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Abstract 

Polyphenols are widely regarded to have a wide range of health-promoting qualities, 

including in the sphere of cardiovascular disease. Historically, the benefits have been linked 

to their well-recognised powerful antioxidant activity. However, the concept that the 

beneficial effects are attributable to direct antioxidant activity in vivo does not pay sufficient 

heed to the fact that polyphenols degrade rapidly, are poorly absorbed and rapidly 

metabolised, resulting in very low bioavailability. 

This review explores alternative mechanisms by which polyphenols, or their metabolites, 

exert biological activity via mechanisms that can be activated by physiologically relevant 

concentrations. Evidence is presented to support the action of phenolic derivatives on 

receptors and signalling pathways to induce adaptive responses that drive changes in 

endogenous antioxidant, antiplatelet, vasodilatory and anti-inflammatory effects. The 

implications are that in vitro antioxidant measures as predictors of polyphenol protective 

activity hold little relevance and that closer attention needs to be paid to bioavailable 

metabolites to understand the mode of action of these diet-derived components. 
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Abbreviations 

A549 adenocarcinomic human alveolar basal epithelial cells 

ADP adenosine diphosphate 

Akt 2 AKT serine/threonine kinase 2 

ARE antioxidant responsive element 

ATP adenosine triphosphate 

beta-TG beta-thromboglobulin 

CAM cell adhesion molecule 

CD62P P-selectin 

CD63 CD63 molecule 

CD40L CD40 ligand 

cGMP cyclic guanosine monophosphate 

CGNs cerebellar granule neurons 

COX-1 cyclooxygenase 1 

CRP C-reactive protein 

CSE cigarette smoke extract 

EA.hy926 human endothelial hybrid cell line 

ECG epicatechin-3-gallate 

EGCG epigallocatechin-3-gallate 

eNOS endothelial NOS 

ERK1/2 extracellular signal–regulated kinases 1/2 

ER -α/β estrogen receptor -α/β  

ET-1 endothelin-1 

ETA/B  

receptors   

endothelin A/B receptors  

GR glutathione reductase  

GSH glutathione 

GSK3B glycogen synthase kinase 3 beta 

GSL glutamyl-cysteine ligase 

GST glutathione-S-transferase  

H-19-7 

H460 

neuronal cell line derived from rat's brain/hippocampus 

human non-small cell lung carcinoma cell line 

HO1    haem oxygenase 1  

HUVECs human umbilical vein endothelial cells 

H2O2 hydrogen peroxide  
.
OH hydroxyl radicals  

HOCl hypochlorous acid  

ICAM-1 intercellular adhesion molecule 1 

IKK  

IκB-α 

IκB kinase 

inhibitor of kappa-B alpha 

IL-6, -8, -10 interleukin -6, -8, -10  

J774 murine macrophage cell line J774 
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LDL low density lipoprotein  

LPH lactase phloridizin hydrolase  

LPS lipopolysaccharide 

MAPK mitogen-activated protein kinases 

MCP-1 monocyte chemoattractant protein-1 

NADPH nicotinamide adenine dinucleotide phosphate 

NF-κB nuclear factor-κB 

NO  nitric oxide 

NQO-1 NADPH: quinone oxidoreductase 1 

Nrf2 nuclear factor E2-related factor 2 

O2
.-
 superoxide radical  

ONOO
- 
  peroxynitrite 

ox-LDL oxidised low density lipoprotein  

PF4 platelet factor 4 

PI3K phosphatidylinositol 3-kinases  

PKA protein kinase A  

PKC protein kinase C  

PREDIMED Prevención con Dieta Mediterránea 

RANTES regulated upon activation normal T-cell expressed and secreted 

ROS reactive oxygen species 

Src SRC proto-oncogene, non-receptor tyrosine kinase 

TGFβ1 transforming growth factor beta 1 

TNF-α tumour necrosis factor-α  

TRAP thrombin receptor-activating peptide 

TXA2 thromboxane A2 

VCAM-1 vascular cell adhesion molecule 1 
 

 

Keywords: polyphenols, antioxidant, signalling, ant-inflammatory, cardiovascular disease 
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Introduction 

Polyphenols have long been recognised to hold health benefits, but their reputation has been 

boosted recently on account of a number of encouraging clinical studies in a range of disease 

profiles that appear to confirm efficacy. Increased consumption of fruit and vegetables that 

are rich in polyphenolic compounds is known to be associated with health benefits related to 

cardiovascular function. For example, the PREDIMED (Prevención con Dieta Mediterránea) 

study found that risk of cardiovascular disease (CVD) was reduced by 46% in individuals 

with a diet rich in polyphenols (Tresserra-Rimbau et al., 2014). Other published reports show 

that polyphenolics can improve endothelial function (Vita, 2005), inhibit abnormal platelet 

aggregation (Tangney et al., 2013), reduce inflammation, and improve plasma lipid profiles 

(Arranz et al., 2012), thereby offering protection to cardiovascular health at a number of 

levels. However, despite numerous studies conducted in the field, the mechanisms through 

which these compounds exert cardioprotective actions are not yet fully understood and, as a 

result, the link between cardiovascular benefits of particular diets and their polyphenolic 

content is not strictly proven. 

For decades, phenolic compounds have been recognised to have powerful free radical 

scavenging activities, determined by specific structural features, such as the number and 

position of hydroxyl and catechol units (Castellano, 2012; Fraga et al., 2010). The best 

known polyphenolic antioxidants are delphinidin, cyanidin, pelargonidin, peonidin, malvidin 

(anthocyanins), quercetin, keampferol, myricetin, morin, luteolin (flavonols), gallic acid, 

caffeic acid, syringic acid, protocatechuic acid (phenolic acids), catechin, epicatechin, 

epicatechin gallate, epigallocatechin gallate (flavanols), ellagic acid, and curcumin (figure 1) 

(Duthie et al., 2003; Kahkonen et al., 2003; Lianda et al., 2012). Many aspects of 

cardiovascular disease are associated with oxidative stress – the excessive production of pro-

oxidants and/or depression of counteractive endogenous antioxidant systems. Polyphenols are 

believed to be able to reduce the prevalence of various biomarkers of oxidative stress. It is the 

association between antioxidant properties of polyphenolic compounds with reduced risk of 

CVD that has dominated the literature in this arena, although a direct causal link has always 

been assumed rather than conclusively proven (Acquaviva et al., 2002; Borbalan et al., 2003; 

Jacob et al., 1996; Lugasi, 2003; Schneider et al., 1996; Wan et al., 2001).  

