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Abstract 
 

A sulphated zirconia catalyst (SZ) was investigated for catalytic conversion of high density 

polyethylene (HDPE) to liquid and gaseous hydrocarbons using a fixed-bed reactor. The SZ 

catalyst reduced the onset of degradation from 337oC for HDPE alone to 187oC with 10wt% 

SZ added. At 450oC a complete weight loss was obtained with the SZ addition against only 

4wt% loss for HDPE only. Fixed-bed reactor experiments using 2g of HDPE with 10wt% SZ 

catalyst with a 30 minutes residence time showed a 98.0wt% conversion at temperature as low 

as 380oC. The liquid yield obtained was 39.0wt% with a composition of 16wt% paraffins, 

21wt% olefins, 5wt% naphthenes and 58wt% aromatics. The carbon number distribution of the 

liquid was C7-C12, which is within the gasoline range. Equally, gaseous products ranging from 

methane up to different isomers of pentane which contained more paraffinic and naphthenic 

hydrocarbon were obtained. The sulphated zirconia catalyst was found to have high ammonia 

desorption (337.0µmolNH3g
-1), BET surface area (116.0m2g-1), external surface area 

(112.0m2g-1) and mesoporous structure. The overall results indicate that sulphated zirconia had 

excellent properties for catalytic conversion at temperature as low as 380oC with significant 

liquid yield which could offer a solution to plastic waste problem by converting the waste back 

into value-added chemicals and fuel.  

 

Key words: plastic waste, HDPE, sulphated zirconia, fixed-bed reactor, TGA, catalytic 

conversion 

 

*Corresponding author. Tel +44 (0) 131 451 3801; +44 (0) 794 814 8589 

Email address: mf181@hw.ac.uk (Muhammad Farooq) 

James Nasmyth Building, IMPEE, School of Engineering and Physical Sciences, Heriot-Watt 

University, Edinburgh EH14 4AS, UK. 

 

 

 

 

 

 

 

 

 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/287497998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Introduction  

Catalytic conversion using heterogeneous catalyst has been identified as a potential option to 

convert plastic waste back into useable fuels and raw materials for the chemical industry [1-5]. 

A range of heterogeneous catalysts have been investigated, including zeolites (HZM-5, HUSY, 

HMOR), both fresh and spent FCC-based zeolites, MCM-41 and various silica-alumina 

systems and clay-based catalysts [3, 6-19].  A common feature of the catalysts used is 

conversion at temperatures above 450oC to generate primary gaseous species that can then 

enter the pore-space of the catalysts where the secondary reactions take place for producing the 

end products. Sulphated zirconia (SZ), or so-called super solid catalyst, has the potential to 

promote primary cracking of the polymer into oligomers at temperatures below 450oC and has 

thus been used as an excellent catalyst for oil refining processes, such as cracking and 

isomerisation [20-24].  Hence, SZ could be used during plastic waste conversion to promote 

conversion into short chain liquid and gaseous species at temperatures below 450 oC and may 

pave the way for a system to depolymerise ethylene-based polymers into liquids in the gasoline 

or diesel boiling point range. 

The excellent activity of sulphated zirconia catalyst is traced to its super acidity composed of 

Brönsted and Lewis acid sites, large surface area, mesoporosity, thermal and chemical stability 

and simplicity in preparation [25]. The inductive effect of the S=O group from SO4
2- in 

sulphated zirconia creates electronic deficiency that promote the Lewis acidity of Zr cation and 

thus promotes its acidity to super acidity.  Sulphated zirconia has been reported to possess 

exceptional catalytic properties that could promote effective conversions of hydrocarbons to 

highly branched alkanes with high octane number at low temperature, where its catalytic 

structure and activity can be tailored by calcination [24]. It has been studied for many years 

and reported to be a very effective catalyst used in catalysing many processes in the oil refining 

and petrochemical industries [41, 42]. Apart from alkane isomerisation, sulphated zirconia was 



also reported to be very efficient catalyst in many important processes, namely, hydrocracking, 

alkylation, condensation, esterification, acylation, oligomerisation and many organic synthesis 

reactions [21, 22, 26-31]. Sulphated zirconia with the aforementioned properties may offer an 

excellent catalytic activity in converting plastic, which is naturally viscous and has bulky 

structure. The use of sulphated zirconia for plastic conversion has not been reported to the best 

of best of the authors’ knowledge and could pave way for low temperature and tailored 

conversion of plastic waste into valuable liquid streams.  

