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a b s t r a c t 

Compliant micro-positioning stages offer low-cost high precision and repeatability but limited workspace and 

nonlinear behaviour. The conventional modelling techniques used to characterise micro-motion stages are often 

either complex or inaccurate for large displacements. New methods have recently been developed with satisfying 

results. However, the presented models often focus on one part of the stage characterisation. This paper presents 

an analytical model used to characterise a compliant XY micro-motion stage in terms of stiffness and working 

range, taking into account the stress and buckling limitations, motion loss and parasitic displacements. The 

presented model combines a 6-degree-of-freedom (DOF) linear model and a simplified 2-DOF nonlinear static 

model. As a case study, this model is used for the design of a micro-motion stage which is intended to be the fine 

positioning system for a hybrid miniaturised product assembly system. The results generated by the analytical 

model, the finite element analysis (FEA) and the experimental testing are all in agreement. The analytical model 

is therefore proven to be suitable for a full characterisation and design optimisation; reducing the computation 

time from a few hours to a few minutes when using MATLAB rather than FEA software. Its ability to predict 

the output displacement as a function of the input displacement with a maximum error of less than 2% also 

makes it suitable for open-loop control. The travel range of the fabricated stage is greater than ± 2.3 mm 

2 and the 

maximum cross-coupling error is less than 2.5%. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Due to their advantages such as compactness, cost reduction and

nhanced performance, compliant XY motion stages are promising

lternatives to conventional linear stages. They have a wide range

f applications, such as fibre alignment, semi-conductor positioning,

ltra-precision micromachining centres, scanners for Atomic Force

icroscope (AFM) and micro-assembly [1–5] . Their inclusion in

icro-motion applications has allowed for accuracy and repeatability

alues in the nanometre scale [2] . Compliant stages have been reported

o have no backlash; no friction; no noise emission and no need for

ubrication [6–8] . However, compliant XY motion stages also have

everal disadvantages which may introduce errors if neglected. Such

isadvantages include: non-linear behaviour, limited working area and

ff-axis deviation. Serial compliant motion stages often combine two

-DOF compliant prismatic joints which have the advantages of simple

esign and are naturally decoupled. However, they suffer from lower

ccuracy and higher inertia compared to parallel motion stages. 
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Clearly there is a motivation to design a low-cost 2-DOF micro-

otion stage with a large workspace and a limited actuation force.

iniaturised product assembly requires micrometre scale accuracy

nd a range of motion at the millimetre scale. It is also desirable to

ave a high ratio between the first two resonant frequencies and the

hird one to limit unwanted displacements and minimal cross-coupling

esulting in independent DOFs along the X and Y directions. Typically,

arallelogram structures with flexure hinges are used in XY motion

tages to generate translational motion. 

The four main types of parallelogram structure (see [6–10] for ex-

mples) are presented in Fig. 1 . The design requirements for the motion

tage detailed in this paper are: the system’s structural frequency is

ufficiently high to avoid vibrations; the ratio between off-axis stiffness

nd axial stiffness is as high as possible to avoid motion along other

irections and limited kinematic coupling. A multitude of XY motion

tages have been reported in the literature [9–20] , with a range of

otion from 25 ×25 μm 

2 to 20 ×20 mm 

2 , a first natural frequency

etween 48.3 Hz and 2.54 kHz and a coupling error between 0.5% and

%. Micro-motion stages can be classified into two categories based on
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Fig. 1. Four types of parallelogram structures for micro-motion stages: (a) basic parallel- 

ogram, (b) double parallelogram, (c) compound basic parallelogram, and (d) compound 

double parallelogram. 
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Fig. 2. Beam dimensional parameters. 
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he range of motion. Stages with a very short range of motion are typi-

ally very stiff, have low coupling, are compact and are often driven by

iezoelectric actuators [21] . On the contrary, stages with a large range

f motion are less stiff and therefore more prone to vibration, exhibit

igher coupling and have a large footprint. Such stages are usually

riven by Voice Coil Actuators (VCAs), or other types of electromagnetic

inear actuators. To avoid cross-axis deflection and low stiffness, the XY

otion stage designed in this paper is exclusively composed of com-

ound basic parallelogram structures ( Fig. 1 (c)) with leaf-spring type

exures as in [20] . VACs are preferred to PZT actuators for their larger

troke, their ease of control and the absence of hysteresis and creep. 

There are various ways to derive the stiffness matrix of a compliant

tage. A commonly used modelling method is the Pseudo-Rigid Body

odel (PRBM). This method, first introduced by Howell and Midha

n 1994 [22] , allows flexible elements to be modelled as rigid bodies

onnected together by torsional springs and undergoing large deflec-

ion. This method has been used to produce accurate results for small

eflections [3,12,23,24] . 

One limitation of this method is that it often considers the compli-

nce of the flexure joints in the direction of rotation but considers the

eams as rigid bodies. Some recent models include the compression of

he beams. For instance, the model derived in [12] takes into account

he compression of the beams to estimate the motion loss. Based on this

ethod, the nonlinear term induced by tension loading has been ad-

ressed to improve the model accuracy for large displacements. An ex-

ended PRBM was used in [25–27] to model compliant joints using linear

prings instead of rigid links to connect the torsion springs together. 

Another method commonly used is the compliance matrix method

ased on Hooke’s law and consists of replacing each joint by an equiva-

ent spring model. This method has been reported to be accurate and effi-

ient for small displacements [6,7,11,13,15,17,28–32] and is often used

s it allows for a full analysis of deformation of all links. Simplification

f the compliance matrix is usually achieved by reducing the number of

OFs of the flexures from 6 to 3 in the analysis. This method is efficient

ut has limitations when larger displacements are applied with reported

rrors of 7.4% in [33] , 8.5% in [7] , 10% in [15] and 20% in [6] . 

Basic derivations based on elastic theory are limited to mechanisms

ith a simple structure, but is probably the simplest method and is

ufficient in many cases [18,34–37] . However, as the previous method,

his method is only efficient for small displacements. This has been

ocumented in [18] and [34] , where the displacement error reaches

0.9% and 9% respectively when compared to FEA. 
67 
Alternatively, [9,38–41] derived a nonlinear force-displacement

elationship based on equations established in [42] for beam-based

echanisms using a Beam Constraint Model (BCM). The model used

akes into account the load stiffening phenomena with very large axial

orces for a motion range of up to 10% of the beam’s length. This model

s regarded as an efficient analytical method but the introduction of

ension in the beams could be simplified. 