The reason for doubt over the seemingly obvious link between strong antioxidant activity of 

polyphenols in vitro and reduction in oxidative stress in vivo is the very poor bioavailability 
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of native polyphenols on account of extracellular decomposition, poor absorption and rapid 

metabolism: bioavailable concentrations of polyphenolic compounds are simply too low to 

mediate direct antioxidant activity in vivo (i.e. to act as chemical scavengers of radicals). In 

addition, a considerable number of studies support the hypothesis that polyphenols can 

oxidise readily in beverages, tissue culture media and phosphate buffers, with the potential to 

cause paradoxical adverse effects in vivo through pro-oxidative activity (Babich et al., 2008; 

Prochazkova et al., 2011), thus raising the spectre of counterintuitive toxicity with very high 

consumption of polyphenols (Martin et al., 2010). However, the pro-oxidant activity of 

phenolic compounds may also prove to be beneficial at moderate concentrations, since by 

inducing a mild degree of oxidative stress, they can activate intracellular antioxidant defence 

mechanisms (Moskaug et al., 2005; Nabavi et al., 2016; Scapagnini et al., 2011). Moreover, 

it has become clear that the mechanism of action of polyphenols goes way beyond 

modulation of oxidative stress: their role as mediators in cell-cell 

signalling, receptor activation, and gene regulation in vivo adds interesting dimensions to 

their complexity and to their scope for preventative and therapeutic applications (Scalbert et 

al., 2005; Schewe et al., 2008). Thus, polyphenols likely contribute to cardioprotection, but 

their direct antioxidant effects might only play a very minor role, if any at all. The 

characteristics that are more likely to determine their in vivo efficacy are their stability under 

physiological conditions, their rate of absorption, metabolism and excretion, their metabolic 

products, and the pharmacological targets (receptors, enzymes and nuclear factors) of either 

the original polyphenols or their metabolites, as opposed to their in vitro antioxidant 

potential. 

Although increased consumption of polyphenol-rich foods has been associated with reduced 

risk of many diseases, including cancer, diabetes and neurodegenerative disorders, this 

review, however, will focus only on the role of polyphenols in cardiovascular health in light 

of these newly emerging trends. 

 

CVD and oxidative stress 

CVD is a global term used for the group of diseases affecting the heart and/or blood vessels 

and includes coronary artery disease, cerebrovascular disease, peripheral artery disease, 

congenital heart disease, hypertension, heart failure and stroke (Nicholson et al., 2008). The 

https://en.wikipedia.org/wiki/Receptor_(biochemistry)
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incidence rate of CVD has dramatically increased in the past three decades: in 2014, 

cardiovascular disease, together with cancer, was the biggest cause of death in the UK, 

causing 28 and 29 % of all deaths in women and men respectively. Coronary heart disease 

accounted for 45% of all CVD deaths, while 25% of deaths were stroke-related (Jin et al., 

2011). Coronary artery disease and ischaemic stroke, as well as peripheral artery disease, are 

underpinned by a common pathological process - atherosclerosis (Le Brocq et al., 2008). 

Atherosclerosis is a multi-factorial, progressive disorder of medium-sized and large conduit 

arteries, which is fuelled by deposition of modified lipids in the vessel wall (Falk, 2006; 

Megson et al., 2016). Age, smoking, hyperlipidaemia, hypertension and diabetes are the most 

common risk factors for the disease. Inflammation, oxidative stress and endothelial 

dysfunction are strongly associated with the atherogenic process (Le Brocq et al., 2008; Loke 

et al., 2010), while endothelial cells, smooth muscle cells, neutrophils, macrophages and 

platelets are all potential sources and targets of oxidants (Park et al., 2012). Generation of 

oxidants occurs during physiological processes, such as cellular respiration and metabolism, 

and is strictly regulated by antioxidant defence mechanisms in healthy cells (Sies, 1997). 

However, prolonged exposure to stress (Bouayed et al., 2009), pollution (Lodovici et al., 

2011), smoking and excessive drinking (Barreiro et al., 2010; Galicia-Moreno et al., 2014), 

as well as aging (Finkel et al., 2000), results in an imbalance of oxidative species (also 

known as reactive oxygen species; ROS) over the endogenous defences - so-called oxidative 

stress (Khurana et al., 2013; Sies, 1997). 

Many functions of the endothelium are affected by ROS (Nicholson et al., 2008). The best-

recognised is endothelium-dependent vasorelaxation, which is impaired by a loss of nitric 

oxide (NO) bioactivity and/or bioavailability (Hopkins, 2013). NO is a powerful vasodilator 

that also acts to prevent inflammatory cell activation and adhesion (Taniyama et al., 2003). In 

the presence of superoxide radical (O2
.-
), endothelium-derived NO rapidly reacts to form 

peroxynitrite (ONOO
-
), which acts as a powerful oxidant, and is also harmful to endothelial 

cells (Curtin et al., 2002). Prolonged exposure of endothelial cells to O2
.-
, hydrogen peroxide 

(H2O2), ONOO
-
 and/or oxidised low density lipoprotein (ox-LDL) induces apoptosis (Le 

Brocq et al., 2008), which leads to cell damage and loss, a key early event in atherogenesis. 

