Article

Intramolecular Nitrofuran Diels-Alder reactions: extremely substituenttolerant cycloadditions from asynchronous transition states

Thomas Y. Cowie, Marcos Veguillas Hernando, Robert L. Rae, Mathilde Rouge, Justyna
M Zurek, Andrew W. Prentice, Martin J. Paterson, and Magnus W. P. Bebbington

J. Org. Chem., Just Accepted Manuscript • Publication Date (Web): 02 Jun 2017

Downloaded from http://pubs.acs.org on June 7, 2017

Just Accepted

Abstract

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

TOC graphic:

R1-R3 = alkyl/aryl
$\mathrm{X}=\mathrm{H}$ low or no yield
$\mathrm{X}=\mathrm{NO}_{2}$ higher yield

Intramolecular Nitrofuran Diels-Alder reactions: extremely substituent-tolerant cycloadditions via asynchronous transition states

Thomas Y. Cowie, Marcos Veguillas, Robert L. Rae, Mathilde Rougé, Justyna M. Żurek, Andrew W. Prentice, Martin J. Paterson*a and Magnus W. P. Bebbington*a
${ }^{\text {a }}$ School of EPS-Chemical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, UK
m.j.paterson@hw.ac.uk
m.w.p.bebbington@hw.ac.uk

Abstract

Nitrofurans undergo intramolecular Diels-Alder reactions with tethered electron-poor dienophiles more rapidly and in higher yield than non-nitrated furans. Computational studies indicate that increased stabilization of a partial positive charge on the nitro-substituted carbon in both transition state and product is the driving force for these reactions. Frontier molecular orbital energy differences indicate a switch from normal to inverse electron demand upon nitration. There does not appear to be a contribution from any differences in aromatic stabilization energy between furans and nitrofurans. Calculations show that the nitrofuran reactions proceed via a highly asynchronous transition state allowing easier bond formation between two sterically hindered carbons.

Introduction

The Diels-Alder reaction remains one of the most widely-used and powerful reactions in organic chemistry. ${ }^{1}$ The use of furan as both a diene and a dienophile has been
studied extensively, with many applications in target synthesis. ${ }^{2,3}$ For the majority of Diels-Alder reactions employing non-aromatic dienes, frontier orbital energies and coefficients are readily used to explain reactivity and selectivity. ${ }^{1}$ In contrast, a number of experimental and computational reports ${ }^{4}$ on intramolecular Diels-Alder reaction of furan (IMDAF) indicate that other factors, including tether substitution can override frontier orbital considerations in certain cases. Padwa and Houk first identified positive charge stabilization as being a kinetic and thermodynamic driving force in reactions of halofurans. ${ }^{5}$ We identified a dipolar interaction term (Scheme 1) as an additional factor in halofuran/haloalkene IMDAF reactions. ${ }^{6}$ We also discovered a correlation between transition state structure and energy that was consistent with the late transition state indicated in previous reports. ${ }^{7}$ We now report the results of our investigations in intramolecular nitrofuran cycloadditions.
a)

b)

Scheme 1 a) Unfavorable and b) favorable dipolar interactions affecting IMDAF transition states in haloalkene IMDAF reactions ${ }^{6}$

There have been a number of reports of the use of nitrofurans in intramolecular DielsAlder reactions, ${ }^{8}$ but dienophile substitution has not been widely studied and the reactions have not been fully analyzed by modern computational methods. Furthermore, the relative reactivity of nitrofurans and their non-nitrated counterparts is yet to be analysed in any detail. ${ }^{9}$ The variables affecting the IMDAF reaction are more complex than those involving non-aromatic dienes, but there is much evidence indicating that furan most often behaves as an electron-rich diene, ${ }^{2,10}$ reacting with electron-poor dienophiles most rapidly. Intuitively, one might therefore expect that incorporation of a nitro-substituent would retard or prevent the reaction entirely.

Indeed, to the best of our knowledge there are no reports of intermolecular DielsAlder reactions involving nitrofurans as dienes. ${ }^{11}$ Our results indicate, however, that this intuition is incorrect for the substrates studied herein.

Results and discussion

A series of IMDAF precursors 1a-n and 2a-n were synthesised starting from either furfural or 5-nitrofurfural to afford the required nitrated and non-nitrated IMDAF substrates (see supporting information for details). The IMDAF precursors were heated in toluene at reflux and conversions to adducts 3a-n and 4a-n given at the times indicated in Tables 1 and 2 (as measured by ${ }^{1} \mathrm{H}$ NMR spectroscopy). Isolated yields are in parentheses. ${ }^{12}$

3a $X=$ H $3 \mathrm{~h}, 33 \%$ conversion;
$24 \mathrm{~h} 93 \%$, ${ }^{\text {a }}$ (70% isolated yield)
4a $\mathrm{X}=\mathrm{NO}_{2} 3 \mathrm{~h}, 49 \%$; $24 \mathrm{~h}, 100 \%$ (quant.)

1b $X=H$
2b $\mathrm{X}=\mathrm{NO}_{2}$
3b $\mathrm{X}=\mathrm{H} 5 \mathrm{~h}, 9 \%$ conversion;
48 h, 28\% (18) ${ }^{\text {a }}$
$\mathbf{4 b}=\mathrm{NO}_{2} 5 \mathrm{~h}, 29 \%$ conversion;
$48 \mathrm{~h}, 90 \%(67)^{\mathrm{a}}$

$4 c \mathrm{X}=\mathrm{NO}_{2} 2 \mathrm{~h}, 74 \%$ conversion
24 h, 100\% (78)

26 h, 78\% (43) ${ }^{\text {a }}$

1e $X=H$
3e X = H 2 h, not observed;
2e X $=\mathrm{NO}_{2}$

27 h , not observed
$4 e \mathrm{X}=\mathrm{NO}_{2} 2 \mathrm{~h} \sim 5 \%$ conversion;
27 h, 30\% (27) ${ }^{\text {a }}$

$3 g X=H 3 h, 16 \%$ conversion;
$22 \mathrm{~h}, 46 \%(41)^{\mathrm{b}}$
$4 \mathrm{~g} \mathrm{X}=\mathrm{NO}_{2} 3 \mathrm{~h}, 71 \%$ conversion;
22 h, 100\% (93)

$$
\begin{array}{lc}
\text { 1h X }=\mathrm{H} & 3 \mathrm{~h} \mathrm{X}=\mathrm{H} 5 \mathrm{~h}, \text { not detected; } \\
\text { 2h X }=\mathrm{NO}_{2} & 48 \mathrm{~h} \text { not detected } \\
& 4 \mathrm{~h} \mathrm{X}=\mathrm{NO}_{2} 5 \mathrm{~h} .20 \% \text { conversion; } \\
& 48 \mathrm{~h}, 60 \%(55)^{\mathrm{a}}
\end{array}
$$

$3 \mathrm{i} X=\mathrm{H} \quad 2 \mathrm{~h}$, not detected; $48 \mathrm{~h},<5 \%$ (not isolated)
$1 \mathrm{i} X=H$
$4 \mathrm{i} \mathrm{X}=\mathrm{NO}_{2} \quad 2 \mathrm{~h}, 21 \%$ conversion;
26 h, 27\% (20) ${ }^{\text {b }}$
a Significant decomposition after any longer reaction time
${ }^{\mathrm{b}}$ Equilibrium reached, no further conversion nor appreciable decomposition

Table 1 Effect of alkyl substitution on nitrofuran and simple furan IMDAF reactions (all reactions conducted in toluene at reflux)

In all cases the nitro-substituted precursors reacted faster than their non-nitro analogues, as shown by the conversions at the early time points (recorded before equilibrium was reached). We noted that it was not always possible to determine if the reactions had reached equilibrium, because of significant decomposition (footnote a in tables 1 and 2) concurrent with cycloaddition. However, in those cases where the equilibrium position could be confirmed (where extended reaction time did not result in decomposition, footnote b in tables 1 and 2), the equilibrium favored the adduct to a greater extent in the nitrated cases (substrates $\mathbf{3 c} / \mathbf{4 c}, \mathbf{3 g} / \mathbf{4 g}, \mathbf{3 i} / \mathbf{4} \mathbf{i}, \mathbf{3 j} / \mathbf{4} \mathbf{j}, \mathbf{3 k} / \mathbf{4 k}$, $\mathbf{3 1 / 4 I}$). These effects are most striking in more substituted systems, despite the fact that the nitrated adducts contain a fully substituted carbon adjacent to the carbon bearing the substituents on the acrylic or cinnamic acid derivatives. Indeed, the nonnitrated substrates do not tolerate simple alkyl substitution (Table 1) at all well, with conversions less than 50% in most cases. By contrast, the nitro substrates are capable of reacting to give very densely functionalized products. In the most extreme case, nitrated substrate $\mathbf{2 i}$ even reacts to give partial conversion to the adduct $\mathbf{4 i}$, which possesses four contiguous fully substituted carbons. By contrast the non-nitro substrate 1 i was unreactive. Similarly, aryl substitution was tolerated far better in the nitrated systems than the non-nitro ones (Table 2), although the reactions were more sluggish.