Using elliptic integrals to model large deflection of beams is con-

idered the most accurate technique as explained in [43] . However,

his method requires time consuming complex calculations. This paper

resents an extensive analytical model used to design, optimise and

abricate an XY -stage with a simple structure. 

The proposed model is an alternative to the PRBM and the BCM

ethods. It uses simple, well established, beam bending equations

nd basic geometric properties to integrate the nonlinearities caused

y large displacements, such as tension loading. The analytical model

ombines a 6-DOF linear stiffness matrix to characterise the frequency

esponse and a 2-DOF nonlinear model to characterise the nonlinear

tiffness and the workspace of the XY motion stage. The impact of

imensional parameters on the stiffness and travel range is evaluated

nd the model is implemented in MATLAB to perform design optimisa-

ion. A compliant XY stage is then fabricated based on the optimisation

esults. Finally, FEA and experimental tests are compared to the

nalytical model for validation. While other models may accurately

redict the nonlinear deformation of beams in parallelogram structures,

his model allows for a full characterisation of the XY stage, including

ross-coupling, motion loss and travel range with both nonlinear

tress and buckling taken into account. This model can be used as a

eliable design tool for any parallelogram structure but can also be

ncluded in the control system of an XY motion stage to compensate

he displacement errors and allow for open-loop control. 

. Modelling 

Defining the stiffness of the compliant stage determines the rela-

ionship between the input displacement, the actuation force and the

esonant frequencies, while the maximum stress and the buckling point

etermine the range of motion. 

.1. Stiffness matrix 

Firstly, a stiffness matrix is derived to create a dynamic model of the

tage. A 6-DOF representation allows the model to be used for a wide

ange of applications. The main purpose of the stiffness matrix in this

tudy is to calculate the resonant frequencies of the stage. It will also be

sed for comparison with the nonlinear model, FEA and experimental

est results. 
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Fig. 3. Schematic top view of the compliant XY motion stage. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 4. Nonlinear spring-equivalent model of the XY stage. 
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.1.1. General beam modelling and transformation 

The dimensional parameters of a beam are presented in Fig. 2 and

he dimensions of the XY motion stage are shown in Fig. 3 . The dimen-

ions are given in metre and all the beams have the same dimensions. 

The static equation of the beam presented in Fig. 2 can be written

s in [13] and [44] : 

 = 𝐾 𝑓𝑖 𝑥 𝑔 
. 𝑋 (1)

here 𝐹 is a vector representing the forces and moments applied at

he end of the beam, 𝐾 𝑓𝑖𝑥 _ 𝑔 is the stiffness matrix of the beam with

xed-guided boundary conditions and 𝑋 is a vector representing the

ranslations and rotations at the end of the beam. The stiffness matrix

f the fixed-guided beam is: 

 

 

 

 

 

 

 

 

𝐹 𝑥 
𝐹 𝑦 
𝐹 𝑧 
𝑀 𝑥 

𝑀 𝑦 

𝑀 𝑧 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝐸𝐴 

𝐿 
0 0 0 0 0 

0 12 𝐸 𝐼 𝑧 
𝐿 3 

0 0 0 6 𝐸 𝐼 𝑧 
𝐿 2 

0 0 12 𝐸 𝐼 𝑦 
𝐿 3 

0 − 

6 𝐸 𝐼 𝑦 
𝐿 2 

0 
0 0 0 𝐺𝐽 

𝐿 
0 0 

0 0 − 

6 𝐸 𝐼 𝑦 
𝐿 2 

0 4 𝐸 𝐼 𝑦 
𝐿 

0 
0 6 𝐸 𝐼 𝑧 

𝐿 2 
0 0 0 4 𝐸 𝐼 𝑧 

𝐿 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝛿𝑥 
𝛿𝑦 
𝛿𝑧 
𝜃𝑥 
𝜃𝑦 
𝜃𝑧 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
(2)

here F n and 𝛿n are the force and translation along the n axis, M n and

n are the moment and displacement around the n axis, E is the Young’s

odulus, G is the shear modulus, A is the area of the beam’s cross

ection, L is the length of the beam, J is the torsion constant and I y and

 z are the area moments. 

The stiffness of a beam can be shifted from its local coordinate

ystem to a general coordinate system by using the shifting law from

crew theory and the work reported in [6,28,44] . This process involves

re-multiplying the stiffness matrix in coordinate O i by the inverse

ranspose of the adjoint transformation matrix and then multiplying it

y the inverse of the adjoint transformation matrix, as shown below: 

 

𝑗 

𝑖 
= 𝑇 

𝑗 − 𝑇 

𝑖 
⋅𝐾 𝑖 ⋅ 𝑇 

𝑗 −1 

𝑖 
(3)

here i represents the local coordinate system of the beam and j repre-

ents the coordinate system in which the beam’s stiffness is shifted. The

djoint transformation matrix 𝑇 
𝑗 

𝑖 
is: 

 

𝑗 

𝑖 
= 

[ 

𝑅 

𝑗 

𝑖 
𝑆 

(
𝑝 
𝑗 

𝑖 

)
.𝑅 

𝑗 

𝑖 

0 𝑅 

𝑗 

𝑖 

] 

(4)

here 𝑅 

𝑗 

𝑖 
represents the rotation matrix of O i relative to O j and

( 𝑝 𝑗 ) represents the skew symmetric operator for the vector

𝑖 
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𝑗 

𝑖 
= |𝑝 𝑥 , 𝑝 𝑦 , 𝑝 𝑧 |, denoted as: 

 

(
𝑝 
𝑗 

𝑖 

)
= 

⎡ ⎢ ⎢ ⎣ 
0 − 𝑝 𝑧 𝑝 𝑦 
𝑝 𝑧 0 − 𝑝 𝑥 
− 𝑝 𝑦 𝑝 𝑥 0 

⎤ ⎥ ⎥ ⎦ (5)

The rotation matrix 𝑅 

𝑗 

𝑖 
is obtained by multiplying the rotation

atrices around each axis: 

 

𝑗 

𝑖 
= 𝑅𝑥 

𝑗 

𝑖 
.𝑅𝑦 

𝑗 

𝑖 
.𝑅𝑧 

𝑗 

𝑖 
(6)

here 𝑅𝑥 
𝑗 

𝑖 
, 𝑅𝑦 

𝑗 

𝑖 
and 𝑅𝑧 

𝑗 

𝑖 
represent the 3 ×3 rotation matrices around

he X -, Y - and Z -axes by angles 𝜙, Ψ and 𝜃, respectively. 

.1.2. Individual parallelogram modules stiffness 

Due to the symmetry of the design, the overall stiffness can be

btained by only deriving the stiffness of the top quarter composed

f beams 1, 2, 9 and 10 (highlighted in yellow in Fig. 3 ). The beam

umbers can be found in Fig. 4 . 