Atherosclerotic lesions start to develop under an intact but leaky, activated, and dysfunctional 

endothelium (Falk, 2006). LDL ordinarily diffuses freely across the damaged endothelium in 

both directions. However, under oxidative stress, LDL undergoes peroxidation to ox-LDL, 

becoming cytotoxic and pro-inflammatory. Meanwhile, damaged or activated endothelial 
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cells express adhesion molecules, primarily vascular cell adhesion molecule 1 (VCAM-1), 

that bind monocytes and T cells prior to transmigration into the vessel wall (Gerhardt et al., 

2015). The monocytes become activated and differentiate into macrophages, ultimately 

becoming engorged with ox-LDL taken up via scavenger receptor-mediated phagocytosis, 

forming so-called fatty streaks in the vessel wall (Hopkins, 2013; Le Brocq et al., 2008; 

Martinez-Cayuela, 1995). Lipid engorged macrophages (foam cells) ultimately undergo pro-

inflammatory necrotic cell death in situ, contributing to the formation of a soft and 

destabilizing lipid-rich core within ahterosclerotic plaques (Singh et al., 2002). Disease 

progression can terminate in plaque stabilisation on account of smooth muscle cells secreting 

a collagen-rich matrix containing fibroblasts and other connective tissue to create a protective 

cap over the plaque. However, prolonged inflammation can lead to a unstable plaques that are 

prone to rupture (Singh et al., 2002); ruptured plaques induce a rapid thrombotic response, 

leading to vessel occlusion and heart attack, ischaemic stroke or peripheral ischaemia, 

depending on the site of the atherosclerotic lesion (Falk, 2006). 

Oxidative stress represents a key feature of the progression of atherosclerosis, influencing 

both the oxidative modification of LDL and the dysfunction of the endothelium which are 

central to the aetiology of the disease. However, it is important to recognise that, while 

oxidative stress is a valid therapeutic target for prevention and treatment strategies, the role of 

inflammation should not be overlooked. 

 

Polyphenols  

Polyphenols are the most widespread class of plant secondary metabolites (Castellano, 2012; 

Falk, 2006; Tsao, 2010), where they are involved in defence against ultraviolet radiation, cold 

temperatures or drought, as well as contributing to the colour of leaves, berries and fruits. 

They also act as anti-feedants and toxins that assist plants in their defence against herbivores, 

parasites and pathogens (Gould et al., 2009). Approximately 8,000 phenolic structures have 

been identified so far, several hundred of which are found in edible plants (Perez-Jimenez et 

al., 2010; Tsao, 2010) (figure 2). Polyphenols are characterised by the presence of several 

phenolic groups (aromatic rings) (Manach et al., 2004). They are highly diverse and can be 

divided into several sub-groups, depending on the number of phenol rings that they contain 
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and of the structural elements that bind these rings to one another (Quideau et al., 2011) 

(figure 2).  

 

Polyphenols as antioxidants 

Historically, polyphenol-induced benefits have been largely attributed to the renowned ability 

of polyphenols to act as powerful antioxidants. Indeed, under in vitro conditions, phenolic 

compounds can readily donate an electron or H atom from an aromatic hydroxyl group to a 

free radical, thereby ‘neutralizing’ it. Direct antioxidant properties of polyphenols depend on 

the arrangement of functional groups in their core structure (Prochazkova et al., 2011). The 

antioxidant capabilities of polyphenols are complex: the hydroxylation patterns - such as the 

3-hydroxy group in flavanols, or electron deficiency in the case of anthocyanins - as well as 

the presence of catechol groups are important in the antioxidant activities (Hanif et al., 2008; 

Kahkonen et al., 2003). It has been reported that the in vitro antioxidant activity of several 

polyphenols is comparable to that of vitamin C and vitamin E (Gardner et al., 1998; Prior et 

al., 2000). Polyphenols have been reported to scavenge ROS and reactive nitrogen species, 

including O2
.-
, H2O2, hydroxyl radicals (

.
OH), hypochlorous acid (HOCl) and NO (Tsao, 

2010). Moreover, they can act as direct radical scavengers of the peroxidation products of 

lipids, proteins DNA and RNA (Quideau et al., 2011). Additionally, polyphenols can act as 

metal ion chelators, thereby reducing the rate of Fenton reactions and formation of highly 

damaging 
.
OH (Fraga et al., 2010). 

Despite their excellent antioxidant activity in vitro, the evidence in support of direct 

antioxidant activity of polyphenols in vivo is weak. For example, in the blood, plasma levels 

of unconjugated polyphenols rarely exceeds 1 µM and, moreover, the products of polyphenol 

metabolism tend to have lower antioxidant capacity, because the radical-scavenging -OH 

groups are blocked by methylation, sulfation and glucuronidation (Pollard et al., 2006). In the 

context of plasma, where highly abundant proteins, thiols, uric acid and vitamin C already 

constitute a formidable antioxidant barrier, any phenolic contribution is negligible (Turell et 

al., 2013). Therefore, the concept that the observed increases in antioxidant capacity of 

plasma after consumption of polyphenol-rich foods is directly attributable to increased 

polyphenol load is implausible. It is much more likely that other readily absorbed dietary 

components ingested alongside polyphenols, such as vitamin C, vitamin E (Cao et al., 1998) 
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or even fructose on account of a recognised interaction with uric acid (Lotito et al., 2004), are 

responsible for the observed effect of fruit and vegetable rich diets on plasma antioxidant 

capacity. 

 

Polyphenols as pro-oxidants  

Despite the fact that pro-oxidant activities of polyphenols were reported nearly three decades 

ago (Tulyathan et al., 1989), more attention has been paid to their widely described 

antioxidant capacities. Spontaneous oxidation of a common phenolic metabolite, gallic acid, 

leads to generation of a variety of highly reactive species, including O2
.-
, H2O2, quinones and 

semiquinones (Gil-Longo et al., 2010). Epigallocatechin-3-gallate (EGCG), epicatechin-3-

gallate (ECG) (Lambert et al., 2010; Severino et al., 2009), quercetin (Lapidot et al., 2002), 

theaflavin (Babich et al., 2008) and a variety of plant extracts, including apple (Bellion et al., 

2009), pomegranate (Weisburg et al., 2010), black and green tea extracts (Severino et al., 

2009), as well as red wine (Elias et al., 2009) generate ROS, and H2O2 in particular. The 

extent of pro-oxidant activity of polyphenols is dependent on the polyphenol in question, its 

concentration and the conditions of the environment (Babich et al., 2008; Bellion et al., 

2009). The mechanism by which oxidation takes place remains equivocal, although reduction 

of iron and copper ions might help to promote Fenton chemistry and pro-oxidant activities of 

polyphenols (Gil-Longo et al., 2010; Martin et al., 2010). 