3j $\mathrm{X}=\mathrm{H} 1 \mathrm{~h}, 6 \%$ conversion; 24 h, 9\% (8) ${ }^{\text {b }}$
$4 \mathrm{j} \mathrm{X}=\mathrm{NO}_{2} 1 \mathrm{~h}, 17 \%$ conversion; 5 h, 28\% (23) ${ }^{\text {b }}$

$$
\begin{aligned}
& 11 \mathrm{X}=\mathrm{H} \\
& 21 \mathrm{X}=\mathrm{NO}_{2}
\end{aligned}
$$

$3 \mathrm{I}=\mathrm{H} 3 \mathrm{~h}$, not detected;
72 h , not detected
4I $\mathrm{X}=\mathrm{NO}_{2}, 3 \mathrm{~h}, 25 \%$ conversion;
72 h, $36 \%(32)^{\text {b }}$

$$
\begin{aligned}
& 1 \mathrm{mX}=\mathrm{H} \\
& 2 \mathrm{mX}=\mathrm{NO}_{2}
\end{aligned}
$$

$3 \mathrm{~m} X=\mathrm{H} 120 \mathrm{~h}$, not detected
$4 \mathrm{mX}=\mathrm{NO}_{2} \sim 5 \%$ conversion, 120 h (not isolated)
${ }^{\mathrm{b}}$ Equilibrium reached, no further conversion nor noticeable decomposition

Table 2 Effect of aryl substitution on nitrofuran and simple furan IMDAF reactions

We were particularly intrigued by these results, and set out to discover why the nitrated systems reacted more rapidly and more favorably than their non-nitrated analogues and were also more tolerant of substitution. We examined a number of possibilities using advanced computation: 1) that positive charge stabilization is greater for nitrated systems in the cycloadduct than the starting material, as identified by Houk, ${ }^{5}$ providing an additional driving force for the reaction in those cases; 2) that nitro substitution leads to an increased loss of aromatic stabilization energy, making the nitrofuran IMDAF reaction more favourable; 3) that nitration had induced a favourable change in frontier molecular orbital energies. Although a number of methods are available for estimating these quantities, it would appear that, to date, none has ever been applied to nitrofurans.

We first calculated the energetics of the isodesmic equations ${ }^{5}$ shown in Scheme 2. It is clear from these results that there is a significant kinetic and thermodynamic benefit in having the nitro group attached to a fully substituted $s p^{3}$ carbon (as in the cycloadducts $\mathbf{4 a} \mathbf{a}$) rather than an sp^{2} centre (as in the starting materials 2a-n). This is consistent with analogous results in the halofuran series. Padwa and Houk ascribed the effect as being due to hyperconjugative stabilization of partial positive charge on the halogen-bearing carbon. The size of the effect for the nitro group is intermediate in magnitude between those calculated for Br and $\mathrm{Cl}^{5}{ }^{5}$

Scheme 2 Isodesmic equations allowing quantification of cation stabilization effects $\left(\Delta H_{r}\right.$ in kcal mol^{-1})

The aromatic stabilization energy of nitrofuran was next probed using a standard method, using the homodesmotic equations in Scheme 3, as previously outlined by von Schleyer for 5 -membered heterocycles. ${ }^{13}$ The calculations suggest that there is a greater aromatic stabilization in 2-nitrofuran than in furan itself (Equations 5 and 6). This is therefore not likely to be a source of the increased reactivity we observe for nitrated systems.

Scheme 3 Homodesmotic equations comparing aromatic stabilization for furan and 2-nitrofuran $\left(\Delta H_{r}\right.$ in kcal mol^{-1}).

Computational Details.

All electronic structure computations were using Gaussian 09 (Revision D.01). ${ }^{14}$ Preliminary geometries were obtained by means of density based models, B3LYP ${ }^{15,16}$ functional with a split-valence double-zeta basis, 6-31G. All optimized structures were subject to a subsequent frequency calculation, to validate the nature of the stationary point. The thermochemical pathway, based on the conversion of $\mathbf{1 a}, \mathbf{2 a}, \mathbf{1 d}, \mathbf{2 d}, \mathbf{1 n}$ and $\mathbf{2 n}$ to the corresponding cycloadduct, was probed at both 298.15 K and 383.00 K using a highly accurate complete basis set (CBS) model. ${ }^{17,18,19,20}$ The particular extrapolation procedure utilized was CBS-QB3, ${ }^{19}$ a variant of the original CBS-Q ${ }^{18}$ model. The frontier molecular orbital (FMO) energies were obtained from the B3LYP ${ }^{15,16}$ functional with a split-valence triple-zeta basis, $6-311 \mathrm{G}(2 \mathrm{~d}, \mathrm{~d}, \mathrm{p})$. The HOMO (LUMO) orbitals relating to the dienophile were selected rationally; the highest occupied (lowest unoccupied) orbital demonstrating significant amplitude of in-phase (out-of-phase) overlap of appropriate locally out-of-plane p-orbitals located on the ethylenic carbon atoms. The identification of the HOMO (LUMO) relating to the diene segment was straightforward, although the presence of the nitro substituent gave rise to a distinct difference in the observed LUMOs, with an extra nodal point at position three of the nitrofuran system when compared to the non-nitrated counterpart.

Electronic structure calculations were performed for substrates 1a, 2a, 1d and 2d. Key energetic reaction parameters and FMO energies were calculated (Table 3). The effect of nitration is substantial. Reaction of substrates 1a and 1d occurs via a normal electron-demand process, but their nitrated analogues 2a and 2d react via an inverse electron-demand process. Intuitively, 2a might be expected to be a polaritymismatched IMDAF substrate and hence undergo slower reaction. The calculations indicate that the switch in polarity results in a smaller FMO energy difference, which presumably makes a contribution to increasing the reaction rate.

Substrate	ΔH^{\ddagger}	ΔG^{\ddagger}	$\Delta_{r} H^{\circ} \Delta_{r} G^{\circ}$	$F M O \Delta E($ Normal)	FMO ΔE (inverse)	
1a	17.0	22.2	-15.8	-9.5	5.3	8.1
2a	15.5	21.1	-18.8	-12.5	6.0	4.9
1d	19.9	26.4	-12.1	-4.0	5.3	7.1
2d	15.6	22.4	-16.8	-8.1	6.0	4.9

Table 3 Theoretically calculated reaction energetics at 383.00K and associated FMO energies expressed in terms of kcal mol ${ }^{-1}$ and electron volts, respectively. ${ }^{21}$

In order to explain why the nitro systems are more tolerant of steric hindrance, the calculated transition states for the reaction of these four representative substrates were examined in more detail. All four pericyclic processes were found to be asynchronous, with a significant difference in length between the partially-formed ring fusion bond marked a (Fig. 1) than for the partially-formed bond marked b, between the nitro-bearing/H-bearing carbon and the alkene terminus. The difference increases with alkene substitution and the effect is much more marked for the nitro-substituted cases. This is consistent with a more asynchronous pericyclic process in the nitro cases, and indicates a greater degree of charge separation in the transition state. One might expect that transfer of electron density from dienophile to diene would lead to a stabilization of the positive charge at the nitro-bearing carbon. This is then likely to be responsible for the longer interatomic distance b in the transition state, which would in turn suggest that the reactions of nitro substrates are likely to be less susceptible to steric effects at the alkene terminus than the non-nitro analogues.

TS 1a

TS 2a

TS 1d

TS 2d
TS Length a / \AA Length b / \AA \% difference b vs a

$1 a$	2.04	2.22	9

1d	1.99	2.30	16

$\mathbf{2 a}$	2.04	2.24	10

2d	1.92	2.46	280

Figure. 1 Illustrating the asynchronicity of nitrofuran IMDA reactions

There is less reason to expect a similar electron density transfer in the non-nitrated substrates, and the interatomic distances between the atoms involved in formation of the two new σ-bonds are calculated to be much more equal, indicating a more synchronous process. The activation barriers and observed rates for each of the reactions (Table 3) are consistent with this analysis.

The only exception to the nitration effect we have observed is seen in substrates $\mathbf{1 n}$ and $\mathbf{2 n}$ (Scheme 4 and table 4), derived from the use of monoethyl fumaryl chloride as acylating agent, leading to the formation of $\mathbf{3 n}$ and $\mathbf{4 n}$. These precursors contain extremely electron-deficient dienophiles. In this case, IMDA product 3n was isolated directly upon work-up of the acylation reaction. Nitro substrate $\mathbf{4 n}$ required heating for 1 h to achieve complete conversion, but that reaction is still faster than all the others. In this unusual case, it appears that nitration does indeed produce a polarity
mismatched, although still favorable, IMDA reaction. We performed calculations on the N-Phenyl analogues $\mathbf{1 0}$ and $\mathbf{2 o}$ of these substrates as model compounds. The calculated activation barriers are consistent with more rapid reactions, in accord with experiment. The calculated FMO energies indicate a switch to a normal-demand cycloaddition in these particular cases.

$$
\begin{array}{lc}
\text { 1n } \mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{H} & \text { 3n } \mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{H} 63 \% \text { of } 3 n \text { isolated from acylation } \\
\text { 2n } \mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{NO}_{2} & \text { 4n } \mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{NO}_{2} 1 \mathrm{n} \text { full conversion } 90 \% \text { yield } \\
\text { 1o } \mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{H} & 3 \mathrm{H} \mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{H}, \\
\text { 2o } \mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{NO}_{2} & 4 \mathrm{o} \mathrm{R}=\mathrm{Me}, \mathrm{X}=\mathrm{NO}_{2}
\end{array}
$$

Scheme 4 Fumarate cycloadditions

Substrate	$\Delta \mathrm{H}^{\ddagger}$	$\Delta \mathrm{G}^{\ddagger}$	$\Delta_{\mathrm{r}} \mathrm{H}^{\circ}$	$\Delta_{\mathrm{r}} \mathrm{G}^{\circ}$	$\mathrm{FMO} \Delta \mathrm{E}$ (Normal)	FMO $\Delta \mathrm{E}$ (inverse)
10	11.9	17.9	-15.7	-9.0	4.5	
20	11.7	17.9	-17.8	-11.0	5.1	5.9

Table 4 Theoretically calculated reaction energetics for substrates $\mathbf{1 0}$ and $\mathbf{2 o}$ at 383.00 K and associated FMO energies expressed in terms of $\mathrm{kcal} \mathrm{mol}^{-1}$ and electron volts, respectively. ${ }^{22}$

Conclusion

The effect of nitro-substitution of furan on the intramolecular furan Diels-Alder cycloaddition has been investigated. In all but one case the cycloaddition was faster
and more favorable for the nitrated substrates. This was found to be due largely to an extreme example of positive charge stabilization in the transition state and cycloadducts, rather than any major changes to the aromaticity of the heterocycle. Given the ready availability of nitrofuran substrates, it is likely that their use will lead to synthetically useful yields of highly functionalized cycloadducts that are unavailable from non-nitrated cycloaddition precursors. More general consideration of asynchronicity is likely to lead to more effective design of substrates for very sterically demanding intramolecular cycloadditions.

