also a gas phase method but it will never be able to reach the sensitivities 

achievable through the single particle detection methods used in the present technique.   

Since our device is compact, straightforward to operate, relatively low-cost, and can be easily coupled 

to any light source, it will open up more extensive investigations and applications of PECD. As well as 

contributing to fundamental studies of PECD, particularly as new theoretical codes begin to tackle this 

complex phenomenon44,45,46,47, this technique could also exploit the sensitivity of the G parameter to track 

ultrafast electronic or structural changes in molecules48,49. For example, as high harmonic and free 

electron laser sources of circularly polarized light become available50,51, processes such as 

photoisomerization and charge migration, could be observed on femtosecond or even attosecond 

timescales.  In addition, the recent observation of PECD in the tunnelling regime52 shows that an 

intermediate resonance is not essential, thus making this chiral analysis instrument highly versatile.  

In this communication we have also demonstrated that fast, sensitive measurements of enantiomer 

excess are possible for practical applications. Indeed if a laser with higher pulse energy and repetition rate 

was used, the acquisition times could be further reduced enabling real time analysis. Although the present 

study has focused on pure samples, the instrument has the capability of running in an electron-ion 

coincidence mode so that acquisition of enantiomer analyzed mass spectra will be possible in the future.  

Given that detection of organic molecules at parts per trillion concentrations and limits of detection of a 

few attomoles are achievable with femtosecond laser ion sources53, this could open up a new paradigm in 

chiral analysis. One could envisage such an instrument being used to test trace amounts of material in 

environmental, food, or medical samples without substantial pre-processing, or to analyze and optimize 
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the synthesis of chiral compounds. With the dramatic advances in commercial, high power, high 

repetition rate femtosecond fiber laser technology, such applications could become a reality in the next 

few years. 
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