The relevance of polyphenol oxidation under physiological conditions remains unclear, but 

the products of polyphenol auto-oxidation have been shown to be toxic in human lung 

carcinoma cells (H460) (Leung et al., 2007). However, the concentrations used in these 

studies (50 - 80 µM) were supraphysiological and it is reasonable to assume that 

physiological levels are non-toxic. Indeed, the potential toxicity of auto-oxidation products of 

polyphenols is likely the reason for the low absorption in the gut and the rapid conjugation 

and metabolism of absorbed polyphenols as a means of detoxification.  

 

Polyphenols as xenobiotics (oral bioavailability, metabolism and clearance) 

The way polyphenols are handled by the body is characteristic of that for xenobiotics - 

substances that are not normally found in vivo that can become toxic without appropriate 
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metabolism and excretion (Cardona et al., 2013; Croom, 2012). Thus, regardless of the 

amount of ingested polyphenol-rich food, the bioavailability of the native polyphenols tends 

to be maintained in the nM to low µM range (D'Archivio et al., 2007; Mazza, 2007).  

 

Absorption 

Polyphenols can be found in wide range of fruit and vegetables. In some plants their 

concentration can be as high as 750 mg per 100 g of fruit (Bohn, 2014; Manach et al., 2004). 

Berries, whole-grain cereals, cacao, tea, coffee and red wine are common rich dietary sources 

of polyphenols. Depending on diet, gender and other socio-economic factors, the total daily 

intake of polyphenols is around 1g a day (Grosso et al., 2014; Mullie, 2014; Scalbert et al., 

2000). 

It has been estimated that only 1-10% of total polyphenol intake is found in plasma and urine 

samples (D'Archivio et al., 2007; Duthie et al., 2003; Nicholson et al., 2008). Bioavailability 

of polyphenols is first determined by their rate, site and means of absorption. Moreover, 

direct interaction between polyphenols and other compounds and food components, such as 

proteins, carbohydrates, fibre, fat and alcohol, can also affect their absorption (D'Archivio et 

al., 2007). Maximal concentrations are usually reached within 0.5-2 h after ingestion, falling 

to baseline levels within 8-12 h (Beattie et al., 2005). Just as with drugs, attainment of steady 

state conditions requires regular, frequent, repeated ingestion (dosing). Most polyphenols 

(except flavanols) are present in food as glycosides - esters or polymers of very complex 

structures and high molecular weight, limiting their absorption in native form (Manach et al., 

2004). For instance, the molecular weight of proanthocyanidins, oligomers of catechin, 

epicatechin and their gallic acid esters, ranges from 500 to 20,000 g/mol (Sepúlveda et al., 

2011). Most polyphenols remain relatively stable at the low pH experienced in the stomach 

and resist acid hydrolysis, therefore facilitating their transit to the small intestine intact. Only 

anthocyanin glycosides are absorbed in both the stomach and small intestine without 

modification, but the rate of absorption is limited by the type of sugar moiety attached 

(Hassimotto et al., 2008; Mazza, 2007; Wiczkowski et al., 2010). The remaining intact 

polyphenols that reach the small intestine undergo hydrolysis by lactase phloridizin hydrolase 

(LPH) present in the brush-border of the epithelial cells in the small intestine. The released 

aglycones (deprived of sugar moiety) are then capable of entering the epithelial cells by 
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passive diffusion on account of their increased lipophilicity (Del Rio et al., 2013). However, 

only some glycosides are hydrolysed in the small intestine; polyphenols linked to a rhamnose, 

arabinose and xylose moieties, as well as compounds with more complex structures (e.g. 

tannins) reach the colon, where they are hydrolyzed by the microflora before absorption can 

occur (Manach et al., 2004). The colonic microbiota are responsible for extensive breakdown 

of complex polyphenols, leading to the release of low molecular weight phenolic metabolites 

(e.g. phenolic acids, urolithins) that only now are available for absorption. However, the rate 

of absorption in the colon is lower than that in the small intestine. Unabsorbed polyphenols 

are excreted from the body in faeces (Scalbert et al., 2000). 

In addition to the poor absorption of polyphenols, it is important to recognise that some are 

intrinsically prone to decomposition in aqueous medium. Anthocyanins, for instance, are 

known to be very unstable in tissue culture medium. Compared to the other anthocyanins, 

delphinidin has the lowest stability in tissue culture medium; substantial degradation to gallic 

acid and aldehyde is found as early as 30 min of dissolution (Kay et al., 2009; Woodward et 

al., 2009). Pelargonidin is the most stable anthocyanin (Kern et al., 2007). Degradation of 

anthocyanins, as well as the other polyphenols, can be accelerated by light, pH and 

temperature, as well as by the composition of accompanying substances (enzymes, proteins, 

other flavonoids) and the redox environment (Fang, 2014; He et al., 2010). For example, the 

stability of resveratrol is affected by light and alkaline pH (Trela et al., 1996). Similarly, 

artemetin (another flavonoid), is characterized by low stability at room temperature 

(Weathers et al., 2012). Moreover, cocoa flavanols ((-)-epicatechin, (+)-catechin) and their 

dimers are highly unstable in simulated intestinal fluid or alkaline pH (Zhu et al., 2002).  

Ultimately, the identity of the phenolic compounds that persist in the lumen of the gut is an 

important consideration in determining the nature and bioactivity of the phenolic derivatives 

that eventually reach the bloodstream. 

 

Metabolism and excretion 

Bioavailable polyphenols can be found in plasma in both their native intact form and the 

glucuronidated and/or methylated forms; sulfo-conjugates are less common (Matsumoto et 

al., 2006). Extensive conjugation occurs on first pass through the liver. This metabolic 

detoxification process is common to many xenobiotics, acting to prevent potential toxic 
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effects, and is followed by urinary elimination on account of the increased hydrophilicity of 

the conjugates (D'Archivio et al., 2007). The conjugation mechanisms, together with low 

stability of many polyphenols under physiological conditions, are implicated in the very low 

concentrations of aglycones found in the blood, even in individuals on a polyphenol-rich diet. 