Firstly, the stiffness of the parallelogram A , composed of the beams

 and 2, is represented at point O . The stiffness of beam 1 at point O is

btained by a pure translation along the X- and Y- axes, giving: 

 

𝑂 
1 = 𝑇 𝑂 1 

− 𝑇 ⋅𝐾 1 ⋅ 𝑇 
𝑂 
1 
−1 (7)

ith 𝐾 1 = 𝐾 𝑓𝑖𝑥 _ 𝑔 and 𝑝 𝑂 1 = |0 . 02 , −( 𝐿 + 0 . 02 ) , 0 |. Since beams 1 and 2

re symmetric about the Y -axis, the stiffness of beam 2 at point O is by

otating beam 1 around the Y -axis by 𝜋 radians: 

 

𝑂 
2 = 𝑅𝑦 ( 𝜋) 𝑂 2 

− 𝑇 ⋅𝐾 

𝑂 
1 ⋅ 𝑅𝑦 ( 𝜋) 𝑂 2 

−1 (8)

The stiffness of beam 9 at point O is obtained by rotating the

nitial beam stiffness matrix by − 𝜋/2 around the Z -axis and translating

y 𝑝 𝑂 9 = |0 . 02 , −0 . 02 , 0 |: 
 

𝑂 
9 = 𝑇 𝑂 9 

− 𝑇 ⋅𝐾 𝑓𝑖𝑥 _ 𝑔 ⋅ 𝑇 
𝑂 
9 
−1 (9)

Since beams 9 and 10 are symmetric about the Y -axis, the stiffness

f beam 10 at point O is obtained by rotating beam 9 around the Y -axis

y 𝜋 radians: 

 

𝑂 
10 = 𝑅𝑦 ( 𝜋) 𝑂 2 

− 𝑇 ⋅𝐾 

𝑂 
9 ⋅ 𝑅𝑦 ( 𝜋) 𝑂 2 

−1 (10)

The beams 1 and 2 are in a parallel configuration with the parallelo-

ram A and the beams 9 and 10 are in a parallel configuration with the
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Fig. 5. Spring-equivalent model of a beam. 
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8 
entre of the stage O . The pairs of beams 1–2 and 9–10 are in a serial

onfiguration with the centre of the stage O . Therefore, the stiffness of

he top quarter of the stage at point O is: 

 𝑂1 = 

1 (
𝐾 

𝑂 
1 + 𝐾 

𝑂 
2 
)−1 + 

(
𝐾 

𝑂 
9 + 𝐾 

𝑂 
10 

)−1 (11) 

.1.3. Stiffness of the XY motion stage 

The stiffness of the remaining three quarters is obtained by succes-

ively rotating K O 1 three times by − 𝜋/2 around the Z -axis as follows: 

 𝑂2 = 𝑅𝑧 

(
− 

𝜋

2 

)
𝑂 

− 𝑇 
⋅𝐾 𝑂1 ⋅ 𝑅𝑧 

(
− 

𝜋

2 

)
𝑂 

−1 
(12)

 𝑂3 = 𝑅𝑧 

(
− 

𝜋

2 

)
𝑂 

− 𝑇 
⋅𝐾 𝑂2 ⋅ 𝑅𝑧 

(
− 

𝜋

2 

)
𝑂 

−1 
(13)

 𝑂4 = 𝑅𝑧 

(
− 

𝜋

2 

)
𝑂 

− 𝑇 
⋅𝐾 𝑂3 ⋅ 𝑅𝑧 

(
− 

𝜋

2 

)
𝑂 

−1 
(14)

ith K O 2 , K O 3 and K O 4 representing the stiffness of the groups of beams

–4–11–12, 5–6–13–14 and 7–8–15–16 at point O respectively. The

tiffness matrix of the whole XY stage K is therefore: 

 = 𝐾 𝑂1 + 𝐾 𝑂2 + 𝐾 𝑂3 + 𝐾 𝑂4 (15)

.2. Nonlinear model 

Linear beam bending assumes an unchanged beam’s length. How-

ver, this is not valid for large deflections. This is why a nonlinear

odel is derived by including the nonlinear term induced by tension

oading of the beams. In deriving the nonlinear modelling of the micro-

otion stage ( Fig. 4 ), two types of compliant structure are analysed: the

uter parallelogram structure (beams 1–8) and the inner parallelogram

tructure (beams 9–16). All the beams are represented as linear-elastic

lements connected to rigid bodies. In order to simplify the model,

everal assumptions have to be made. Firstly, parallelograms A and C

an only translate along the Y -axis and parallelograms B and D can

nly translate along the X -axis. 

From these assumptions, the following boundary conditions can be

stablished: 

 

 

 

 

 

 

 

𝛿𝐴𝑦 = 𝛿1 𝑦 = 𝛿2 𝑦 
𝛿𝐶𝑦 = 𝛿5 𝑦 = 𝛿6 𝑦 
𝛿𝐵𝑥 = 𝛿3 𝑥 = 𝛿4 𝑥 
𝛿𝐷𝑥 = 𝛿7 𝑥 = 𝛿8 𝑥 

(16) 

here 𝛿Ay represents the displacement of point A along the Y -axis, 𝛿1 y 

epresents the displacement of beam 1 along the Y -axis and so on. As a

onsequence of the previous assumption, the following is clear: 

 

 

 

 

 

 

 

𝐹 𝐴𝑦 = 𝐹 1 𝑦 + 𝐹 2 𝑦 
𝐹 𝐶𝑦 = 𝐹 5 𝑦 + 𝐹 6 𝑦 
𝐹 𝐵𝑥 = 𝐹 3 𝑥 + 𝐹 4 𝑥 
𝐹 𝐷𝑥 = 𝐹 7 𝑥 + 𝐹 8 𝑥 

(17) 

here F Ay represents the reaction force of the parallelogram A for an

nput displacement 𝛿Ay , F 1 y represents the reaction force of the beam 1

or an input displacement 𝛿1 y and so on. 

.2.1. Outer parallelogram 

The total stiffness of one outer parallelogram structure can be

btained from the modelling of a single beam ( Fig. 5 ). In this model,

he stiffness due to bending is combined with the stiffness induced by

ension. 

Effect of bending : As in [45] , the force 𝐹 1 𝑦 _ 𝑏𝑒𝑛𝑑 acting downwards due

o the bending of the beam can be expressed as: 

 1 𝑦 _ 𝑏𝑒𝑛𝑑 = 

12 𝐸 𝐼 𝑧 𝛿1 𝑦 

𝐿 

3 (18) 
1 

69 
here E is the Young’s modulus, I z is the area moment of inertia and

 1 is the initial length of beam 1. 