EXPERIMENTAL

General Information

Melting points were obtained in open capillary tubes and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker AV 300, DPX 400 and AV 400 spectrometers at 300 and 400 MHz respectively and referenced to residual solvent. ${ }^{13} \mathrm{C}$ NMR spectrum were recorded using the same spectrometers at 75 and 100 MHz respectively. Chemical shifts (δ in ppm) were referenced to tetramethylsilane (TMS) or to residual solvent peaks (CDCl_{3} at $\delta \mathrm{H} 7.26$). J values are given in Hz and s, d, dd, ddd, t , $\mathrm{dt}, \mathrm{q}, \mathrm{m}$, br and app. abbreviations correspond to singlet, doublet, doublet of doublet, doublet of doublet of doublet, triplet, triplet of doublet, quartet, multiplet, broad and apparent respectively. Mass spectra were obtained at the EPSRC National Mass Spectrometry Service Centre in Swansea. Infrared spectra were obtained on Perkin-Elmer Spectrum 100 FT-IR Universal ATR Sampling Accessory, deposited neat or as a chloroform solution to a diamond/ZnSe plate.

Flash column chromatography was carried out using Matrix silica gel 60 from Fisher Chemicals and TLC was performed using Merck silica gel 60 F254 precoated sheets and visualised by UV (254 nm) and stained by the use of aqueous acidic KMnO_{4}. Anhydrous dichloromethane (DCM) was obtained from a solvent drying system (MB-SPS-800). Eluting solvents are indicated in the text. The apparatus for inert atmosphere experiments was flame-dried under a stream of dry argon.

N-(Furan-2-ylmethyl)aniline ${ }^{23}$:

To a solution of furfural ($1.66 \mathrm{~mL}, 20.0 \mathrm{mmol}$) in 1,2-dichloroethane (70
 mL) under nitrogen was added aniline ($1.82 \mathrm{~mL}, 20.0 \mathrm{mmol}$) followed by sodiumtriacetoxy borohydride ($6.0 \mathrm{~g}, 28 \mathrm{mmol}$) in one portion. The solution stirred at room temperature for 3 hours where the reaction was quenched with the addition of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The solution was extracted with chloroform $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product as a red oil (4.2 g) which was chromatographed on silica gel (EtOAc/Pet. Ether $\sim 5 \%$) to provide N-(furan-2-ylmethyl)aniline as a yellow oil ($3.0 \mathrm{~g}, 87 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.43(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~m}, 1 \mathrm{H}), 6.39$ (m, 1H), $6.30(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.9$, 147.7, 142.0, 129.3, 118.1, 113.2, 110.4, 107.1, 41.5. IR (cm^{-1}): 3409, 3051, 1729, 1601, 1503, 1460, 1431, 1316, 1252, 1180, 1145, 1011, 883, 806.

N -((5-Nitrofuran-2-yl)methyl)aniline: ${ }^{24}$

To a solution of 5-nitrofuran-2-carbaldehyde ($1.41 \mathrm{mg}, 10.0 \mathrm{mmol}$) in
 dichloromethane (35 mL) under nitrogen was added aniline (0.92 mL , 10.0 mmol) and the solution stirred at room temperature for 2 hours. Following the stirring to the solution was added sodium borohydride ($490 \mathrm{mg}, 13 \mathrm{mmol}$) in one portion followed by acetic acid (1.0 mL) to effervescence. The solution stirred at room temperature overnight where the reaction was quenched with the addition of water (100 mL). The solution was extracted with chloroform ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product as a red oil (2.4 g) which was chromatographed on silica gel (EtOAc/Pet. Ether $\sim 10 \%$) to provide N -($(5-$ nitrofuran-2-yl)methyl)aniline as a red crystals ($2.0 \mathrm{~g}, 93 \%$). M. p.: $55-57^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathbf{3 0 0}$ MHz, CDCI ${ }_{3}$) $\delta=7.30(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=8.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ (d, J=3.7 $\mathrm{Hz}, 1 \mathrm{H}$), 4.52 (s, 1H), 4.29 (s, br, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=157.4,146.6,129.5$, 118.8, 113.2, 112.9, 110.6, 41.5. IR (cm ${ }^{-1}$): 3390, 3142, 3116, 1598, 1582, 1506, 1444, 1361, 1314, 1253, 1232, 1169, 1153, 1115, 1096, 979, 815.

N -(Furan-2-ylmethyl)-N-phenylacrylamide (1a): ${ }^{6}$

Acryloyl chloride ($125 \mathrm{mg}, 1.3 \mathrm{mmol}$) was added at $-20^{\circ} \mathrm{C}$ carefully to a solution of N-(furan-2-ylmethyl)aniline (200 mg, 1.15 mmol), triethylamine (0.243 mL .1 .7 mmol) and DMAP in dry dichloromethane $(5.00 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ with stirring. The reaction mixture was allowed to rise to room temperature and stirred overnight. The reaction mixture was then diluted with
dichloromethane (10 mL) and water (10 mL) was added. The mixture was further extracted with dichloromethane ($2 \times 10 \mathrm{~mL}$) and the combined organic phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Purification by column chromatography (1:1.5 ethyl acetate/ petroleum ether) afforded the title compound: ($147 \mathrm{mg}, 52 \%$) as an orange oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$: $\delta=7.46-$ $7.29(\mathrm{~m}, 4 \mathrm{H}), 7.17-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{dd}, J=16.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}$, 1 H), 6.21 (dq, $J=3.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ (dd, $J=16.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.56 (dd, $J=10.3,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.97$ (s, 2H).

N-((5-Nitrofuran-2-yl)methyl)-N-phenylacrylamide (2a):

Acryloyl chloride ($415 \mathrm{mg}, 4.60 \mathrm{mmol}$) was added carefully to a solution of N-((5-nitrofuran-2-yl)methyl)aniline ($1.00 \mathrm{~g}, 4.60$ mmol), triethylamine (0.23 mL .9 .60 mmol) and DMAP (13 mg , $0.11 \mathrm{mmol})$ in dry dichloromethane $(5.00 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ with stirring. The reaction mixture was allowed to rise to room temperature and stirred overnight. The reaction mixture was then diluted with dichloromethane (10 mL) and water (10 mL) was added. The mixture was further extracted with dichloromethane $(2 \times 10 \mathrm{~mL})$ and the combined organic phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Purification by column chromatography (1:4 ethyl acetate/ petroleum ether) afforded the title compound: Wt 647 mg ; 52%; brown/orange oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.47-7.34(\mathrm{~m}, 3 \mathrm{H}),, 7.24(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.21-$ $7.16(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=16.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=16.8$, $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=10.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 165.7, 154.6, 151.5, 141.3, 123.0, 129.0, 128.6, 127.9, 127.7, 112.6, 112.1, 46.5 . IR ($\mathbf{c m}^{-1}$): 3134, 3064, 3040, 2928, 1656, 1593, 1528, 1489, 1408, 1352, 1255, 1230, 1170, 1018. HRMS (ESI-ion trap) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na} 295.0689$; found: 295.0681 (δ ppm = -1.0).