This work is aimed at evaluating sulphated zirconia catalyst for the conversion of high density 

polyethylene (HDPE) into value-added hydrocarbon products. This study also examines effect 

of temperature on product yields and in particular liquid product which could be used as fuel 

or industrial raw materials. The main focus is to find the applicability of sulphated zirconia in 

converting plastic waste to hydrocarbon products with gasoline range compositions at low 

temperature. Hence, developing a possible method for plastic waste recycling that is 

sustainable and cost-effective using sulphated zirconia catalyst.  

 

2. Experimental 

2.1 Materials  

High density polyethylene 3mm pellets (HDPE, Sigma-Aldrich, UK) with a density of 

0.952 g/mL, melt index of 42g/10min with 99.9% purity were grounded to 0.05 - 0.25mm using 

an SM2000 Retch Milling Machine. Table 1 lists the proximate and elemental compositions of 

the HDPE using a Thermo Scientific Flash Elemental Analyser (Flash EA, 1112 series). A 

7Mol% SO3 solid acid sulphated zirconia catalyst with a 100-150µm particle size range was 

supplied by MEL chemicals, UK. The catalyst was calcined in air for four hours at 550oC using 

a Maffle furnace, cooled and kept in desiccators prior to use. 

 



Table 1. Physicochemical Composition of the HDPE sample Used in this work 

Sample Proximate analysis(dry) wt%  Elemental composition (%) 

 Volatile matter Ash Fixed 

carbon 

 C H N O S 

HDPE 96.83 0.00 3.17  85.7 14.1 0.00 0.00 0.00 

 

2.2 Catalyst characterisations 

Surface morphology and elemental/oxide composition of the catalyst were analysed using a 

FEI QUANTA 600F scanning electron microscopy (SEM) version 2.4 coupled with a Genesis 

spectrum version 5.21 EDX analyser. Powder X-ray diffraction (XRD) patterns were obtained 

using a Hiltonbrooks DG 3 operated at 40kv with a 20mA Philips PW 1050 goniometer, 

proportional detector and monochromatic Cu Kβ radiation. The scanning was carried out at a 

scan speed of 2o (2θ) min-1 across a range 5-65o with a step size of 0.05o. A Micrometrics 

Gemini VII 2390 V3.03 surface area/porosity analyser was used to measure the BET surface 

area of the catalyst under nitrogen adsorption. The ammonia temperature programmed 

desorption (TPD) was carried out using a Quantachrome ChemBET TPR/TPD instrument, 

which was fitted with a TPRWin version 3.5 software for data analysis. Approximately 0.5g of 

the catalyst sample was degassed for 30 minutes at 250oC under helium, cooled to 50oC and 

exposed to 30 ml min-1 ammonia gas for ten minutes. Weakly physisorbed ammonia was 

purged with helium for 30 minutes before the TPD analysis from 50oC to 700oC with a heating 

rate of 10oC min-1.  

 

2.3 Analysis 

The TGA analysis was conducted in duplicates under nitrogen using a Perkin-Elmer Pyris1 

thermogravimetric analyser (TGA1) at 10oC/min from 35 to 900oC on 20 mg.  The liquid 

products obtained from the fixed-bed reactor outlined in Section 2.4 were diluted with 9 parts 



DCM and analysed using a Variant CP-3800 Gas Chromatograph interfaced to a 1200 

Quadrupole mass spectrometer with an ionising energy of 70 eV, source temperature of 280C 

and a VF-1MS fused silica capillary column (50 m x 0.32 mm i.d.) coated with BPX5 (0.25 

m film thickness).  Helium was employed as the carrier gas and a programme temperature 

was set at 50C for 2 min, then increased to 300C at a heating rate of 5C min.-1 and remained 

there for 30 min. The gaseous products from the fixed-bed reactor outlined in Section 2.4 were 

analysed using a Perkin Elmer Clarus 580 Gas Chromatograph (GC) fitted with both a Flame 

Ionization Detector (FID) and a thermal conductivity detector (TCD) both operating at 200C. 