All forms of polyphenols, however, are rapidly excreted from the body. The maximal urine 

concentration of polyphenols is often attained within 2-4 hours after ingestion (Jin et al., 

2011). 

Antioxidant therapies in CVD  

It is well-recognised that diets rich in fruit and vegetables promote health and attenuate, or 

delay the onset of CVD (Lopez-Sepulveda et al., 2011). The cardio-protective effects of such 

dietary interventions have been associated with a wide variety of chemical constituents of 

fruit and vegetables, many of which are considered to be powerful antioxidants (e.g. vitamins 

A, C and E) (Beckman et al., 2001; Hozawa et al., 2007; Otero et al., 2005). Given that 

oxidative stress is a key feature of atherogenesis, antioxidant therapy is a potential option 

(Nicholson et al., 2008). However, some intervention trials have failed to find a correlation 

between antioxidant vitamin consumption and reduced CVD (Lonn et al., 2005). Therefore, 

interest has been directed towards other bioactive compounds found in fruit and vegetables, 

namely polyphenols (Duthie et al., 2003) that might mediate the benefits independent of the 

abundant antioxidants. Epidemiological studies have also shown that polyphenols found in 

berries (Ellingsen et al., 2008; Li et al., 2015), chocolate (Jumar et al., 2016; Larsson et al., 

2016), coffee (Grosso et al., 2016), and red wine (Cosmi et al., 2015) are associated with 

slower CVD progression. However, given their low bioavailability, the assumption that the 

observed health beneficial effects are driven by their direct antioxidant activity (chemical 

antagonism) seems very unlikely. Nevertheless, further studies have reported that properties 

other than antioxidant activity might underpin the benefits of polyphenols in the 

cardiovascular disease setting. The ability of native polyphenols and/or their metabolites to 

interact with enzymes, transcription factors  (Aggarwal et al., 2006; Kode et al., 2008), and 

receptors (Chalopin et al., 2010; Grossini et al., 2015) strongly suggest that they might act as 

signalling molecules and be able to express their beneficial effects at a molecular level (Fraga 

et al., 2010; Loke et al., 2010). 
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Polyphenols as pharmacological agents 

Collectively, studies have demonstrated that dietary polyphenols are biologically active 

substances, with therapeutic effects in cells and/or tissues. Phenolic compounds provide a 

wide spectrum of bioactivities: aside from their broadly described free radical scavenging 

properties, the existence of both hydrophobic and hydrophilic domains within polyphenols 

enables them to potentially interact with, and diffuse through biological membranes, and to 

bind to receptors and enzymes to exert intracellular signalling effects (Bennick, 2002). 

 

Indirect antioxidant activity 

One of the hypotheses that has emerged to explain the antioxidant effects imparted by 

polyphenols is that they act as mild toxins and stimulate a general xenobiotic or/and 

antioxidant response in the target cells, activating multiple defence genes. Phenolic 

compounds can activate the nuclear factor E2-related factor 2 (Nrf2)/antioxidant responsive 

element (ARE) pathway, thereby leading to induction to detoxifying enzymes, such as 

glutathione-S-transferase (GST), NADPH: quinone oxidoreductase 1 (NQO-1), haem 

oxygenase 1 (HO1) and glutamyl-cysteine ligase (GSL) (figure 3) (Johnson et al., 2008; 

Nabavi et al., 2016; Scapagnini et al., 2011). Similar findings have been found for the green 

tea polyphenol, EGCG: concentrations of 20-100 µM have been shown to induce HO1 

expression in rat neurons (H-19-7), possibly via activation of transcription factor Nrf2 

(Romeo et al., 2009). Moreover, curcumin (5 - 15 µM; the major component of the spice 

turmeric) has been reported to reduce hemin-induced oxidative stress in primary cultures of 

cerebellar granule neurons (CGNs) in rats, as well as to increase intracellular GSH, 

expression of HO1, glutathione reductase (GR), GST and superoxide dismutase, all of which 

might be mediated by Nrf2 activation (Gonzalez-Reyes et al., 2013). Artemetin (10 pM and 

1µM) was found to protect the endothelial cells against H2O2-induced oxidative stress by 

increasing GSH synthesis (Grossini et al., 2015). Kode et al., reported similar findings in 

human primary small airway epithelial and human alveolar epithelial (A549) cells. 

Resveratrol (10 µM) reduced cigarette smoke extract (CSE)-induced ROS production in 

small airway epithelial and human alveolar epithelial (A549) cells by restoring CSE-depleted 

GSH levels and upregulating GSL via activation of Nrf2 (Kode et al., 2008).  
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Activation of antioxidant defence mechanisms might happen on two different levels: firstly, 

free radicals produced by pro-oxidant anthocyanins might activate protein kinases (e.g 

phosphatidylinositol 3-kinase (PI3K), protein kinase C (PKC)), that subsequently upregulate 

transcription factor Nrf-2; secondly, the compounds themselves might act as signalling 

molecules, interacting with protein kinases, thus inducing intracellular signalling cascades 

(figure 3).  

 

Vasodilation 

Anthocyanin glycosides found in elderberry extract can be incorporated into the plasma 

membrane, and to a lesser extent, the cytosol of endothelial cells (Youdim et al., 2000). 

Structural similarities of certain anthocyanins to oestrogen (17-β-oestradiol), are responsible 

for their binding affinity to estrogen receptor α and/or β (ER-α, -β) (figure 4) (Fraga et al., 

2010; Grossini et al., 2015; Hidalgo et al., 2012; Zhang et al., 2013). Delphinidin aglycone 

(17 µM) can induce endothelium-dependent vasodilatation in aorta in mice through activation 

of ER-α, leading to an increase endothelial NO synthase (eNOS) activity, and increased 

synthesis of the anti-atherogenic vasodilatory mediator, NO. The PI3K/Akt and Src/ERK1/2 

signalling pathways have both been implicated in delphinidin-mediated vasodilatation in 

endothelial cells (figure 5) (Chalopin et al., 2010; Lopez-Sepulveda et al., 2011; Marino et 

al., 2006). In support of the relevance of this potential mode of action of polyphenols is the 

fact that physiologically relevant concentrations can invoke this activity: for example, 

isoflavones (genistein, daidzein) exhibit oestrogenic activity at ~0.1 µM (Kuiper et al., 1998). 