(E)-N-(Furan-2-ylmethyl)-N-phenylhex-2-enamide (1b):

(E)-Hex-2-enoyl chloride was prepared by the addition of oxalyl chloride ($1.3 \mathrm{~mL}, 15 \mathrm{mmol}$) to a solution of trans-2-hexenoic acid $(1.0 \mathrm{~g}, 9.2 \mathrm{mmol})$. The solution was stirred at $80^{\circ} \mathrm{C}$ for 1 hour. The crude solution was concentrated to yield pure 3-methylbut-2-enoyl chloride as a yellow oil. To a solution of N -((1H-furan-2-yl)methyl)aniline (159 mg, $0.92 \mathrm{mmol})$ and pyridine ($0.11 \mathrm{~mL}, 1.4 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{~mL})$ under nitrogen was added, a solution of (E)-hex-2-enoyl chloride ($145 \mathrm{mg}, 1.1 \mathrm{mmol}$) in dichloromethane (2 mL). The solution was stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(20 \mathrm{~mL})$. The solution was extracted with dichloromethane (3 x 30 mL). The combined organic layers were dried with sodium sulfate and concentrated to
yield the crude product as oil (264 mg) which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to afford (E)-N-(furan-2-ylmethyl)- N-phenylhex-2-enamide as a yellow oil ($177 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=7.39 \sim 7.27(\mathrm{~m}, 4 \mathrm{H}), 7.09 \sim 7.03(\mathrm{~m}, 2 \mathrm{H})$, 6.94 (dt, $J=15.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.26 \sim 6.14(\mathrm{~m}, 2 \mathrm{H}), 5.64(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H})$, 2.00 (dd, $J=7.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~h}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ MHz, CDCI $_{3}$): $\delta=166.0,151.0,146.8,142.1,129.4,128.4,127.8,121.5,110.4,108.9,45.8$, 34.4, 21.6, 13.7. IR (cm ${ }^{-1}$): 2958, 2931, 2872, 1661, 1628, 1593, 1493, 1374, 1287, 1178, 1016, 975, 935, 730, 639. HRMS (ESI-ion trap) m/z: $[\mathrm{M} \mathrm{+} \mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}$ 270.1489; Found 270.1487 (δ ppm = -0.6).
(E)-N-((5-Nitrofuran-2-yl)methyl)-N-phenylhex-2-enamide (2b):

(E)-Hex-2-enoyl chloride was prepared by the addition of oxalyl chloride ($1.3 \mathrm{~mL}, 15 \mathrm{mmol}$) to a solution of trans-2hexenoic acid ($1.0 \mathrm{~g}, 9.2 \mathrm{mmol}$). The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure 3-methylbut-2-enoyl chloride as a yellow oil. To a solution of N -((5-nitrofuran-2-yl)methyl)aniline ($200 \mathrm{mg}, 0.92 \mathrm{mmol}$) and pyridine ($0.11 \mathrm{~mL}, 1.4 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{~mL})$ under nitrogen was added, a solution of (E)-hex-2-enoyl chloride ($145 \mathrm{mg}, 1.1 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{~mL})$. The solution was stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(20 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product as oil (290 mg) which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to afford compound $\mathbf{2 b}$ as an orange oil ($227 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.49 \sim 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=$ $3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.20 \sim 7.15(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{dt}, J=15.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dt}, J=3.7,0.7 \mathrm{~Hz}$, 1 H), 5.68 (dt, $J=15.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 2.02(\mathrm{qd}, J=7.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{~h}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $0.83(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.3,155.1,147.9$, 141.8, 129.9, 128.4, 128.1, 120.8, 112.7, 112.1, 46.5, 34.4, 21.5, 13.7. IR (cm ${ }^{-1}$): 2959, 2930, 2872, 1661, 1628, 1593, 1529, 1491, 1400, 1352, 1291, 1231, 1169, 1018, 970, 955. HRMS (ASAP+ - TOF) m/z: [M + H] Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$ 315.1345; Found 315.1342 (δ ppm = -1.0).
(E)-N-(Furan-2-ylmethyl)-2-methyl- N-phenylbut-2-enamide (1c):

(E)-2-Methylbut-2-enoyl chloride was prepared by the addition of oxalyl chloride ($1.3 \mathrm{~mL}, 15 \mathrm{mmol}$) to tiglic acid ($1.0 \mathrm{~g}, 10 \mathrm{mmol}$). The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure (E)-2-methylbut-2-enoyl chloride as a yellow oil. To a solution of N-((1H-furan-2-yl)methyl)aniline (159 mg, 0.92 mmol) and pyridine ($0.11 \mathrm{~mL}, 1.4$
$\mathrm{mmol})$ in dichloromethane $(2 \mathrm{~mL})$ under nitrogen was added, a solution of (E)-2-methylbut-2enoyl chloride ($140 \mathrm{mg}, 1.10 \mathrm{mmol}$) in dichloromethane (2 mL). The solution was stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(20 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product as oil (253 mg) which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to afford compound $\mathbf{1 c}$ as a yellow oil ($217 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right.$): $\delta=7.33 \sim 7.13$ (m, 4H), $7.07 \sim 6.96$ (m, 2H), 6.25 (dd, J = 3.2, $1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.16 (dd, J = 3.3, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.75 (dd, $J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 1.55 \sim 1.53(\mathrm{~m}, 3 \mathrm{H}), 1.44$ (dd, $J=6.9,1.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.0,151.2,143.6,142.0,132.5,131.0,129.0,127.3$, 126.8, 110.4, 108.7, 46.4, 14.1, 13.4. IR (cm^{-1}): 3038, 2920, 1736, 1658, 1635, 1594, 1584, 1493, 1454, 1365, 1294, 1196, 1164, 1014, 933, 813, 735. HRMS (ESI-ion trap) m/z: [M + H^{+}Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}$ 256.1332; Found $256.1333(\delta \mathrm{ppm}=0.4)$.
(E)-2-Methyl-N-((5-nitrofuran-2-yl)methyl)-N-phenylbut-2-enamide (2c):

(E)-2-Methylbut-2-enoyl chloride was prepared by the addition of oxalyl chloride ($1.3 \mathrm{~mL}, 15 \mathrm{mmol}$) to tiglic acid ($1.0 \mathrm{~g}, 10 \mathrm{mmol}$). The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure (E)-2-methylbut-2enoyl chloride as a yellow oil. To a solution of N-((5-nitrofuran-2-yl)methyl) aniline (200 mg , $0.92 \mathrm{mmol})$ and pyridine $(0.11 \mathrm{~mL}, 1.4 \mathrm{mmol})$ in dichloromethane $(2 \mathrm{~mL})$ under nitrogen was added, a solution of (E)-2-methylbut-2-enoyl chloride ($140 \mathrm{mg}, 1.10 \mathrm{mmol}$) in dichloromethane (2 mL). The solution was stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(20 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product as oil (283 mg) which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to afford compound 2c as an orange oil ($236 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.51 \sim 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.42 \sim 7.35(\mathrm{~m}$, 2H), $7.28 \sim 7.23(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{dt}, J=3.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (dd, $J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (s, 2H), $1.70 \sim 1.67(\mathrm{~m}, 3 \mathrm{H}), 1.62$ (dd, $J=6.9,1.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 173.1, 155.2, 143.3, 132.5, 131.9, 129.5, 127.3, 126.9, 112.8, 111.9, 47.1, 13.9, 13.6. IR (cm ${ }^{-1}$): 2921, 2247, 1634, 1564, 1529, 1492, 1353, 1297, 1278, 1232, 1159, 1018, 909, 810, 771. HRMS (ASAP+ - TOF) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4}$ 299.1032; Found 299.1029 (δ ppm $=-1.0$).
N-(Furan-2-ylmethyl)-3-methyl-N-phenylbut-2-enamide (1d):

3-Methylbut-2-enoyl chloride was prepared by the addition of oxalyl chloride ($2.8 \mathrm{~mL}, 33 \mathrm{mmol}$) to a solution of 3-methyl crotonic acid $(3.0 \mathrm{~g}, 30 \mathrm{mmol})$ in dichloromethane $(25 \mathrm{~mL})$. The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure 3-methylbut-2-enoyl chloride as a yellow oil. To a solution of N -((1H-furan-2-yl)methyl)aniline ($317 \mathrm{mg}, 1.83 \mathrm{mmol}$) and pyridine ($0.22 \mathrm{~mL}, 2.75 \mathrm{mmol}$) in dichloromethane (2 mL) under nitrogen was added, a solution of 3-methylbut-2-enoyl chloride ($260 \mathrm{mg}, 2.20 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{~mL})$. The solution was stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(20 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product as oil (465 mg) which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to afford compound 3d as a yellow oil ($407 \mathrm{mg}, 87 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}\right.$, CDCl $_{3}$): $\delta=7.38 \sim 7.18(\mathrm{~m}, 4 \mathrm{H}), 7.05 \sim 6.98(\mathrm{~m}, 2 \mathrm{H})$, 6.21 (dd, $J=3.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11$ (dd, $J=3.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.37$ (s, 1H), 4.84 (s, 2H), 2.09 (d, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}$), $1.61(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.9,151.5,151.4,142.7$, 142.0, 129.3, 128.1, 127.52 117.5, 110.4, 108.7, 45.4, 27.4, 20.4. IR (cm ${ }^{-1}$): 2912, 1712, 1650, 1632, 1593, 1494, 1447, 1393, 1364, 1263, 1170, 1146, 1016, 934, 843, 747. HRMS (ESI-ion trap) m/z: [$\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}$ 256.1332; Found 256.1330 ($\delta \mathrm{ppm}=-0.8$).

3-Methyl-N-((5-nitrofuran-2-yl)methyl)-N-phenylbut-2-enamide (2d):

3-methylbut-2-enoyl chloride was prepared by the addition of oxalyl chloride ($2.8 \mathrm{~mL}, 33 \mathrm{mmol}$) to a solution of 3-methyl crotonic acid $(3.0 \mathrm{~g}, 30 \mathrm{mmol})$ in dichloromethane $(25 \mathrm{~mL})$. The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure 3-methylbut-2-enoyl chloride as a yellow oil.
To a solution of N -((5-nitro-1 H -furan-2-yl)methyl)aniline ($400 \mathrm{mg}, 1.83 \mathrm{mmol}$) and pyridine ($0.22 \mathrm{~mL}, 2.75 \mathrm{mmol}$) in dichloromethane (2 mL) under nitrogen was added, a solution of 3-methylbut-2-enoyl chloride ($260 \mathrm{mg}, 2.20 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{~mL})$. The solution was stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(20 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product as oil (638 mg) which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to provide 3-methyl- N -((5-nitrofuran-2-yl)methyl)- N -phenylbut-2-enamide as a yellow oil ($503 \mathrm{mg}, 92 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.44 \sim 7.28(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}$, 1H), $7.19 \sim 7.13$ (m, 2H), 6.52 (dd, J = 3.7, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.43 (s, 1H), 4.93 (s, 2H), 2.14 (s, 3H), 1.69 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=167.0,155.5,153.3,142.4,129.8,128.1$, 127.9, 116.7, 112.8, 111.8, 46.3, 27.5, 20.4. IR (cm ${ }^{-1}$): 2913, 1711, 1651, 1632, 1594, 1529,

1492, 1447, 1399, 1353, 1265, 1221, 1163, 1019, 969, 955, 843, 809, 752. HRMS (ASAP+ TOF) m/z: [M] Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}$ 301.1188; Found 301.1186 ($\delta \mathrm{ppm}=-0.7$).