About 5 µl of the gas sample was injected with helium as the carrier gas and held at 60C and 

remained for 13 minutes then increased by 10C min-1 to 160C and remained there for another 

13 minutes. 

 

2.4 Procedure 

 

Figure 1 shows the schematic diagram of the fixed-bed reactor system used for the catalytic 

conversion of HDPE. A 1.0 inch horizontal stainless steel tube holding a stationary alumina 

crucible containing the sample was heated using a Carbolite furnace with programmable 

temperature controller.  A 30 min nitrogen purge at 30cl/min was used prior to heating the 

reactor at 20oC min-1 to 380oC using 30 minutes residence time for the conversion. The HDPE 

conversion was repeated at temperatures from 380 to 430oC keeping all other parameters 

constant. The condensable liquid product was collected through a cooling trap made up of three 

conical flasks immersed in an ice bath while the volatile product was purged from the reactor 

by the 30cl min-1 nitrogen for sampling. The condensable liquid product was collected by 

rinsing all the conical flasks and connecting tubes with DCM. The dissolved liquid was dried 

and transferred into glass bottles and stored in a fridge for next analysis. The gaseous product 



was passed through the exhaust trap and sample gas was collected using gas bags and 

immediately analysed using the GC/FID/TCD.  The weight percentages of the product yields 

were calculated as the mass of a particular product obtained divided by the initial mass of 

HDPE multiply with 100 [10, 32, 33]. The coke residue was calculated by subtracting the 

catalyst weight from the residue and dividing this by the original HDPE weight.  

 

Figure 1 Schematic diagram of a fixed bed reactor set-up for the for HDPE catalytic conversion.  

3. Results and discussion 

3.1 Catalyst Characterisation 

Table 2 summarises the physicochemical characteristics of sulphated zirconia (SZ) catalyst. It 

has a BET surface area of 116 m2 g-1 and external surface area of 112m2g-1 with a micropore 

volume and micropore area of 0.0011cm3 g-1 and 0.21m2g-1 , respectively. This shows that the 

total surface area of the catalyst is virtually external.  The BET surface area of the SZ is also 

comparable to what has been reported in the literature [35][36].  The N2-adsorption isotherm 

in Figure 2 shows that the SZ catalyst had a high nitrogen adsorption of about 1.10mmol/g at 

low relative pressure (P/Po <0.1) associated with micropores [9, 34]. The N2-adsorbtion 



isotherms also shows a slight capillary condensation over the relative pressure range of 0.4 to 

0.9 which is a typical feature of mesoporous material [5, 9, 36-40]. The increasing adsorptions 

at higher relative pressure (p/po) above 0.9 may indicate the presence of some macroporous 

material. But overall, the sulphated zirconia can be regarded as mainly mesoporous with some 

micro and macro pores.  The SEM microgram in Figure 3 indicates that the catalyst had a non-

uniform particle sizes ranging from 100 to 200nm.  However, there are some visible open voids 

in between the particles.  The catalyst had an SO3 content of 6.64 Mol % as measured by the 

SEM environmental analysis in Figure 3, which supports the high acidity of 337.0 µmolNH3g-

1 observed from the ammonia TPD, which was believed to be responsible for the catalyst acidity 

[37-39]. 

The powder X-ray (XRD) diffraction pattern of the SZ after the calcination at 550º in Figure 4 

shows that the crystal phase of the SZ contained exclusively tetragonal ZrO2 (JCPD no. 50-

1089), where the four peaks in the diffractograms were observed at 2θ = 30.41 (relative 

intensity is 100) as well as at 35.25 (20), 50.71(52) and 60.28 (31). This is similar to what was 

previously reported in literature [30, 36, 41-45] 

 

Table 2 Characteristics of sulphated zirconia catalyst used for HDPE conversion 

Characteristics Sulphated zirconia  

BET surface area (m2 g-1) 116 

External surface area (m2 g-1)a 112 

pore volume (cm3 g-1)b 0.21 

Average pore size (nm)b 10.8 

Micropore volume (cm3g-1)a 0.0011 

Micropore area (m2g-1)a 4.22 

Ammonia desorption (µmol NH3 g
-1)c 142.0, 158.5 & 37.1 

Tmax (oC) 229, 365 & 630 

SO3 (Mol %)d 6.64 
at-plot 

b H-K method at p/po = 0.95 

c NH3 TPD, three desorption peaks; two in weak and medium acid site temperature region while  one 

at strong acid site region 



dEDX  

 

 

Figure 2 N2-adsorption isotherm of the calcined sulphated zirconia catalyst. 