Effect of tension : In the tension analysis, bending is ignored and

he beam is regarded as a linear spring connected at both ends by

rictionless revolute joints. It is known that the stress induced by

ension loading is given by: 

1 _ 𝑡𝑒𝑛𝑠 = 𝜀 1 𝐸 = 

𝐹 1 _ 𝑡𝑒𝑛𝑠 

𝐴 

(19)

here 𝜎1 _ 𝑡𝑒𝑛𝑠 is the stress generated by pure tension loading on beam 1,

 is the strain on beam 1, A is the cross-sectional area of the beam and

 1 _ 𝑡𝑒𝑛𝑠 is the tension load applied to beam 1. 

The length of the beam after being stretched is approximated using

ythagoras theorem: 

 1 _ 𝑡𝑒𝑛𝑠 = 

√ 

𝐿 1 
2 + 𝛿1 𝑦 

2 (20) 

here 𝐿 1 _ 𝑡𝑒𝑛𝑠 represents the elongated length of beam 1 and L 1 repre-

ents the initial length of beam 1. The value of the strain 𝜀 1 is then: 

 1 = 

Δ𝐿 1 
𝐿 1 

= 

𝐿 1 _ 𝑡𝑒𝑛𝑠 − 𝐿 1 

𝐿 1 
(21) 

The relationship between the tension force 𝐹 1 _ 𝑡𝑒𝑛𝑠 and the resulting

orce 𝐹 1 𝑦 _ 𝑡𝑒𝑛𝑠 acting downwards is given by: 

 1 𝑦 _ 𝑡𝑒𝑛𝑠 = 𝐹 1 _ 𝑡𝑒𝑛𝑠 sin 𝛼1 (22) 

ith: 

1 = tan −1 
( 

𝛿1 𝑦 

𝐿 1 

) 

(23) 

Rearranging Eqs. (19) –(23) , the force due to tension is: 

 1 𝑦 _ 𝑡𝑒𝑛𝑠 = 𝐸𝐴 𝜀 1 sin 𝛼1 (24) 

From Eqs. (18) and ( 24 ), the total force applied by beam 1 acting

long the Y -axis is therefore: 

 1 𝑦 = 𝐹 1 𝑦 _ 𝑏𝑒𝑛𝑑 + 𝐹 1 𝑦 _ 𝑡𝑒𝑛𝑠 (25) 

.2.2. Inner parallelogram 

Because of the symmetrical boundary conditions, the total stiffness

f one inner parallelogram structure (for instance beams 15 and 16)

an be derived from a single beam coupled to one half of the outer

arallelogram structure linked to it ( Fig. 6 ). The stiffness K 16 of the

eam 16 along the X -axis is given by: 

 16 𝑥 = 

𝐸𝐴 

𝐿 16 
cos 𝛼16 (26) 

For small angles, the following approximation can be made: 

 16 𝑥 ≈
𝐸𝐴 

𝐿 16 
(27) 

The stiffness of beam 8 along the X -axis K 8 x is derived as follows:

rstly, the stiffness due to bending is: 

 8 𝑥 _ 𝑏𝑒𝑛𝑑 = 

12 𝐸 𝐼 𝑧 

𝐿 

3 (28) 
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Fig. 6. Spring-equivalent model of orthogonal beam configuration. 
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Then, the stiffness due to tension is: 

 8 𝑥 _ 𝑡𝑒𝑛𝑠 = 

𝐸𝐴 

𝐿 8 
sin 𝛼8 (29)

Therefore, the total resulting stiffness of beam 8 along the X -axis is: 

 8 𝑥 = 𝐾 8 𝑥 _ 𝑏𝑒𝑛𝑑 + 𝐾 8 𝑥 _ 𝑡𝑒𝑛𝑠 (30)

For a small displacement 𝛿16 and therefore a very small displacement

𝛿8 and angle 𝛼8 , it is observed that: 

 8 𝑥 ≪ 𝐾 16 𝑥 (31)

From this observation and to simplify the model, the change in axial

eformation of the beams of the inner parallelogram is neglected in

his part. It will be included later for motion loss compensation. The

rojection of beam 16 along the X -axis is: 

 16 _ 𝑥 = 

√ 

𝐿 16 
2 − 𝛿16 

2 (32)

The deflection of beam 8 can be obtained as follows: 

8 𝑥 = 𝐿 16 − 𝐿 16 _ 𝑥 (33)

Taking all these simplifications into account, the calculation of the

elationship between 𝛿8 x and F 16y can be determined. Based on Eq.

25) , the force acting along the X -axis is: 

 16 𝑥 _ 𝑡𝑒𝑛𝑠 = 

12 𝐸 𝐼 𝑧 

𝐿 8 
3 𝛿8 𝑥 + 

𝐸𝐴 

𝐿 8 
Δ𝐿 8 sin 𝛼8 (34)

The force acting along the Y -axis is therefore a combination of the

orces applied by beams 8 and 16: 

 16 𝑦 = 

𝐹 16 𝑥 _ 𝑡𝑒𝑛𝑠 𝛿16 𝑦 

𝐿 16 _ 𝑥 
+ 

12 𝐸 𝐼 𝑧 𝛿16 𝑦 

𝐿 16 
3 (35)

.2.3. Force-displacement model of the motion stage 

All the beams have the same initial length L . From the preliminary

ssumptions, the boundary conditions and the above derivations, the

osition of each outer parallelogram can be related to the position of

he centre O as follows: 

𝐴𝑦 = 𝛿𝑂𝑦 − 

( 

𝐿 − 

√ 

𝐿 

2 − 𝛿𝑂𝑥 
2 
) 

(36)

𝐶𝑦 = 𝛿𝑂𝑦 + 

( 

𝐿 − 

√ 

𝐿 

2 − 𝛿𝑂𝑥 
2 
) 

(37)

𝐵𝑥 = 𝛿𝑂𝑥 − 

( 

𝐿 − 

√ 

𝐿 

2 − 𝛿𝑂𝑦 
2 
) 

(38)

𝐷𝑥 = 𝛿𝑂𝑥 + 

( 

𝐿 − 

√ 

𝐿 

2 − 𝛿𝑂𝑦 
2 
) 

(39)

Using Eqs. (25) and ( 35 ), the reaction forces at point O along the X-

nd the Y -axes required to move the motion stage by 𝛿Ox and 𝛿Oy are: 

 

𝐹 𝑂𝑥 = 𝐹 𝐵𝑥 + 𝐹 𝐷𝑥 + 𝐹 9 𝑥 + 𝐹 10 𝑥 + 𝐹 13 𝑥 + 𝐹 14 𝑥 
𝐹 𝑂𝑦 = 𝐹 𝐴𝑦 + 𝐹 𝐶𝑦 + 𝐹 11 𝑦 + 𝐹 12 𝑦 + 𝐹 15 𝑦 + 𝐹 16 𝑦 

(40)
70 
It is assumed that the sum of the reaction forces along the X -axis is

nchanged when represented at points B, D or O , and the sum of the

orces along the Y -axis is unchanged when represented at points A, C

r O . 