2-Cyclopentylidene- \mathbf{N}-(furan-2-ylmethyl)- \mathbf{N}-phenylacetamide (1e):

Cyclopent-1-ene-1-carbonyl chloride was prepared by the addition of oxalyl chloride ($66,4 \mu \mathrm{~L}, 0.77 \mathrm{mmol}$) to 2-cyclopentylideneacetic acid ($110 \mathrm{mg}, 0.64 \mathrm{mmol}$) The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure the corresponding acyl chloride as a yellow oil. To a solution of N -(furan-2ylmethyl)aniline ($134 \mathrm{mg}, 0.77 \mathrm{mmol}$) and pyridine ($78 \mu \mathrm{~L}, 0.97 \mathrm{mmol}$) in dichloromethane $(1.4 \mathrm{~mL})$ under nitrogen was added, a solution of acyl chloride in dichloromethane (1.4 mL). The solution stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(10 \mathrm{~mL})$. The solution was extracted with dichloromethane (3×10 mL). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to provide compound $\mathbf{1 e}(138 \mathrm{mg}, 76 \%)$ as a pale yellow solid. M. p.: 72-75 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.31-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.17(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.08 (dq, $J=3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 3.04-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.01(\mathrm{~m}$, $3 \mathrm{H}), 1.72-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.40(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.5,165.6$, $151.4,142.7,141.9,129.3,128.3,127.4,111.8,110.3,108.5,45.3,36.0,32.5,26.6,25.4$. IR (cm ${ }^{-1}$): 1655, 1626, 1594, 1493, 1393, 1384, 1257, 1247, 1230, 1218, 1178, 1154, 1142, 1130, 855, 755, 744, 732, 663, 643, 599, 566. HRMS (ESI-ion trap) m/z: [M + H] Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2} 282.1489$; Found 282.1488 ($\delta \mathrm{ppm}-0.2$).

2-Cyclopentylidene-N-((5-nitrofuran-2-yl)methyl)-N-phenylacetamide (2e):

Cyclopent-1-ene-1-carbonyl chloride was prepared by the addition of oxalyl chloride ($78 \mu \mathrm{~L}, 0.91 \mathrm{mmol}$) to 2-cyclopentylideneacetic acid ($130 \mathrm{mg}, 0.76$ $\mathrm{mmol})$. The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure the corresponding acyl chloride as a yellow oil. To a solution of N-((5-nitrofuran-2-yl)methyl)aniline ($200 \mathrm{mg}, 0.91 \mathrm{mmol}$) and pyridine ($93 \mu \mathrm{~L}, 1.14 \mathrm{mmol}$) in dichloromethane $(1.7 \mathrm{~mL})$ under nitrogen was added, a solution of acyl chloride in dichloromethane (1.7 mL). The solution stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute HCl $(10 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product which was chromatographed on silica gel (Pet. Ether/EtOAc $5: 1$ to $3: 1$) to provide compound 2e ($185 \mathrm{mg}, 0,567 \mathrm{mmol}, 74 \%$) as a yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.43-7.27$
(m, 3H), $7.21(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{dd}, J=3.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{t}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 2.92-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.62(\mathrm{~m}, 2 \mathrm{H})$, 1.61 - 1.45 (m, 2H). ${ }^{13} \mathbf{C}-$ NMR (75 MHz, $\mathbf{C D C l}_{3}$): $\delta=167.2,166.7,155.6,142.4,129.8$, 128.0, 127.9, 112.7, 111.7, 111.1, 46.2, 36.2, 32.6, 26.5, 25.3. IR (cm ${ }^{-1}$): 1655, 1493, 1348, 1254, 1228, 1018, 809, 736, 666. HRMS (ESI-ion trap) m/z: [M + H] Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$ 327.1339; Found 327.1340 (δ ppm 0.2).

2-Cyclohexylidene- N-(furan-2-ylmethyl)- N-phenylacetamide (1f):

2-Cyclohexylideneacetyl chloride was prepared by the addition of thionyl chloride (4.9 mL) to a solution of 2cyclohexylideneacetic acid ($561 \mathrm{mg}, 4.0 \mathrm{mmol}$). The solution was stirred at room temperature for 3 hour. The crude solution was concentrated to yield 2 cyclohexylideneacetyl chloride as a yellow oil (80% purity). To a solution of N -((1H-furan-2yl)methyl)aniline ($159 \mathrm{mg}, 0.92 \mathrm{mmol}$) and pyridine ($0.11 \mathrm{~mL}, 1.4 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{~mL})$ under nitrogen was added, a solution of 2-Cyclohexylideneacetyl chloride (221 mg , $1.4 \mathrm{mmol})$ in dichloromethane (2 mL). The solution stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(20 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product as oil (418 mg) which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to compound 1 f as a yellow oil (175 $\mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.39 \sim 7.26(\mathrm{~m}, 4 \mathrm{H}), 7.13 \sim 7.03(\mathrm{~m}, 2 \mathrm{H}), 6.26$ (dd, $J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.16 (dd, $J=3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.35 (s, 1H), 4.90 (s, 2H), $2.80 \sim$ $2.66(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.64 \sim 1.45(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 167.7, 157.6, 151.4, 142.8, 142.0, 129.3, 128.2, 127.5, 115.1, 110.4, 108.7, 45.5, 37.9, 30.2, 28.6, 27.9, 26.5. IR (cm ${ }^{-1}$): 2927, 2852, 1650, 1594, 1494, 1446, 1420, 1398, 1355, 1228, 1255, 1173, 1042, 1006, 982, 847, 732, 666. HRMS (ESI-ion trap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2}$ 296.1656; Found 296.1649 ($\delta \mathrm{ppm}-2.4$).

2-Cyclohexylidene-N-((5-nitrofuran-2-yl)methyl)-N-phenylacetamide (2f):

2-Cyclohexylideneacetyl chloride was prepared by the addition of thionyl chloride (4.9 mL) to a solution of 2cyclohexylideneacetic acid ($561 \mathrm{mg}, 4.0 \mathrm{mmol}$). The solution was stirred at room temperature for 3 hour. The crude solution was concentrated to yield 2cyclohexylideneacetyl chloride as a yellow oil (80% purity).
To a solution of N -((5-nitrofuran-2-yl)methyl)aniline ($200 \mathrm{mg}, 0.92 \mathrm{mmol}$) and pyridine (0.11 $\mathrm{mL}, 1.4 \mathrm{mmol})$ in dichloromethane (2 mL) under nitrogen was added, a solution of 2Cyclohexylideneacetyl chloride ($221 \mathrm{mg}, 1.4 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{~mL})$. The solution
stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(20 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product as oil (489 mg) which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to provide compound $\mathbf{2 f}$ as a red oil ($192 \mathrm{mg}, 61 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.43 \sim$ $7.28(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21 \sim 7.16(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~s}$, 1 H), $4.94(\mathrm{~s}, 2 \mathrm{H}), 2.81 \sim 2.65(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.71 \sim 1.44(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.3,159.5,155.5,142.5,129.8,128.1,127.9,114.2,112.8$, 111.9, 46.3, 31.1, 30.3, 28.7, 27.9, 26.4. IR (cm^{-1}): 2928, 2853, 1650, 1593, 1528, 1492, 1447, 1401, 1350, 1275, 1223, 1166, 1019, 984, 969, 848, 809, 737, 668. HRMS (ASAP+ TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} 341.1501$; Found 341.1502 ($\delta \mathrm{ppm} 0.3$).

N-(Furan-2-ylmethyl)-N-phenylcyclopent-1-ene-1-carboxamide (1g):

The acyl chloride was prepared by the addition of thionyl chloride (1.2 $\mathrm{mL}, 16.07 \mathrm{mmol}$) to cyclopent-1-ene-1-carboxylic acid ($106 \mathrm{mg}, 0.94$
mmol) The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure the corresponding acyl chloride as a yellow oil. To a solution of N-(furan-2-ylmethyl)aniline ($196 \mathrm{mg}, 1.13 \mathrm{mmol}$) and pyridine ($115 \mu \mathrm{~L}, 1.42 \mathrm{mmol})$ in dichloromethane $(2.05 \mathrm{~mL})$ under nitrogen was added, a solution of acyl chloride in dichloromethane (2.05 mL). The solution stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute HCl $(10 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product which was chromatographed on silica gel (Pet. Ether/EtOAc 7:1) to provide compound $\mathbf{1 g}$ ($212 \mathrm{mg}, 84 \%$ yield) as a pale yellow solid. M. $\mathbf{~ p} .=48-50^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$: $\delta=7.37 \sim 7.25(\mathrm{~m}, 4 \mathrm{H}), 7.11 \sim 7.04(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{ddd}, J=3.0,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dt}, J$ $=3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.88 \sim 5.84(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 2.27 \sim 2.15(\mathrm{~m}, 4 \mathrm{H}), 1.79 \sim 1.60(\mathrm{~m}$, 2H). ${ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.0,151.0,143.1,142.1,139.3,139.1,129.1,127.9$, $127.4,110.4,108.9,46.4,33.7,33.1,23.3$. IR ($\mathbf{c m}^{-1}$): 2949, 2844, 1710, 1638, 1615, 1592, 1493, 1374, 1301, 1275, 1182, 1074, 1008, 949, 884, 735. HRMS (ASAP+ - TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2}$ 268.1332; Found $268.1332(\delta \mathrm{ppm}=0.0)$.