 

 

 

0

1

2

3

4

5

6

7

0.05 0.14 0.23 0.32 0.41 0.5 0.59 0.68 0.77 0.86 0.95

Q
u

a
n

ti
ty

 A
d

so
rb

ed
 (

(m
m

o
l/

g
)

Relative Pressure (p/p°)



Figure 3 SEM microgram showing the surface morphology and elemental composition of the 

sulphated zirconia catalyst calcined at 550oC.  

 

 

Figure 4 Powder XRD diffraction pattern of the sulphated zirconia catalyst. 

 

3.2 Thermal analysis (TGA) and catalyst testing 

The thermal gravimetrical analysis (TGA) and the differential thermal gravimetric analysis 

(DTG) in Figure 5 comparing HDPE only with that of HDPE mixed with 10wt% sulphated 

zirconia catalyst shows that the onset weight loss of HDPE only commenced at 337oC while in 

the presence of 10wt% SZ the temperature was significantly reduced to 187oC. At 450oC, only 

about 4wt% weight loss was achieved for HDPE only whereas nearly 94wt% weight loss was 

achieved using 10wt% SZ. The DTG temperature of maximum degradation rate (ΔTmax) was 

reduced from 494oC for HDPE only to 419oC in the presence 10wt% SZ indicating that SZ 



could offer an excellent activity towards HDPE conversion at low temperature. The excellent 

activities shown by the SZ catalyst may derive from its high acidic strength of 337.0 

µmolNH3g
-1), and large BET external surface area of 112 m2 g-1 which are requisite factors 

needed to initiate the cracking of macromolecule at a low temperature. According to Aguado 

et al., [46], the presence of external acid site contribute largely for the observed high cracking 

activity of the catalyst even at lower temperature. The large number of acid sites on the surface 

of a catalyst ease the cracking of bulky polymeric chain and may yield hydrocarbon compounds 

in the liquid range. Based on the DTG result, which shows rapid degradation commencing at 

370oC and 419oC as temperature of maximum conversion rate (ΔTmax) in the presence of the 

SZ catalyst, a temperature range between 370 oC and 430oC was used for the fixed-bed reactor 

tests in order to find the temperature that gives the maximum conversion and highest liquid 

yield.  

 



 

Figure 5 TGA and DTG curves comparing the conversion of HDPE only with catalytic 

degradation in the presence of 10wt% sulphated zirconia. 

 

3.3 HDPE fixed-bed Catalytic conversion 

The fixed-bed HDPE conversions and products yield obtained in the presence of the SZ catalyst 

at different conversion temperatures ranging from 370 to 430oC in Figure 6 shows that the 

HDPE conversion increased from 98.0wt% at 370oC to virtually 100wt% at 430oC. The liquid 

yield peaked at 380oC with 38.5 wt% and then decreased continuously to 32.0wt% at 430oC. 

The gaseous product followed an opposite trend by reaching a minimum of 59.5wt% at 380oC 

and then increased to 68 wt% at 430oC.  The unconverted residue decreased from 2.0wt% at 

370oC to virtually zero at 430oC. So, 380 and 390oC appeared as temperatures with optimal 

liquid yields. This is supported by Figure 7, which shows that 380oC gives the optimal liquid 
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to gas ratio. The results indicate that in the presence of an acidic catalyst, such as 337.0 

µmolNH3g-1 of the SZ catalyst, high temperature promotes excessive cracking and secondary 

reactions resulting in an increase in the gaseous yield and decrease in liquid yield which is also 

has been reported else ([10, 12, 47]. However, both literature and this study have shown that 

although the change in temperature from 380 oC  to 430 oC does appear to have an influence on 

the quantities of liquid and gaseous products, the overall liquid composition does not 

significantly change. In view of this, only the liquid and gaseous products obtained at the 

optimal temperature of 380oC were analysed for detailed hydrocarbon composition as given in 

Sections 3.4 and 3.5. 