.2.4. Motion loss compensation 

The simplified nonlinear model presented in this section assumes

hat the input displacements are applied at the centre of the stage (i.e.

oint O ). This means that the desired output displacements are simply

qual to the input displacements. In reality, the input displacements are

pplied by two actuators at point D along the X -axis and at point C along

 -axis, causing the output displacements at point O to be different. 

The first element causing a difference between the input and the

utput displacements is the compression of the inner beams. Based on

he work from [12] and using Eq. (19) , the positioning error at point O

long the X -axis error caused by the compression of beams 15 and 16

an be approximated as follows: 

𝑂𝑥 _ 𝑐𝑜𝑚 = 

𝐿 

(
𝐹 𝐵𝑥 + 𝐹 9 𝑥 + 𝐹 10 𝑥 + 𝐹 13 𝑥 + 𝐹 14 𝑥 

)
2 𝐸𝐴 

(41)

Similarly, the positioning error at point O along the Y -axis caused

y the compression of beams 13 and 14 is: 

𝑂𝑦 _ 𝑐𝑜𝑚 = 

𝐿 

(
𝐹 𝐴𝑦 + 𝐹 19 𝑦 + 𝐹 20 𝑦 + 𝐹 23 𝑦 + 𝐹 24 𝑦 

)
2 𝐸𝐴 

(42)

The second source of error is the parasitic displacement caused by

he constrained positions of parallelograms C and D , also called cross-

oupling. The parasitic displacement along the X -axis can be estimated

y calculating the difference between the desired output displacement

Ox and the resulting displacement 𝛿Dx of parallelogram D : 

𝑂𝑥 _ 𝑝𝑎𝑟 = 𝛿𝑂𝑥 − 𝛿𝐷𝑥 (43)

Similarly, the parasitic displacement along the Y -axis can be esti-

ated by calculating the difference between the input displacement

Oy and the resulting displacement 𝛿Cy of parallelogram C : 

𝑂𝑦 _ 𝑝𝑎𝑟 = 𝛿𝑂𝑦 − 𝛿𝐶𝑥 (44)

Therefore, the corrected output displacement at point O along the

 -axis is: 

𝑂𝑥 _ 𝑐 𝑜𝑟𝑟𝑒𝑐 𝑡𝑒𝑑 = 𝛿𝑂𝑥 − 𝛿𝑂𝑥 _ 𝑐𝑜𝑚 + 𝛿𝑂𝑥 _ 𝑝𝑎𝑟 (45)

nd the corrected output displacement at point O along the Y -axis is: 

𝑂𝑦 _ 𝑐 𝑜𝑟𝑟𝑒𝑐 𝑡𝑒𝑑 = 𝛿𝑂𝑦 − 𝛿𝑂𝑦 _ 𝑐𝑜𝑚 + 𝛿𝑂𝑦 _ 𝑝𝑎𝑟 (46)

.3. Stress analysis 

A nonlinear stress analysis is carried out to define the maximum

llowable displacement of the XY motion stage, which is directly

inked to the yield strength of the material. The maximum stress due

o bending occurs at one end of the outer parallelogram beams at the

ross-section’s farthest edge from the neutral axis. It is given by: 

1 _ 𝑏𝑒𝑛𝑑 = 

𝑀 1 𝑐 

𝐼 
(47)

here c is the distance from the neutral axis, or half of the beam’s

hickness h in this case, and 𝑀 1 = 𝐹 1 𝑦 _ 𝑏𝑒𝑛𝑑 × 0 . 5 × 𝐿 1 . Combining Eqs.

18) and ( 47 ), the maximum stress due to bending is: 

1 _ 𝑏𝑒𝑛𝑑 = 

3 𝐸ℎ 𝛿1 𝑦 

𝐿 1 
2 (48)

Adding the stress induced by tension loading from Eq. (19) , the

aximum stress is given by: 

1 = 𝐾1 ⋅ 𝜎1 _ 𝑏𝑒𝑛𝑑 + 𝐾2 ⋅ 𝜎1 _ 𝑡𝑒𝑛𝑠 (49)

here K 1 and K 2 denote the stress concentration factors for the stress

ue to bending and the stress due to tension respectively. These

oefficients will be defined later in this paper. 
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Fig. 7. Buckling: (a) force diagram, (b) FEA result. 
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Table 1 

Masses of a beam, inner, and outer parallelogram. 

Parameters m O m p m beam 

Mass (10 − 3 kg) 0.04 2 ×b × 𝜌 0.04 × 0.008 ×b × 𝜌 b × h × L × 𝜌
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.4. Buckling analysis 

Most of the existing work on compliant XY stages only uses the

ield strength as a travel range limitation. For short and thick beams,

he force required to cause buckling is often much higher than the

orce required to reach a stress equal to the material yield strength.

owever, for longer and thinner beams, buckling can occur before

he yield strength is reached and cannot be ignored. Therefore, the

uckling point of the beams is integrated in this study. From [46] , the

ritical point of a beam fixed at both ends is given by: 

 𝑐𝑟𝑖𝑡 = 

4 𝜋2 𝐸 𝐼 𝑧 

𝐿 

2 (50) 

Buckling should occur at one of the inner beams parallel to the load-

ng direction and where the reaction force is the highest. Since there are

nly sets of two beams, it is assumed that the buckling force is twice F crit .

hen a force F applied is applied at the bottom of the stage ( Fig. 7 (a)), the

eaction force F buckling acting on the set of beams is obtained by sub-

racting the reaction force of parallelogram C from the reaction force of

he whole stage along the same direction. It is assumed that buckling oc-

urs for a large input displacement, when the nonlinear term induced by

ension loading becomes much higher than the linear term. Comparing

qs. (25) and ( 35 ), if an input displacement is applied at point C along

 direction, the larger the displacement, the more insignificant becomes

he reaction forces caused by the inner beams compared to the reaction

orces from parallelograms A and C . Thus, the buckling force F buckling is

pproximately 1/2 of the force applied at the bottom of the XY stage

 applied . The input force required to cause buckling is therefore given by: 