N-((5-Nitrofuran-2-yl)methyl)-N-phenylcyclopent-1-ene-1-carboxamide (2g)

The acyl chloride was prepared by the addition of thionyl chloride ($1.2 \mathrm{~mL}, 17.4 \mathrm{mmol}$) to cyclopent-1-ene-1-carboxylic acid (115 mg , $1.0 \mathrm{mmol})$. The solution was stirred at room temperature for 1 hour.

The crude solution was concentrated to yield pure the corresponding acyl chloride as a yellow oil. To a solution of N-((5-nitrofuran-2-yl)methyl)aniline ($269 \mathrm{mg}, 1.23 \mathrm{mmol}$) and pyridine ($124 \mu \mathrm{~L}, 1.54 \mathrm{mmol}$) in dichloromethane (2.2 mL) under nitrogen was added, a solution of acyl chloride in dichloromethane (2.2 mL). The solution stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute HCl $(10 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product which was chromatographed on silica gel (Pet. Ether/EtOAc 3:1) to provide compound $\mathbf{2 g}$ ($210 \mathrm{mg}, 66 \%$) as an orange oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.24$ (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{dt}, J=3.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.93-5.82(\mathrm{~m}, 1 \mathrm{H})$, $4.96(\mathrm{t}, \mathrm{J}=0.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.13(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.62(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (75 MHz , CDCl_{3}): $\delta=167.9,154.9,151.4,142.6,140.3,138.4,129.4,127.8,127.4,112.7,111.9$, 47.0, 33.4, 33.0, 23.1. IR (cm^{-1}): 1641, 1593, 1529, 1491, 1451, 1398, 1303, 1276, 1233, 1173, 1075, 1019, 980, 950, 908, 810, 772, 734, 698, 682, 589, 560. HRMS (ASAP+ - TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} 313.1183$; Found $313.1183(\delta \mathrm{ppm}=0.1)$.

N-(Furan-2-ylmethyl)-N-phenylcyclohex-1-ene-1-carboxamide (1h):

Cyclohex-1-ene-1-carbonyl chloride was prepared by the addition of thionyl chloride (4.9 mL) to 1-cyclohexene-1-carboxylic acid (505 $\mathrm{mg}, 4.0 \mathrm{mmol}$). The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure cyclohex-1-ene-1-carbonyl chloride as a yellow oil. To a solution of N-((1H-furan- 2 -yl)methyl)aniline (159 $\mathrm{mg}, 0.92 \mathrm{mmol})$ and pyridine ($0.11 \mathrm{~mL}, 1.4 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{~mL})$ under nitrogen was added, a solution of cyclohex-1-ene-1-carbonyl chloride ($160 \mathrm{mg}, 1.10 \mathrm{mmol}$) in dichloromethane (2 mL). The solution stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(20 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product as oil (465 mg) which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to provide compound $\mathbf{1 h}$ as a yellow oil ($189 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.33 \sim 7.16(\mathrm{~m}, 4 \mathrm{H}), 7.07 \sim 7.00(\mathrm{~m}$, 2 H), $6.26(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{tt}, J=3.7,1.7 \mathrm{~Hz}$, 1H), 4.92 (s, 2H), $2.03 \sim 1.91$ (m, 2H), $1.91 \sim 1.81$ (m, 2H), $1.54 \sim 1.31$ (m, 4H). ${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.4,151.2,143.7,142.0,134.5,133.2,129.0,127.3,126.9,110.4$, 108.7, 46.3, 26.1, 25.1, 22.1, 21.5. IR (cm ${ }^{-1}$): 2929, 2857, 1633, 1594, 1493, 1376, 1292, 1260, 1186, 1112, 1044, 1009, 884, 802, 739. HRMS (ESI - ion trap) m/z: [M+H] Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}$ 282.1500; Found 282.1492 ($\delta \mathrm{ppm}=-2.7$).

\mathbf{N}-((5-Nitrofuran-2-yl)methyl)-N-phenylcyclohex-1-ene-1-carboxamide (2h):

Cyclohex-1-ene-1-carbonyl chloride was prepared by the addition
 of thionyl chloride (4.9 mL) to 1-cyclohexene-1-carboxylic acid (505 $\mathrm{mg}, 4.0 \mathrm{mmol}$). The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure cyclohex-1-ene-1-carbonyl chloride as a yellow oil. To a solution of N -((5-nitrofuran-2-yl)methyl)aniline $(200 \mathrm{mg}, 0.92 \mathrm{mmol})$ and pyridine $(0.11 \mathrm{~mL}, 1.4 \mathrm{mmol})$ in dichloromethane (2 mL) under nitrogen was added, a solution of cyclohex-1-ene-1-carbonyl chloride ($160 \mathrm{mg}, 1.10 \mathrm{mmol}$) in dichloromethane (2 mL). The solution stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(20 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product as oil (465 mg) which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to provide compound $\mathbf{2 h}$ as a red oil $(275 \mathrm{mg}, 92 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.38 \sim 7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25 \sim 7.22(\mathrm{~m}, 1 \mathrm{H})$, $7.16 \sim 7.10(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{dt}, J=3.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{tt}, J=3.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H})$, $2.00 \sim 1.83(\mathrm{~m}, 4 \mathrm{H}), 1.54 \sim 1.34(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.5,155.2$, 143.4, 134.7, 133.9, 129.5, 127.5, 127.0, 112.8, 111.9, 47.1, 25.9, 25.2, 22.1, 21.5. IR (cm ${ }^{1}$): 2931, 1734, 1633, 1594, 1528, 1491, 1454, 1399, 1352, 1279, 1232, 1173, 1045, 1017, 968, 920, 854, 809, 697. HRMS (ASAP+ - TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$ 327.1345; Found 327.1338 (δ ppm = -2.1).

2-Cyclohexylidene-N-(furan-2-ylmethyl)-N-phenylpropanamide (1i):

The acyl chloride was prepared by the addition of oxalyl chloride ($54.5 \mu \mathrm{~L}, 0.63 \mathrm{mmol}$) to 2-cyclohexylidenepropanoic acid (86 mg , 0.56 mmol). The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure the corresponding acyl chloride as a yellow oil. To a solution of N-(furan-2-ylmethyl)aniline ($88 \mathrm{mg}, 0.51 \mathrm{mmol}$) and pyridine (49.3 $\mu \mathrm{L}, 0.61 \mathrm{mmol}$) in dichloromethane (0.5 mL) under nitrogen was added, a solution of acyl chloride in dichloromethane (0.5 mL). The solution stirred at $70^{\circ} \mathrm{C}$ for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(10 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product which was chromatographed on silica gel (Pet. Ether/EtOAc 6:1 to 4:1) to provide compound $\mathbf{1 i}$ as a colourless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR} \mathbf{(3 0 0} \mathbf{~ M H z}$, CDCl_{3}): $\delta=7.39-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{dd}, J=3.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ (s, 2H), 2.13 (s, 2H), 1.90 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.30$
(m, 6H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.2,151.0,142.1,141.9,138.3,128.6,127.4$, 127.4, 122.7, 110.4, 108.8, 45.2, 32.4, 29.1, 27.0, 26.9, 26.3, 15.9. IR (cm^{-1}): 1634, 1594, 1494, 1372, 1012, 728, 698, 599. HRMS (ESI - ion trap) m/z: [M+H] Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2}$ 310.1800; Found $310.1802(\delta \mathrm{ppm}=-0.5)$.

2-Cyclohexylidene- N -((5-nitrofuran-2-yl)methyl)-N-phenylpropanamide (2i):

The acyl chloride was prepared by the addition of oxalyl chloride ($93 \mu \mathrm{~L}, 1.09 \mathrm{mmol}$) to 2-cyclohexylidenepropanoic acid (148 mg , $0.96 \mathrm{mmol})$. The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure the corresponding acyl chloride as a yellow oil. To a solution of N-((5-nitrofuran-2$\mathrm{yl})$ methyl)aniline ($190 \mathrm{mg}, 0.87 \mathrm{mmol}$) and pyridine ($85 \mu \mathrm{~L}, 1.04 \mathrm{mmol}$) in dichloromethane $(0.9 \mathrm{~mL})$ under nitrogen was added, a solution of acyl chloride in dichloromethane $(0.9 \mathrm{~mL})$. The solution was stirred at $70{ }^{\circ} \mathrm{C}$ for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(10 \mathrm{~mL})$. The solution was extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to provide compound $\mathbf{2 i}$ ($196 \mathrm{mg}, 63 \%$ yield) as a yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.42$ $7.25(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 2 \mathrm{H}), 1.93(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.34(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.5$, 155.0, 141.9, 139.7, 129.1, 127.8, 127.0, 121.9, 112.6, 111.6, 105.0, 46.0, 32.5, 29.2, 27.1, 26.8, 26.2, 15.8. IR (cm ${ }^{-1}$): 1640, 1597, 1529, 1493, 1353, 1300, 1227, 1017, 810, 738, 698.