However, the aglycone form of delphinidin that has been found to mimic 17-β-oestradiol 

activity is unlikely to be found in plasma on account of its rapid degradation, which 

undermines the concept, at least for delphinidin.  

Hidalqo et al., (2012) have shown that delphinidin-3-O-glucoside (the form, which is more 

stable than aglycone), pelargonidin-3-O-glucoside, gallic acid as well as genistein has higher 

affinity to ER-β than ER-α (Hidalgo et al., 2012; Kuiper et al., 1998). Moreover, differential 

tissue distribution of the ER α (uterus, ovary, testis, skin, gut,) and β receptors (fetal ovaries, 

testes, adrenals, spleen) suggest these compounds may be tissue selective (Brandenberger et 

al., 1997). 
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Interestingly, Grossini et al., (2015) demonstrated that artemetin (the main phenolic 

component of herbs Artemisia absinthium and Achillea millefolium) at physiologically 

relevant concentrations (10 pM - 100 µM) increased eNOS-dependent NO production in 

porcine aortic endothelial cells through involvement of oestrogen receptors and activation of 

protein kinase A (PKA), ERK1/2, and the Akt pathway. Similar effects were observed for 

genistein (1 µM) (Grossini et al., 2015). However, the relative instability of artemetin was 

not taken into consideration in these studies. Weathers et al., (2012) reported that artemetin is 

poorly extracted from Artemisia annua plant and highly unstable in the tea infusion at room 

temperature (Weathers et al., 2012). There was no information given on its stability under 

physiologically relevant conditions. The need for utilizing metabolites and degradation 

products of potentially bioactive polyphenols in vitro studies is increasing. Zhang et al., 

(2013) have shown that S-(-)equol (10 nM – 250 nM), a metabolite of isoflavone daidzein, 

mimics the effects of its parent compound and activate PI3K/Akt pathway through ER-β 

receptor, increasing Nrf2 expression, an important factor in maintaining vascular redox 

homeostasis (Zhang et al., 2013). Alternatively, polyphenols can promote vasodilation 

through inhibition of the release of the vasoconstricting factor, endothelin-1 (ET-1). Lazze et 

al., (2006) found that delphinidin, and to a lesser extend cyanidin aglycone (50 - 100 µM) 

inhibit ET-1 synthesis in HUVECs, with a simultaneous increase in eNOS expression (Lazze 

et al., 2006; Matsumoto et al., 2005). Pre-treatment with delphinidin-3-O-rutinoside (10 µM) 

exerted an inhibitory effect on ET-1 induced contraction in bovine ciliary smooth muscle. 

Moreover, delphinidin-3-O-rutinoside promoted vasodilation via stimulation of ETB receptors 

and the cGMP pathway, leading to NO production (Matsumoto et al., 2005). In addition, 

delphinidin glycosides have been shown to inhibit the activity of other vasoconstrictors, such 

as angiotensin converting enzyme, but the concentrations required to cause this effect were 

unlikely to be achieved  in vivo (IC50 ~ 65 µM) (Hidalgo et al., 2012). 

 

Anti-platelet activity  

Phenolic compounds exhibited a range of inhibitory effects on platelet activation, related 

signal transduction pathways, enhancement of NO production, and inhibition of receptors 

such as thromboxane A2 (TXA2) (figure 6).  
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An in vitro study by Yang et al. (2012) demonstrated that delphinidin-3-O-glucoside 

inhibited platelet aggregation in platelet-rich plasma and purified platelets from humans and 

mice by collagen, thrombin, thrombin receptor activating peptide (TRAP), ADP. Substantial 

effects were observed at supraphysiological concentrations (50 µM), but concentrations as 

low as 0.5 µM also had a modest but significant effect. Similar concentrations were found to 

significantly inhibit thrombus formation under high and low shear. However, only 5 and 50 

µM delphinidin-3-O-glucoside significantly inhibited expression of platelet activation 

markers, such as P-selectin, CD63 and CD40L ligand in purified platelets (Yang et al., 2012). 

Furthermore, 5 µM delphinidin was the threshold concentration for inhibition of fibrinogen 

binding (Yang et al., 2012). Moreover, quercetin (25 – 100 µM) inhibited collagen-induced 

fibrinogen binding to its receptor. Oh et al., (2012) suggested that quercetin might cause 

conformational changes to the GPIIb IIIa receptor, therefore reduce the affinity of fibrinogen 

to the receptor’s binding site (Oh et al., 2012). Similar findings have been found for nobiletin 

(6.25 - 200µM), a flavonoid found in citrus fruit (Vaiyapuri et al., 2015). 

In contrast, Garcia-Alonso et al., (2004) reported that delphinidin, petunidin and malvidin 

glycosides (50 µM) failed to inhibit collagen-induced platelet aggregation in human whole 

blood samples (Garcia-Alonso et al., 2004). The discrepancy, however, might be a result of 

some differences in methodology used (e.g different pre-incubation time with the target 

polyphenol). Another anthocyanin, cyanidin-3-O-glucoside (5 and 50 µM), reduced platelet 

aggregation in healthy and hypercholesterolaemic patients by inhibition of platelet α-,  δ-, and 

γ- granule secretion, as evaluated by P-selectin, RANTES (regulated upon activation normal 

T-cell expressed and secreted), beta-TG (beta-thromboglobulin), PF4 (platelet factor 4), 

TGFβ1 (transforming growth factor beta 1), serotonin, ATP, and CD63 release. The 

mechanism of action proposed by Song et al., (2014) is activation of PI3K/Akt signalling 

pathway (figure 6) (Song et al., 2014). Meanwhile, resveratrol has been found to inhibit 

collagen–induced platelet aggregation, to stimulate platelet NO-production, as well as to 

reduce platelet ROS production, when present at physiologically relevant concentrations (0.1 

– 1 µM) (Messina et al., 2015). Simple phenolic acids, such as gallic acid have also been 

shown to inhibit platelet aggregation and activation via inhibition of the phosphorylation of 