Figure 6 Comparison of conversions and products yield achieved from catalytic conversion of 

HDPE at 370 to 430oC in a fixed-bed reactor. 
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Figure 7 Comparison of liquid to gas (L/G) ratio from catalytic conversion of HDPE at 370 to 

430oC. 

3.4 Liquid product analysis  

A total of 50 peaks were identified in Figure 8 from the GC/MS chromatogram of the liquid 

product obtained at 380oC, where the optimal liquid yield was obtained in the presence of the 

SZ catalyst, and their retention times, peak areas and compound names are given in Table 3. 

Figure 8 compares the carbon atom distribution of the hydrocarbon compounds identified in 

the liquid product, where C9 accounts for more than 30% of all the compounds while C7 and 

C13 showed the least compositions. The order dominance of the hydrocarbon compounds in 

the liquid is in the following sequence, C7 ˂ C13 ˂ C12 ˂ C8 ˂ C11 ˂ C10 ˂ C9. This shows 

that the catalyst had promoted the hydrocarbon compounds in the gasoline and diesel boiling 

point range with very insignificant amount of C13 and larger compounds [29, 32, 48-51]. This 

make the liquid hydrocarbon obtained in the presence of sulphated zirconia catalyst a potential 

feedstock for transport fuel [32]. This feature of promoting hydrocarbons between C8 to C12 
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could be linked to the acidic and textural properties of the catalysts that promote end-chain 

cracking of the HDPE chain and produce hydrocarbon compounds useful for fuels [18, 47]. 

Figure 9 compares the relative amount of hydrocarbon compounds, namely paraffins, olefins, 

naphthens and aromatics (PONA) in the liquid product. The liquid obtained in the presence of 

sulphated zirconia catalyst appears to contain all the four hydrocarbon compounds in different 

proportion of 16wt% paraffins, 22wt% olefins, 5wt% naphthens and 58wt% aromatic. The SZ 

catalyst showed high selectivity towards aromatic compounds than the rest of the hydrocarbons 

similar to that reported for HZSM-5 (75.6wt % aromatics), HNZ (50.7wt%) and Ga-ZSM-5 

(>80wt%) [49, 52]. Normally, highly acidic catalysts with large surface area mainly result in 

high gas yield while the SZ catalyst appears to promo liquids at low temperatures [5, 18]. The 

formation of aromatics could be related to carbenium ion formed during cracking of the HDPE 

chain that promotes dehydrocyclisation and produces aromatic compounds and saturated 

gaseous species. The selectivity of a catalyst towards a particular hydrocarbon compound is 

subject of intense debate but it is generally linked with its properties, which include surface 

morphology, surface area and acidic strength, as well as other factors, such as reactor type, 

reaction conditions and polymer type [46]. Hence, catalysts such as SZ with high surface area 

may offer less diffusional hindrance and easy accessibility to the acid sites located on the 

surface. 

 



 

Figure 8 The GC/MS chromatograms of the liquid product obtained at the temperature of 

380oC where an optimum liquid yield was obtained during thermal conversion of HDPE using 

sulphated zirconia catalyst. Fifty peaks were identified and labelled 1-50.  
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Figure 8 Comparison of the carbon number distributions of the hydrocarbon compounds in the 

liquid product obtained at 380oC using the sulphated zirconia catalyst. 

 

Figure 9 Comparison of the relative amount of paraffins, olefins, naphthens and aromatic 

compounds (PONA) in the liquid product obtained at 380oC. 

 

Table 3 Summary of the detailed hydrocarbon composition of the liquid product obtained at 

380oC where the optimal liquid yield was obtained in the presence of sulphated zirconia 

catalyst. 