HRMS (ASAP+ - TOF) m/z: [M+H] Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} 355.1652$; Found 355.1653 (δ ppm = 0.2).

N-(Furan-2-ylmethyl)-N-phenylcinnamamide (1j):

Cinnamoyl chloride ($231 \mathrm{mg}, 1.3 \mathrm{mmol}$) was added at $-20^{\circ} \mathrm{C}$ carefully to a solution of N-(furan-2-ylmethyl)aniline (200 mg , $1.15 \mathrm{mmol})$, triethylamine (0.243 mL .1 .7 mmol) and DMAP in dry dichloromethane $(5.00 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ with stirring. The reaction mixture was allowed to rise to room temperature and stirred overnight. The reaction mixture was then diluted with dichloromethane (10 mL) and water (10 mL) was added. The mixture was further extracted with dichloromethane ($2 \times 10 \mathrm{~mL}$) and the combined organic phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Purification by column chromatography (1:1.5 $\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether) afforded the title compound: $(279 \mathrm{mg}, 80 \%)$ as a white solid. M. p.: $75-76{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.65(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.27-$
$7.13(\mathrm{~m}, 6 \mathrm{H}), 7.13-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.30-6.16(\mathrm{~m}, 2 \mathrm{H}), 6.13(\mathrm{dd}, \mathrm{J}=3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.92 (s, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=165.8,150.9,142.4,142.1,141.9,135.2$, 129.6, 129.5, 128.7, 128.3, 128.0, 127.9, 118.7, 110.4, 109.0, 45.9. IR (cm ${ }^{-1}$): 3042, 1978, 1646, 1605, 706. HRMS (ESI - ion trap) \mathbf{m} / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{2}$ 304,1338 ; Found 304,1332 (δ ppm $=-0.3$).

N-((5-Nitrofuran-2-yl)methyl)-N-phenylcinnamamide (2j):

Cinnamoyl chloride ($458 \mathrm{mg}, 2.5 \mathrm{mmol}$) was added at -20
 ${ }^{\circ} \mathrm{C}$ carefully to a solution of N -((5-nitrofuran-2$\mathrm{yl}) m \mathrm{methyl}$)aniline ($500 \mathrm{mg}, 2.3 \mathrm{mmol}$), triethylamine (0.48 mL .3 .4 mmol) and DMAP in dry dichloromethane (5.00 mL) at $0{ }^{\circ} \mathrm{C}$ with stirring. The reaction mixture was allowed to rise to room temperature and stirred overnight. The reaction mixture was then diluted with dichloromethane (10 mL) and water (10 mL) was added. The mixture was further extracted with dichloromethane ($2 \times 10 \mathrm{~mL}$) and the combined organic phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Purification by column chromatography ($1: 1 \mathrm{Et}_{2} \mathrm{O} /$ petroleum ether) afforded the title compound: ($676 \mathrm{mg}, \mathbf{8 5 \%}$) as a dark orange oil. ${ }^{1} \mathrm{H}-\mathrm{NMR} \mathbf{(3 0 0} \mathbf{~ M H z}$, CDCl_{3}) $\quad \delta=7.75(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.48$ - $7.39(\mathrm{~m}, 2 \mathrm{H}), 7.39$ $-7.20(\mathrm{~m}, 8 \mathrm{H}), 6.61$ (dd, J = 3.7, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.35 (d, J = $15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.07 (s, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.2,154.8,143.3,141.6,134.8,130.0,129.9$, 128.8, 128.5, 128.0, 117.8, 112.6, 112.1, 46.6. IR (cm ${ }^{-1}$): 2975, 2867, 1704, 1655, 1492, 1353, 751, 698. HRMS (ASAP+ - TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}$ 349.1183; Found 349.1185 ($\delta \mathrm{ppm}=0.1$).
(E)-N-(furan-2-ylmethyl)-3-(4-methoxyphenyl)-N-phenylacrylamide (1k):
(E)-3-(4-methoxyphenyl)acryloyl chloride was prepared by
 the addition of thionyl chloride $(5.0 \mathrm{~mL})$ to $(E)-3-(4-$ methoxyphenyl)acrylic acid ($712 \mathrm{mg}, 4.0 \mathrm{mmol}$). The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure (E)-3-(4methoxyphenyl)acryloyl chloride as a yellow oil. To a solution of N-((furan-2-yl)methyl)aniline ($161 \mathrm{mg}, 0.92 \mathrm{mmol}$) and pyridine ($0.11 \mathrm{~mL}, 1.4 \mathrm{mmol}$) in dichloromethane (2 mL) under nitrogen was added, a solution of (E)-3-(4methoxyphenyl)acryloyl chloride ($275 \mathrm{mg}, 1.4 \mathrm{mmol}$) in dichloromethane (2 mL). The solution stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(20 \mathrm{~mL})$. The solution was extracted with dichloromethane $(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried with sodium sulfate and concentrated to yield the
crude product as oil (462 mg) which was chromatographed on silica gel (Pet. Ether/EtOAc $4: 1$) to yield compound $\mathbf{1 k}$ as a yellow oil ($168 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=$ 7.71 (d, J = $15.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.47-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.83$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $6.36-6.29(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, 3H). ${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.3,160.9,151.1,142.2,142.2,129.6,128.5,128.0$, 127.9, 116.4, 114.2, 110.5, 109.0, 55.4, 46.0. IR (cm ${ }^{-1}$): 2932, 1651, 1593, 1574, 1511, 1492, 1455, 1422, 1373, 1303, 1286, 1236, 1146, 1112, 1077, 1030, 1017, 980, 937, 860, 824, 750, 699, 638, 599, 584, 554. HRMS (ESI - ion trap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{3}$ 334.1438; Found 334.1438 (δ ppm 0.1).
(E)-3-(4-methoxyphenyl)-N-((5-nitrofuran-2-yl)methyl)-N-phenylacrylamide (2k):

Cyclopent-1-ene-1-carbonyl chloride was prepared by the addition of oxalyl dichloride ($75 \mu \mathrm{~L}, 0,875 \mathrm{mmol}$) to (E)-3-(4-methoxyphenyl)acrylic acid ($130 \mathrm{mg}, 0,730 \mathrm{mmol}$) The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure the corresponding acyl chloride as a yellow oil. To a solution of N-((5-nitrofuran-2yl)methyl)aniline ($191 \mathrm{mg}, 0,875 \mathrm{mmol}$) and pyridine ($89 \mu \mathrm{~L}, 1,094 \mathrm{mmol}$) in dichloromethane $(1.5 \mathrm{~mL})$ under nitrogen was added, a solution of acyl chloride in dichloromethane $(1.5 \mathrm{~mL})$. The solution stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(10 \mathrm{~mL})$. The solution was extracted with dichloromethane (3×10 mL). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to provide compound $\mathbf{2 k}(239 \mathrm{mg}, 87 \%)$ as a yellow oil. ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$: $\delta=7.67$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.55-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.58$ (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-4.94(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ MHz, CDCl_{3}): $\delta=166.6,161.2,155.1,143.1,141.8,130.1,130.0,129.7,128.5,128.1$, 127.6, 115.3, 114.3, 112.8, 112.1, 55.4, 46.7. IR (cm^{-1}): 2912, 1712, 1650, 1632, 1593, 1494, 1447, 1393, 1364, 1263, 1170, 1146, 1016, 934, 843, 747. HRMS (ESI - ion trap) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5}$ 379.1288; Found 379.1283 ($\delta \mathrm{ppm}-1.4$).
(E)-N-(furan-2-ylmethyl)-3-(4-nitrophenyl)-N-phenylacrylamide (1I):
(E)-3-(4-nitrophenyl)acryloyl chloride was prepared by the
 addition of thionyl chloride $(5.0 \mathrm{~mL})$ to (E)-3-(4nitrophenyl)acrylic acid ($773 \mathrm{mg}, 4.0 \mathrm{mmol}$). The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure (E)-3-(4-nitrophenyl)acryloyl
chloride as a yellow oil. To a solution of N-((furan-2-yl)methyl)aniline ($159 \mathrm{mg}, 0.9 \mathrm{mmol}$) and pyridine $(0.11 \mathrm{~mL}, 1.4 \mathrm{mmol})$ in dichloromethane $(2 \mathrm{~mL})$ under nitrogen was added, a solution of (E)-3-(4-nitrophenyl)acryloyl chloride ($296 \mathrm{mg}, 1.4 \mathrm{mmol}$) in dichloromethane (2 $\mathrm{mL})$. The solution stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(20 \mathrm{~mL})$. The solution was extracted with dichloromethane (3 x 30 mL). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product as oil (462 mg) which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to yield compound $1 \mathbf{1 I}$ as a white crystals ($141 \mathrm{mg}, 44 \%$). M. p.: 136-138 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=8.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ $\sim 7.38(\mathrm{~m}, 5 \mathrm{H}), 7.34(\mathrm{dd}, J=1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19 \sim 7.09(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.29 (dd, $J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.21$ (dd, $J=3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): $\delta=164.9,150.5,148.1,142.3,141.5,141.4,139.6,129.8,128.5,128.4,128.3$, 124.1, 122.9, 110.5, 109.3, 46.1. IR (cm ${ }^{-1}$): 3075, 2936, 1651, 1614, 1592, 1511, 1503, 1413, 1392, 1338, 1281, 1191, 1077, 1033, 980, 884.