PKCα/p38 MAPK and Akt/GSK3β (Chang et al., 2012). Similar findings were obtained for 

hippuric acid, the predominant metabolite of some phenolic acids and polyphenols, which 

reduced platelet aggregation and P-selectin/CD62P expression at 1 - 2 mM. Hippuric acid, 

however, is actively excreted from the body with maximal plasma concentrations of ~200 – 
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300 µM (Santhakumar et al., 2015). Meanwhile, pelargonidin aglycone, but not the glucoside 

adduct, inhibited thrombin-induced fibrin polymerization and platelet aggregation and 

elicited anticoagulant effects in mice. Similarly to previous studies, the concentrations used 

were not attainable physiologically, and were ≥ 10 µM (Ku et al., 2016). Another in vitro 

study by Macakova et al., (2012) reported that differences in chemical structure of several 4-

methylcoumarin analogues (absence of hydroxyl group, or altered hydroxyl group at position 

at C-5, and different substitutions at C-3) determined their anti-platelet function. 5,7-

dihydroxy-4-methylcoumarins, especially those with a lipophilic side chain at C-3, had anti-

platelet activity that was similar to that of acetylsalicylic acid (aspirin) in arachidonic acid-

induced platelet aggregation. Interestingly, only synthetic coumarins, but not the native 

equivalents (no substitutions on C-5 and C-3) inhibited platelet aggregation. The most 

effective was synthetic 3-ethoxycarbonylethyl-5,7-dihydroxy-4-methylcoumarin at 10 µM 

(Macakova et al., 2012). On account of the fact that the effect with this compound was 

specific to aggregation induced by arachidonic acid, the mechanism of action proposed was 

inhibition of cyclooxygenase 1 and competitive antagonism at thromboxane A2 receptors 

(Macakova et al., 2012).  

Polyphenols can, therefore, inhibit platelet aggregation induced by a range of agonists (figure 

6). However, the inhibition almost exclusively requires concentrations that are supra-

physiological. 

 

 Anti-inflammatory mechanisms 

Atherosclerosis is an inflammatory disease. Chronic inflammation plays a crucial role in 

development and progression of CVD. Phenolic compounds exert anti-inflammatory 

activities by altering the recruitment of inflammatory cells (arresting pro-inflammatory 

molecules production: tumour necrosis factor α (TNF-α), interleukin-6 (IL-6), C-reactive 

protein (CRP)) and inhibiting the production of adhesion molecules (VCAM-1 and ICAM-1) 

by the endothelium, thereby impeding cellular migration of monocytes into the 

subendothelial space (Tangney et al., 2013). Polyphenols are likely to promote their anti-

inflammatory properties by modulating transcriptional networks and/or signalling cascades 

that modulate gene expression, leading to inhibition of inflammatory mediators (figure 7).  
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There is a significant reduction in secretion of adhesion molecules (MCP-1, ICAM-1, and 

VCAM-1) when endothelial cells were pre-treated with gallic acid (10 - 100 µM), but 

concentrations likely attainable in vivo (1 µM) were less effective in this regard (Hidalgo et 

al., 2012). Similarly, the anthocyanins, delphinidin- and cyanidin-3-O-glucosides (0.1 – 50 

µg/ml; 200 nM – 100 µM) inhibited LPS-induced VCAM-1 expression in porcine iliac artery 

endothelial cells (Zhu et al., 2013). Moreover, delphinidin aglycone (50 – 200 µM) has been 

shown to decrease ox-LDL induced expression of adhesion molecules (ICAM-1 and P-

selectin) in a human endothelial cell line (EA.hy926), as well as to reduce adhesion of 

monocytes to endothelial cells by reducing intracellular ROS, p38MAPK expression, IκB-α 

degradation and NF-κB transcription activity (Chen et al., 2011). Another in vitro study 

showed that quercetin (125 µM) was able to partially supress leptin-induced TNF-α secretion, 

and significantly inhibit leptin-induced NF-κB expression in HUVECs (Indra et al., 2013). 

Moreover, epicatechin (1 - 100 µg/ml; approx. 3 – 340 µM), suppressed production of the 

pro-inflammatory cytokines, IL6, IL-8, with a simultaneous increase in expression of the 

anti-inflammatory cytokine, IL-10 in whole blood cultures (Al-Hanbali et al., 2009). 

Additionally, apigenin (30 µM) and kaempferol (30 µM), but not resveratrol (50 µM), 

supressed expression of LPS-induced interleukine 1 (IL-1). All of these polyphenols, and 

resveratrol in particular, effectively decreased LPS-induced expression of TNF-α in J774 

macrophages (Kowalski et al., 2005).  

A wide range of phenolic compounds (daidzein, genistein, kaempferol, pelarginidin, 

naringenin and isorhamnetin; all at 100 µM) have also been found to significantly reduce 

LPS-induced NF-κB formation in J774 cells (macrophages) (Hamalainen et al., 2007). 

Similarly, epicatechin decreased the amount of NF-κB in cytoplasmic fractions (Al-Hanbali 

et al., 2009).  

It has been reported that various flavonoids can suppress expression of others pro-

inflammatory mediators (Hou et al., 2005, Lopez-Posadas et al., 2005). Cyclooxygenase 2 

(COX-2), an important player in inflammatory responses, has been shown to be inhibited by 

two anthocyanins, delphinidin and cyanidin (25 – 100 µM), in LPS-activated RAW264 cells 

(Hou et al., 2005). Other tested compounds such as, pelargonidin, malvidin and peonidin did 

not show any inhibitory effects (Hou et al., 2005). Similarly, kaempferol (25 and 100 µM) 

has been found to supress COX-2 and TNF-α gene expression in LPS-treated RAW264.7 

cells (Kim et al., 2015). Activation of transcription factor NF-κB plays a crucial role in 
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inflammation, mainly due to its ability to induce expression of pro-inflammatory genes, 

thereby regulating the immune response (Tak et al., 2001). Therefore, direct inhibition of NF-

κB by polyphenols is recognised to be a fundamental mechanism underpinning their anti-

inflammatory activity (figure 7). Banaganapalli et al., (2013) reported that the synthetic 

resveratrol derivative (propynyl resveratrol; 5 µM -10 µM) suppressed the activity of NF-κB, 

most likely by interfering with its DNA binding ability possibly via its association with the 

IκB-α site of NF-κB (Banaganapalli et al., 2013). Interestingly, native resveratrol was not as 

effective as its synthetic derivative, either on account of lower stability of resveratrol or 

through modified structure: function relations (Banaganapali et al., 2013). Likewise, 

curcumin analogues have been found to inhibit NF-κB activation and gene regulation via 

inhibition of IKK and Akt activation. In the same study, curcumin (50 µM) blocked 

phosphorylation of IκBα and p65, leading to suppression of events necessary for NF-κB gene 

expression, mainly degradation of IκB-α and nuclear translocation of p65 (Aggarwal et al., 

2006).  