 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = 

16 𝜋2 𝐸𝐼 

𝐿 

2 (51) 

. Dynamic analysis 

A dynamic analysis is carried out to calculate the resonant frequen-

ies of the six mode shapes. Applying Newton’s second law, the system

ndamped equation of motion can be expressed as: 

 ̈𝑥 + 𝐾 𝑥 = 0 (52)

here M and K correspond to the system’s mass matrix and stiffness

atrix respectively and 𝑥 is a vector representing the motion in the

artesian coordinate system. The mass matrix is defined as: 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑀 𝑥𝑥 0 0 0 0 0 
0 𝑀 𝑦𝑦 0 0 0 0 
0 0 𝑀 𝑧𝑧 0 0 0 
0 0 0 𝐼 𝑥𝑥 0 0 
0 0 0 0 𝐼 𝑦𝑦 0 
0 0 0 0 0 𝐼 𝑧𝑧 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(53)
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here M xx , M yy and M zz represent the moving mass of the stage along

he X -, Y - and Z -axes respectively and I xx ,I yy and I zz represent the mo-

ent of inertia of the stage around the X -, Y - and Z -axes respectively: 

 𝑥𝑥 = 𝑀 𝑦𝑦 = 𝑚 𝑂 + 2 𝑚 𝑝 + 

(
8 × 33 

140 
𝑚 𝑏𝑒𝑎𝑚 

)
+ 

(
4 × 𝑚 𝑏𝑒𝑎𝑚 

)
(54)

 𝑧𝑧 = 𝑚 𝑂 + 

(
8 × 33 

140 
𝑚 𝑏𝑒𝑎𝑚 

)
(55) 

 𝑥𝑥 = 𝐼 𝑦𝑦 = 

𝑚 𝑜 

(
0 . 04 2 + 𝑏 2 

)
12 

+2 𝑚 𝑝 

( 

0 . 008 2 + 𝑏 2 

12 
+ ( 𝐿 + 0 . 02 ) 2 + 

(
0 . 04 2 + 𝑏 2 

)
12 

) 

(56) 

 𝑧𝑧 = 4 𝑚 𝑝 

( 

0 . 04 2 + 0 . 008 2 

12 

) 

+ 𝑚 𝑜 

( 

0 . 04 2 + 0 . 04 2 

12 

) 

(57)

The masses used in the mass matrix are listed in Table 1 . m beam 

is the

ass of a single beam. According to [47] , the lumped mass equivalent

f a bending beam can be represented as a massless beam with a mass

ocated at its free end with the value of 33/140 ×m beam 

. m o represents

he mass of parallelogram O and m p represents the mass of each outer

arallelograms (i.e. A, B, C and D ). 

Based on vibration theory, the mode equation can be written as: 

 𝑀 

−1 𝐾 − 𝜔 

2 𝐼) 𝑋 = 0 (58)

here X is a matrix representing the mode shapes, 𝜔 is it a vector

epresenting the corresponding angular natural frequencies and I is the

dentity matrix. The natural frequencies are then given by: 

 𝑖 = 

1 
2 𝜋

𝜔 𝑖 (59) 

here f i represents the natural frequency of the i th i th mode. 

. Design optimisation 

Using the analytical model presented in Sections 2 and 3 rather than

EA enables quick design synthesis and a quick insight on parameters

ue to its high flexibility. The four properties on which this study is

ocused are: the resonant frequencies of the first two modes, these

hould occur equally along the X - and the Y -axes; the third resonant

requency; the maximum allowable displacement and the correspond-

ng force input requirement. The maximum displacement is defined

sing the yield strength of the material and the buckling point of the

eams. Coupling and motion loss are ignored in this section because

heir impact on the beam dimensions is negligible. 

In the first instance, the beam thickness ( h ), height ( b ) and length ( L )

re varied from 0.5 mm to 1 mm, 5 mm to 10 mm and 20 mm to 50 mm,

espectively. This allows for an overview of the effect of dimensional

arameters on the stage’s behaviour. The equations resulting from

he analytical model are therefore implemented in MATLAB and the

esults are shown in Fig. 8 . Aluminium 7075-T6 is selected as it has

 large reversible strain and is widely used for this application. The

aterial properties are listed in Table 2 . A few observations can be

ade. First of all, increasing the length of the beams will increase

he maximum allowable displacement. However, this will also reduce

he resonant frequencies. Increasing the height of the beams results

n an increased third resonant frequency without affecting the range

f motion. However, the force input requirement is also increased.

inally, increasing the thickness of the beams will increase the resonant
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Fig. 8. Properties of the stage as a function of the width and length of the beams: (a) first 

and second resonant frequencies, (b) third resonant frequency, (c) maximum displace- 

ment, (d) input force. 

Table 2 

Parameters of the XY motion stage. 

Parameters b (m) h (m) L (m) E (Pa) G (Pa) 𝜌 (kg/m 

3 ) 

Values 0.006 0.0005 0.045 71,7e 9 26,9e 9 2810 

Fig. 9. Pareto front. 
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72 
requencies along the three axes but will reduce the range of motion

nd increase the force input requirement. These observations comply

ith the results found in the literature for similar structures. 

Optimisation of PRBM parameters was proposed in [27] and allows

he user to find which model is the most suitable for a given design.

owever, it does not optimise the beams ’ dimensions to achieve a

pecific goal. Design optimisation using genetic algorithms (GAs)

3,48,49] or other techniques such as particle swarm optimisation

PSO) [6,10] is commonly used for compliant stages but the presented

odels do not include the nonlinearities induced by tension, making

hem only suitable for small displacements. 

In this study, design optimisation is performed using a multi-

bjective GA to obtain a Pareto optimal solution set in MATLAB. The

esign objectives are to maximise the range of motion and minimise

he required input force while keeping the resonant frequencies as high

s possible. The design constraints applied are: 

• Resonant frequencies f 1 and f 2 > 50 Hz. 
• Minimum frequency ratio f 1 / f 3 > 1/3. 
• Maximum stress 𝜎max < 505 MPa. 
• Maximum input F Ox < F applied , corresponding to the buckling point. 

The parameters ranges are: 

• b = 6 mm (manufacturing constraint) 
• 0.5 mm < h < 1 mm 

• 20 mm < L < 50 mm. 