Peak 

level 

Residence 

Time 

Relative Amount 

(%) 

Structural formula 

 

Molecular 

formula 

1 5.732 0.001 3-Heptene C7H14 

2 6.773 0.758 3-Ethyl-2-methylpent-2-ene C8H16 

3 7.001 2.049 2-Methylheptane C8H18 

4 7.18 1.514 2-Methylheptane C8H18 

5 7.468 0.991 6-methylhept-2-ene C8H16 

6 7.611 0.965 3-Ethylhex-2-ne C8H16 

7 7.839 1.958 2-Methylhept-2-ene C8H16 

21%

5%

16%

58%

Olefins Naphthenic Paraffins Aromatics



8 8.041 1.394 3,5-Dimethylhex-2-ene C8H16 

9 8.445 1.104 3-Ethylhexane C8H18 

10 8.779 2.940 3,5-Dimethylheptane C9H20 

11 9.001 1.198 4-Ethylhept-3-ene C9H18 

12 9.193 1.692 4-Ethylhept-3-ene C9H18 

13 9.348 1.298 1,2,3-trimethylcyclohexane C9H18 

14 9.563 3.702 p-xylene C8H10 

15 9.836 1.468 3-Ethylheptane C9H20 

16 10.264 1.858 cis-4-Nonene C9H18 

17 10.447 2.001 4-Ethylhept-3-ene C9H18 

18 10.545 1.555 2-Methyloct-2-ene C9H18 

19 10.779 1.339 3-Nonene C9H18 

20 11.417 1.792 4-Methylnonane C10H22 

21 11.724 1.006 5-Decene C10H20 

22 12.094 1.379 2,6-Dimethyloct-2-ene C10H20 

23 12.309 3.659 1-Ethyl-3-methylbenzene C9H12 

24 12.537 5.053 1,2,4-Trimethyl benzene C9H12 

25 12.802 2.439 3-Ethyloctane  C10H20 

26 13.173 1.662 4-Decene  C10H20 

27 13.328 6.076 1,3,5-trimethylbenezene  C9H12 

28 13.568 1.365 2-Methylnon-2-ene C10H20 

29 14.217 1.893 1,3,5-trimethylbenezene  C9H12 

30 14.953 1.069 
1,1-Dimethyl-2-propyl 

cyclohexane C11H22 

31 15.096 1.448 1-Methyl-4-propylbenzene C10H14 

32 15.288 3.376 
1-ethyl-2,4-dimethyl 

benzene C10H14 

33 15.421 1.154 2,2,6-trimethylcyclohexane C11H22 

34 15.897 2.788 
1-ethyl-2,4-dimethyl 

benzene C10H14 

35 16.125 2.940 
1-ethyl-2,4-dimethyl 

benzene C10H14 

36 16.435 1.183 
1-Pentyl-2-

propylcylopropane C11H22 

37 17.142 2.592 
1,2,3,4-

Tettramethylbenzene C10H14 

38 17.238 4.073 
1,2,3,4-

Tettramethylbenzene C10H14 

39 17.902 1.860 
1-Methyl-4-(1-

methylpropyl) benzene  C11H16 

40 18.224 1.520 
1,2,4,5,-

tetramethylbenezene  C10H14 

41 18.525 1.799 2,3-Dimethyldecane  C12H26 

42 18.819 1.359 
1-Methyl-4-(1-

methylpropyl) benzene  C11H16 

43 19.503 2.766 
1-Ethyl-2,4,5-

trimethylbenzene  C11H16 



44 19.817 5.009 
1-Ethyl-2,4,5-

trimethylbenzene  C11H16 

45 20.356 1.167 2,3-Dimethylundecane C13H28 

46 21.864 1.644 
1,3,5-trimethyl-2-propyl 

benzene C12H18 

47 21.934 1.930 Pentamethylbenzene C11H16 

48 25.586 1.442 1,4-Dimethylnaphthalene C12H12 

49 28.238 1.472 2,3,6-Trimethylnaphthalene C13H14 

50 28.359 1.302 1,6,7-Trimethylnaphthalene C13H14 

 

3.5 Gaseous product analysis 

The GC/FID chromatogram of the gaseous products obtained at 380oC in Figure 10 shows 

different C1-C5 gaseous hydrocarbon compounds labelled 1 to 17. Table 4 summarises the 

detailed composition of all the peaks identified and their relative compositions in percentages. 

The gaseous product obtained using sulphated zirconia catalyst contain broad mixture of 

hydrocarbon components ranging from methane to different isomers of pentane. This shows 

that the gaseous product obtained contained more parrafinic and naphthenic hydrocarbon 

compounds than olefinic. This is in line with the composition of the liquid obtained using 

sulphated zirconia catalyst where large proportion of aromatic hydrocarbon was obtained. It is 

expected that after dehydrocyclisation of the carbenium ion to form aromatics there is surplus 

of hydrogen that is used to form more saturated hydrocarbon compounds in the gas phase.   