Another anti-inflammatory mechanism that can be potentially targeted by polyphenols is the 

mitogen-activated protein kinase (MAPK) pathway. MAPKs are involved in the production 

of pro-inflammatory cytokines (IL-6, TNF-, MCP-1, and iNOS) and downstream signalling 

events that lead to inflammation and apoptosis (Thalhamer et al., 2008). It has been reported 

that malvidin (50 µM), an anthocyanin found in red wine, inhibited LPS-induced MAPK 

signalling in RAW 264.7 macrophages, with simultaneous enhancement of MAPK 

phosphatase-1 (MKP-1; the protein that down-regulates the activity of all three branches of 

MAPKs) (Bognar et al., 2013). Similar findings were identified for another anthocyanin, 

delphinidin: pre-treatment with delphinidin aglycone (100 µM) significantly suppressed 

phosphorylation of JNK1/2, ERK1/2, and p38 kinases (three branches of MAPKs). 

Meanwhile, the glycoside, delphinidin-3-sambubioside (50 – 200 µM), only successfully 

supressed the ERK1/2 phosphorylation with little effect on the phosphorylation of JNK1/2 

and p38 in LPS-induced RAW 264.7 (Sogo et al., 2015).  

Finding a drug specific for a disease of complex aetiology, like cardiovascular disease, is 

challenging. However, many natural products are characterised by weak binding affinities for 

any given target, thereby increasing the likelihood of binding to multiple targets at lower 

affinity, with a combined effect that is sufficient to drive an overall health benefit (Wang et 

al., 2016).  
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Conclusions 

That nutritional polyphenols can have cardioprotective activity in vivo and are important 

health-promoting components of our diet is unequivocal. However, the fundamental 

mechanisms that underpin the protective activity are much less clear, a situation that is not 

helped by the multitude of in vitro data produced using inappropriate concentrations of native 

polyphenols that have poor bioavailability and are rapidly metabolised to simple phenols, 

aldehydes and salicylates. In particular, the measurement of direct antioxidant capacity of 

extracts or even pure compounds in vitro as a predictor of in vivo antioxidant activity is 

unfounded, given the low bioavailability and rapid metabolism of the component 

polyphenols. Instead, there is a far more complex picture emerging of the mechanisms 

involved in the cardioprotective effects of dietary polyphenols that involves pharmacological 

activity at receptor, cell signalling and gene expression levels. Crucially, the concentrations 

required to activate these pathways are often orders of magnitude lower than those necessary 

for direct antioxidant activity, and many of the products of polyphenol metabolism are as 

active as the parent compounds. 

There is a need to return to first principles in pharmacology to gain a full understanding of 

the activity of polyphenols in cardioprotection. In particular, not enough attention has been 

paid to stability, absorption, distribution and metabolism of polyphenols in order to inform 

the design of experiments to test the mechanism(s) of action in vitro. This need extends to in 

vivo pharmacokinetic and pharmacodynamic experiments as a forerunner to mechanistic 

studies in order to determine the concentrations of polyphenols and/or their metabolites to be 

tested in cell culture. Critically, acute exposure to a high concentration of a phenolic 

compound is not an acceptable surrogate for the more realistic chronic exposure to a low 

concentration that might happen in vivo: the mechanisms revealed by each approach are 

likely to be very different, even if the eventual outcome is the same (e.g. antioxidant 

protection). 

Understanding the pharmacological mechanism by which polyphenols bring about 

cardiovascular effects is critical not only to inform dietary advice, but also to help design 

drugs and nutraceuticals with better bioavailability that target the same pathways. Diosmin is 

an example of a semi-synthetic drug, based on the citrus polyphenol, hesperidin (Tong et al., 

2013), that is used widely in Europe and USA, primarily in venous insufficiency (Amato, 

1994, Maksimovic et al., 2008). Interestingly, the mode of action of diosmin is through 
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venous contraction and not through any antioxidant effect. This example serves to highlight 

that polyphenols have great pharmacological potential, but a universal shift in emphasis away 

from the direct antioxidant notion for polyphenol activity is the vital first step to a full 

appreciation of polyphenol activity in vivo. 
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Figure Legends 

 

Figure 1. Chemical structures of polyphenols of high antioxidant potential, including their 

bioavailability in plasma analysed without enzymatic conjugation. Data were obtained from 

Phenol-Explorer data base (www.phenol-explorer.eu). (H) - Cmax data obtained from human 

studies; (R) - Cmax  data obtained from animal studies -rats; * presented values correspond to 

the following glycosides: delphinidin-3-O-rutinoside, cyanidin-3-O-glucoside, peonidin-3-O-

glucoside and malvidin-3-O-glucoside; N/A- data not available.  
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Figure 2. Polyphenol classification. Classes of polyphenols with examples that exhibit 

possible cardioprotective effects. 
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Figure 3. Indirect antioxidant activity of polyphenols mediated via gene expression- a 

proposed mechanism. 
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Figure 4. 17-β-oestradiol and phytoestrogens.  
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Figure 5. Oestrogen receptor and polyphenols – a proposed mechanism of action, taking into 

account two main ERs regulatory actions; classical (direct) and tethered pathway.  
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Figure 6. Proposed anti-platelet mechanism of action of polyphenols.  
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Figure 7. Schematic diagram of NfκB pathways, and proposed anti-inflammatory mechanism 

of action of polyphenols.  

 