The Pareto optimal set is presented in Fig. 9 . For each point on

he Pareto front corresponds a set of beam parameters. The rounded

imensions selected for this study are shown in Table 2 . Applying a

afety factor of 1.5 on the maximum stress and limiting the required

nput force to 68 N, these dimensions allow for an input displacement

f up to ± 2.3 mm along both directions. 

The average computation time for the MATLAB program to run on

 standard computer (Intel ® i5 3.2 GHz processor, 4GB RAM) is less

han 140 s to cover more than 26,000 combinations. This algorithm is

herefore proven to significantly improve the efficiency of the design

nd evaluation of the appropriate dimensional parameters of the

icro-motion stage. This tool can be used to characterise the XY motion

tage in terms of working area and stiffness and can be used to select

he appropriate dimensional parameters of the beams and actuators. 
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Fig. 10. Stiffness along a single direction. 

Fig. 11. Stress concentration coefficients in function of the beam’s thickness and length. 
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Fig. 12. Stress analysis: linear and nonlinear models compared with FEA. 

Fig. 13. Stress and output displacement response to a large input displacement. 
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. FEA validation 

In order to validate the analytical model, nonlinear FEA is car-

ied out using ABAQUS with the dimensions and properties listed in

able 2 . In order to reduce the stress concentration, corners of 0.5 mm

adius have been added at both ends of the beams. 

.1. Force-displacement analysis 

To study the force-displacement relationship, an input displacement

f 2 mm is gradually applied along the X -axis (i.e. point D ) and the

eaction force is recorded. The results are then compared with the

nalytical linear ( Eq. (15) ) and nonlinear ( Eq. (40) ) models ( Fig. 10 ).

hese results clearly show that although some linear behaviour can be

bserved between 0 and 0.5 mm, the load stiffening phenomena induces

ignificant nonlinearities for large displacements. The accuracy of the

tiffness matrix method is therefore limited to very small range. How-

ver, the maximum error of the nonlinear model is 16.2% at 1.3 mm,

orresponding to only 3.2 N. The efficiency of the nonlinear terms added

o the analytical model to define the stiffness is therefore validated. 

.2. Stress analysis 

In order to define the stress concentration factors K 1 and K 2 for

q. (49) , an FEA analysis is carried out on beams of length between

0 mm and 50 mm and thickness between 0.5 mm and 1 mm, with a con-

tant corner radius of 0.5 mm. For each combination, the resulting stress

s plotted against the input displacement and MATLAB is used to fit the

urve to Eq. (49) using the nonlinear least squares method. The results

f this analysis are shown in Fig. 11 because K 1 and K 2 cannot be lower

han 1, the coefficient K 2 is constantly 1 and K 1 varies between 1 and
73 
.10. The stress concentration factor K 1 of the designed XY motion stage,

btained by linear interpolation, is 2. The FEA results show that the

ield strength is reached for an input displacement of 3.24 mm ( Fig. 12 ).

he yield strength is reached at 3.1 mm for the nonlinear model and at

.51 mm for the linear model. The maximum input displacement given

y the analytical model is therefore 4.3% smaller than FEA. As for the

orce-displacement analysis, it is clearly shown that the nonlinear model

an also efficiently integrate nonlinear stress as a travel range limitation.

.3. Buckling analysis 

The buckling point is estimated from the FEA results by analysing

he output data for a large displacement. Buckling is occurring when

he stress at the centre of the inner beams increases suddenly and the

ifference between the input and the output displacement of the stage

ncreases significantly. From Fig. 13 , the buckling point is estimated to

ccur when the input displacement is around 4.05 mm, corresponding

o an input force of 351.3 N. The buckling point obtained from the non-

inear model ( Eq. (51) ) gives an input force of 349.5 N, corresponding

o an input displacement of 4.13 mm. The error between FEA and the

onlinear model is therefore 0.5%. 

.4. Coupling analysis 

A coupling analysis is carried out to estimate the maximum posi-

ioning error and evaluate the capability of the analytical model to

redict this error. The maximum error is assumed to occur when the

aximum input displacements are applied simultaneously along the X -

nd the Y -axes. 

First, an input displacement of 2.2 mm is applied at point C along

he Y -axis, as presented in Fig. 14 . The parasitic output displacement
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Fig. 14. Deformed XY stage with input displacement applied along X and Y directions. 

Fig. 15. Parasitic displacement for single direction loading. 

Fig. 16. Input/output displacement difference after applying a preload along the Y -axis. 
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Fig. 17. Modal analysis results from FEA. 

Table 3 

Resulting resonant frequencies. 

Mode 1 ( X ) Mode 2 ( Y ) Mode 3 (??) Mode 4 ( Z ) 

FEA (Hz) 55.8 55.9 249.5 313.3 

Analytical (Hz) 54.7 54.9 269.7Hz 353.8 

Experimental (Hz) 47 47 – 267 
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long the X -axis is shown in Fig. 15 . The maximum parasitic displace-

ent from the analytical model is 54 μm while it is 65 μm from FEA,

orresponding to an error of 17%. 

Then, while keeping the input displacement along the Y -axis at

.2 mm, an input displacement of 2.2 mm is gradually applied at

oint D along the X -axis. The difference between the input and output

isplacements along both directions are shown in Fig. 16 . The first

bservation made is that the parasitic displacement along the X -axis

aused by the preload is almost constant for both FEA and the analytical

odel. The second observation is that the input/output displacement

ifference along both directions is the same for FEA and the analytical
74 
odel, with less than 0.5% error. The nonlinear model can therefore

ccurately predict cross-coupling and loss motion and can therefore be

ncluded in the control system for error compensation. 

.5. Modal analysis 

A dynamic analysis of the stage is carried out with ABAQUS using

he Lanczos Eigen solver. The mass of the accelerometer ( 8 g) is added

o the model. The results are shown in Fig. 17 and Table 3 . The first

wo modes correspond to simultaneous vibrations along both the X- and

 -axes, which occurs at 55.8 Hz. The third mode, corresponding to a

otation around the Z -axis occurs at 249.5 Hz. Finally, the fourth mode,

orresponding to vibrations along the Z -axis, occurs at a frequency of

13.3 Hz. Comparing the results from the analytical model ( Eq. (59) )

ith the FEA results, the error for the first two modes is 1.9%, 8.1% for

he third mode and 12.9% fourth mode. 

The reason why the dynamic model shows larger errors for higher

odes is that it represents the stage as a single 6-DOF element. One

olution to this issue could be to model the XY stage a multi-DOF system,

ith each link (i.e. parallelograms A, B, C, D and O ) free to undergo

-DOF motion. In addition, the boundary conditions of a fixed-guided

eam are accurate for bending but introduce some error when the beams

re twisting. However, this model is sufficient for an accurate estimate of

he first three modes, which is sufficient for the design of motion stage.