Figure 11 compares the carbon number distribution of the gaseous product obtained at 380oC 

where an optimal liquid yield was obtained using sulphated zirconia catalyst. The composition 

of the gaseous product showed that the relative amount of hydrocarbon compounds increases 

with increasing carbon atom number where C1 and C2 compounds are the least and C5 the 

most predominant. The order of predominance is in the following sequence, C1 ˂ C2 ˂ C3 ˂ 

C4 ˂ C5. The C6 hydrocarbon were outside the detection range of the GC/FID.  

 



 

Figure 10 GC/FID Chromatogram of the gaseous product obtained at 380oC where an optimum 

liquid yield was obtained during thermal conversion of HDPE using sulphated zirconia catalyst. 
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Figure 11 The carbon number distributions of the gaseous product obtained at 380oC where 

optimal liquid yield was obtained using the sulphated zirconia catalyst. 

Table 4 Summary of the hydrocarbon composition of the gaseous product obtained at the 

380oC where an optimum liquid yield was obtained during thermal conversion of HDPE using 

sulphated zirconia catalyst. 

Peak Label Carbon No. Hydrocarbon Compound Relative amount (%) 

1 C1 Methane 0.2 

2 C2 Ethane 0.3 

3 C2 Ethene 0.5 

4 C3 Propane 2.9 

5 C3 Propene 7.3 

6 C4 Iso-butane 10.6 
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7 C4 n-Butane 1.2 

8 C4 Trans-2-butene 7.1 

9 C4 1-Butene 4 

10 C4 Iso-butene 11.4 

11 C4 Cis-2-butene 5.6 

12 C5 Cyclopentane 20.2 

13 C5 n-pentane 1.3 

14 C5 Trans-2-Pentene 5.6 

15 C5 3-Methyl-1-Butene 13.8 

16 C5 1-Pentene 5.6 

17 C5 Cis-2-Pentene 2.5 

 

Conclusions 

A sulphated zirconia (SZ) catalyst has been evaluated for catalytic conversion of HDPE into 

value added hydrocarbon products. In the presence of 10wt% SZ, the TGA onset temperature 

of weight loss was 187oC compared to 337oC for HDPE on its own.  At 450oC only about 4wt% 

weight loss was achieved for HDPE whereas nearly 94wt% weight loss was achieved when 

mixing it with 10wt% sulphated zirconia and the temperature of maximum degradation rate 

(ΔTmax) was reduced from 494oC for HDPE only to 419oC the presence of 10wt% SZ.  The 

HDPE catalytic conversion using 10wt%SZ catalyst in a fixed-bed reactor showed an optimal 

liquid yield of 38.5wt% at 380oC and about 98wt% conversion. The conversion increased to 

100wt% with increasing temperature to 430 oC but the liquid yield decreased to 32 wt% which 

was linked with high acidic property of the SZ catalyst. The liquid and gaseous products 

obtained at 380oC was analysed where liquid appeared to contain all the four group of 



hydrocarbons in different proportion with aromatic being the dominant with 55wt%. The 

carbon number distribution of the liquid product was C7-C13 which is within the gasoline 

range composition as the amount components C13 and larger than was negligible. Gaseous 

composition showed different hydrocarbon compounds ranging from methane to pentane with 

C4 and C5 being the most dominant.  The excellent activity shown by the SZ catalyst towards 

HDPE conversation has been attributed to its ability to initiate the HDPE cracking at low 

temperature of 187oC due to its high acidity surface and large external surface. This suggests 

that catalytic conversion of HDPE using the SZ based catalysts are particularly suitable towards 

liquids that have potential as fuel and chemical precursors and indicates that using the SZ 

catalyst for plastic waste recycling could be a cost-effective and energy-efficient method. 
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 Conversion of HDPE to liquid and gaseous hydrocarbons was conducted, where the 

SZ catalyst was found to have high catalytic activities at low temperature of 380oC 

with conversion around 100wt%, liquid yield 39.0wt%  

 The performance of the SZ catalyst was associated with its excellent properties  

 The results indicates the applicability SZ catalyst converting plastic waste into 

value-added chemicals and fuel 