. Experimental validation 

In order to verify the theoretical characteristics of the XY micro-

otion stage, a prototype is fabricated using Wire Electric Discharge

achining (WEDM). Corners of 0.5 mm radius have been added to

educe the stress concentration. The stage is driven by two VCAs from

oticont (LVCM-051-064-02) with a 12.7 mm stroke, 68.2 N continu-

us force and a force constant of 21.6 N/A. They are controlled by two

ngenia Pluto Drives, allowing for a position command resolution of

.12 μm over ± 2.3 mm along both directions. The input displacement

f the XY motion stage is measured using two linear encoders from
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Fig. 18. Fabricated XY stage. (1) Linear actuator, (2) capacitive sensor head, (3) compli- 

ant XY stage, (4) target, (5) moving platform, (6) linear encoder, (7) VCA. 

R  

d  

M  

a  

s  

u  

a  

6

 

e  

a  

a  

l  

i  

u  

f  

b

 

c  

m  

s  

g  

F  

m  

f

6

 

p  

d  

o  

r  

d  

w  

m  

t  

6  

e  

t  

n  

b

Fig. 19. Experimental vibration test setup. (1) 3D accelerometer, (2) compliant XY stage. 
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enishaw (ATOM4T0-150) with a resolution of 100 nm. The output

isplacement is measured with two capacitive sensor heads (CS1) from

icro-Epsilon with DT6110 controllers, giving a resolution of 100 nm

nd an accuracy of reading of 0.5 μm over a range of 1 mm. These

ensors are mounted on a carrier and are moved along a guiding rail

sing two Firgelli L12-P micro linear actuators with a 10 mm stroke

nd ± 0.1 mm repeatability. The assembled stage is presented in Fig. 18 .

.1. Force-displacement test 

In order to validate the analytical model a test is carried out to

stablish the relationship between the input displacement and the

ctuation force. The input displacement along the X -axis it maintained

t 0 mm while it is varied from 0 mm to 2 mm along the Y -axis. The

inear encoders are used to measure the position. As the servo drives

nclude a built-in current sensor, the force is derived from the current

sing the VCA’s force constant. The results are shown in Fig. 10 . The

orce error of the first few readings is due to the internal friction in the

earings and can be neglected. 

The maximum force error, occurring at 2 mm, is 11.1% when

ompared with FEA and 3.9% when compared with the analytical

odel. FEA is assumed to be the most accurate prediction for an ideal

ystem while the fabricated stage behaves in a slightly different way,

iving the impression that the analytical model is more accurate than

EA. This can be explained by the simplifications made in the nonlinear

odel and by the manufacturing and assembly tolerances affecting the

abricated stage meaning that both deviate from FEA. 

.2. Coupling test 

A coupling analysis is carried out by first applying an input dis-

lacement of 2.2 mm along the Y -axis and recording the parasitic

isplacement along the X -axis. Following this, an input displacement

f 2.2 mm is applied along the X -axis and the output displacements are

ecorded. The maximum recorded parasitic displacement for a single

irection loading ( Fig. 15 ) is 53 μm, corresponding to an error of 18.5%

hen compared to FEA and 1.9% when compared to the analytical

odel. When loading along both directions, the difference between

he input and the output displacements is 61 μm along the X -axis and

5 μm along the Y -axis. This corresponds to a maximum positioning

rror of 0.3% when compared with FEA and 0.4% when compared with

he analytical model. This confirms the FEA results proving that the

onlinear model can accurately predict the displacement error caused

y cross-coupling and motion loss. 
75 
The output displacement error along the X -axis caused by the

ross-coupling is 53 μm and the maximum lost motion recorded along

he X -axis is estimated by subtracting the cross-coupling error from the

otal displacement error, giving a motion loss of approximately 8 μm.

his corresponds to a cross-coupling of less than 2.5% and a lost motion

f less than 0.4%. As discussed in [39] , these errors can be significantly

educed by connecting the parallelograms A and C and the parallelo-

rams B and D together. However, this would make the design bulkier

nd also make the assembly of a platform to the centre of the stage com-

licated. Alternatively, the control system of the XY stage will integrate

he presented nonlinear model to compensate the positioning error. 

.3. Frequency response 

In order to obtain the frequency response of the XY motion stage,

 testing rig is set up to generate vibrations with a hammer and

easure the frequency response with a 3-dimensional accelerometer

ICP-T356A16) placed at the centre of the stage. The sensitivity of the

ccelerometer is 100 mV/G and its output signal is processed by a Dual

hannel Accelerometer Amplifier (FE-376-IPF) and acquired by a Data

cquisition card from National Instruments. Labview is used to obtain

he frequency domain response using Fast Fourier Transform (FFT). The

ampling rate is 10 kHz. The testing rig setup is presented in Fig. 19 .

he recorded resonant frequencies are 47 Hz along the X - and Y -axes

nd 267 Hz along the Z -axis ( Table 3 ). When compared with FEA, the

orresponding errors are 15.8% and 14.8% along the X- and Y -axes and

he Z -axis respectively. 

When comparing with the analytical model, the errors are 14.4%

nd 24.5%. This error can be due to the mounts applying a small preload

n the beams when being screwed. One limitation of the analytical

ynamic model is its ability to predict accurately high order resonant

requencies. However, this has a limited impact on the design optimi-

ation results and on the performances of the fabricated motion stage. 

. Conclusions 

An analytical model combining a linear and a simplified nonlinear

odel was presented. The combination of these two models was

mplemented in MATLAB to fully characterise and optimise an XY

icro-motion stage. From this model, a compliant XY micro-motion

tage was developed. The results from FEA and experimental testing

learly show that the analytical model is an accurate characterisation

f the behaviour of the stage in terms of stiffness and working range,

aking into account limitations such as nonlinear buckling and stress.

urthermore, its ability to accurately predict the output displacement

s a function of the input displacement makes it suitable for position
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ontrol without necessarily needing a feedback loop. This model can

e easily adapted to any compliant mechanism composed of basic

ompound parallelogram structures. The computation time required

o perform design optimisation was within 140 s. The designed micro-

otion stage has a cross-coupling of less than 2.5%, a travel range of

 2.3 mm 

2 and a theoretical ratio between the first two and the third

esonant frequency larger than 1/4. 

The micro-motion stage will be used as the fine positioning mecha-

ism of a hybrid mini-assembly system. Further studies will be carried

ut to include fatigue life in the design criteria and the stress concen-

ration factors will be refined to improve the maximum displacement

stimation. 
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