HRMS (ESI - ion trap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} 349.1183$; Found 349.1186 (δ $\mathrm{ppm}=0.9$).

(E)-N-((5-nitrofuran-2-yl)methyl)-3-(4-nitrophenyl)-N-phenylacrylamide (21):

(E)-3-(4-nitrophenyl)acryloyl chloride was prepared by the
 addition of thionyl chloride (5.0 mL) to (E)-3-(4nitrophenyl)acrylic acid ($773 \mathrm{mg}, 4.0 \mathrm{mmol}$). The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure (E)-3-(4nitrophenyl)acryloyl chloride as a yellow oil. To a solution of N-((5-nitrofuran-2-yl)methyl)aniline ($119 \mathrm{mg}, 0.55 \mathrm{mmol}$) and pyridine ($0.11 \mathrm{~mL}, 1.4 \mathrm{mmol}$) in dichloromethane (2 mL) under nitrogen was added, a solution of (E)-3-(4nitrophenyl)acryloyl chloride ($296 \mathrm{mg}, 1.4 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{~mL})$. The solution stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(20 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product as oil (462 mg) which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to yield compound $\mathbf{2 l}$ as beige crystals ($195 \mathrm{mg}, \mathbf{9 0 \%}$). M. p.: $\mathbf{1 5 2 - 1 5 4}{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathbf{3 0 0} \mathbf{~ M H z}$, CDCl_{3}): $\delta=8.15(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54 \sim 7.39(\mathrm{~m}, 5 \mathrm{H}), 7.27(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.05 (s, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=165.3,154.3,148.4,141.3,141.0,140.5,130.3$, 129.0, 128.7, 128.1, 124.2, 122.0, 112.6, 112.4, 46.8. IR (cm ${ }^{-1}$): 3140, 1657, 1620, 1530,

1504, 1374, 1339, 1240, 1169, 1109, 1017, 979, 867, 735. HRMS (ESI - ion trap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{6} 394.1039$; Found 394.1040 ($\delta \mathrm{ppm} 0.3$).
(E)-N-(furan-2-ylmethyl)-N,3-diphenylbut-2-enamide (1m):

(E)-3-phenylbut-2-enoyl chloride was prepared by the addition of thionyl chloride (5.7 mL) to (E)-3-phenylbut-2-enoic acid (650 $\mathrm{mg}, 4.0 \mathrm{mmol}$). The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure (E)-3-phenylbut-2-enoic acid as a yellow oil. To a solution of N -((1H-furan-2-yl)methyl)aniline (159 $\mathrm{mg}, 0.92 \mathrm{mmol})$ and pyridine ($0.11 \mathrm{~mL}, 1.4 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{~mL})$ under nitrogen was added, a solution of (E)-3-phenylbut-2-enoyl chloride ($253 \mathrm{mg}, 1.4 \mathrm{mmol}$) in dichloromethane (2 mL). The solution stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(20 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product as oil (398 mg) which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to yield compound 1 m as a yellow oil ($255 \mathrm{mg}, 87 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}\right.$, CDCl $_{3}$): $\delta=7.42 \sim 7.28(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}$, 2 H), $7.16-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.29(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=3.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}$, 1 H), 4.97 (s, 2H), 2.52 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=167.0,151.2,150.0,142.9$, 142.6, 142.1, 129.5, 128.4, 128.3, 128.1, 127.8, 126.2, 119.6, 110.5, 108.9, 45.5, 18.2. IR (cm^{-1}): 3058, 1654, 1615, 1593, 1493, 1446, 1366, 1277, 1176, 114, 1075, 1016, 927, 883, 755. HRMS (ESI - ion trap) m/z: [M+H] Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{2} 318.1489$; Found 318.1492 (δ ppm 1.1).
(E)-N-((5-nitrofuran-2-yl)methyl)-N,3-diphenylbut-2-enamide (2m):
(E)-3-phenylbut-2-enoyl chloride was prepared by the addition
 of thionyl chloride (5.7 mL) to (E)-3-phenylbut-2-enoic acid ($650 \mathrm{mg}, 4.0 \mathrm{mmol}$). The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure (E)-3-phenylbut-2-enoic acid as a yellow oil. To a solution of N-((5-nitrofuran-2-yl)methyl)aniline ($200 \mathrm{mg}, 0.92 \mathrm{mmol}$) and pyridine $(0.11 \mathrm{~mL}$, 1.4 mmol) in dichloromethane (2 mL) under nitrogen was added, a solution of (E)-3-phenylbut-2-enoyl chloride ($253 \mathrm{mg}, 1.4 \mathrm{mmol}$) in dichloromethane (2 mL). The solution stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(20 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product as oil (462 mg) which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to
yield compound $\mathbf{2 m}$ as a red oil ($287 \mathrm{mg}, \mathbf{8 6 \%}$). ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.49 \sim 7.33$ (m, 3H), $7.29 \sim 7.23$ (m, 5H), $7.20 \sim 7.14$ (m, 2H), 6.59 (d, J = $3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.93 (s, 1H), 5.02 (s, 2H), $2.53(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.2,155.2,151.7,142.6$, 142.3, 129.9, 128.7, 128.5, 128.3, 127.8, 126.2, 118.5, 112.8, 112.0, 46.4, 18.3. IR (cm^{-1}): 3057, 1704, 1645, 1594, 1557, 1530, 1493, 1145, 1354, 1266, 1227, 1170, 1075, 1020, 916, 862, 811, 761, 734, 596, 577, 562. HRMS (ASAP+ - TOF) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$ 363.1345; Found 363.1351 ((ppm 1.7).

Ethyl (E)-4-(((5-nitrofuran-2-yl)methyl)(phenyl)amino)-4-oxobut-2-enoate (2n):

The acyl chloride was prepared by the addition of thionyl chloride ($1.63 \mathrm{~mL}, 22.4 \mathrm{mmol}$) to (E)-4-ethoxy-4-oxobut-2enoic acid ($190 \mathrm{mg}, 1.3 \mathrm{mmol}$) The solution was stirred at room temperature for 1 hour. The crude solution was concentrated to yield pure the corresponding acyl chloride as a yellow oil. To a solution of N -((5-nitrofuran-2yl)methyl)aniline ($345 \mathrm{mg}, 1.58 \mathrm{mmol}$) and pyridine ($0.160 \mathrm{~mL}, 1.98 \mathrm{mmol}$) in dichloromethane (2.87 mL) under nitrogen was added, a solution of acyl chloride in dichloromethane (2.87 mL). The solution was stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute $\mathrm{HCl}(5 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product which was chromatographed on silica gel (Pet. Ether/EtOAc $4: 1$ to $2: 1$) to provide compound $\mathbf{2 n}(240 \mathrm{mg}, 53 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~ C D C I ~})_{3}$: $\delta=7.50-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}$, $2 \mathrm{H}), 6.89(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=3.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00$ (s, 2H), 4.16 ($\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 165.2, 164.1, 153.8, 140.5, 133.1, 132.3, 130.2, 129.1, 129.00, 127.7, 112.5, 112.3, 61.1, 46.6, 14.0. IR (cm ${ }^{-1}$): 1720, 1662, 1493, 1359, 1296, 1265, 1250, 1223, 1160, 1020, 971, 810, 758, 717, 699, 690. HRMS (ESI - ion trap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{6}$ 345.1081; Found 345.1083 ($\delta \mathrm{ppm}=0.5$).

General Procedure for the intramolecular Diels-Alder reaction.

A solution of the corresponding furan in Toluene (0.046 M) under nitrogen was heated to reflux and stirred for the time indicated in each case. Then, the toluene was removed under vacuum and the crude was purified by column chromatography with the eluent indicated in each case.
(3aRS,6RS)-2-phenyl-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-1(6H)-one (3a). ${ }^{7}$

A solution of N-(furan-2-ylmethyl)- N-phenylacrylamide ($145 \mathrm{mg}, 23.5 \mathrm{mmol}$) in toluene (13.9 mL) was heated to reflux with stirring for 24 hours under nitrogen. Toluene was then removed in vacuo to afford the crude product. The solution was concentrated to yield the crude product as crystals which was chromatographed on silica gel (Pet. Ether/EtOAc 1:1) to provide compound 3 a as an orange solid ($102 \mathrm{mg}, 70 \%$). M. p.: 139-140 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300$ MHz, CDCl $_{3}$): $\delta=7.64-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.07$ (ddt, $J=7.8,7.0,1.1 \mathrm{~Hz}$, 1 H), $6.50-6.28$ (m, 2H), 5.02 (dd, $J=4.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (d, J $=11.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.55 (dd, $J=8.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23 (ddd, $J=11.9,4.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.59 (dd, $J=11.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=173.4,139.4,137.5,133.0,128.9$, 124.7, 120.3, 88.1, 79.3, 50.9, 48.8, 28.9. IR (cm^{-1}): 3002.1, 2976.9, 2946.2, 1683.0, 1601.5, 1500.0, 687.4 .
(3aRS,6SR)-6-nitro-2-phenyl-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-1(6H)-one (4a). A solution of N-(furan-2-ylmethyl)- N-phenylacrylamide ($64.0 \mathrm{mg}, 23.5$ $\mathrm{mmol})$ in toluene (2.50 mL) was heated to reflux with stirring for 24 hours under nitrogen. Toluene was then removed in vacuo to afford the pure title compound: Wt $64 \mathrm{mg} ; 100 \%$ as a beige solid. M. p.: $165-166{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.66-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.79$ (s, 2H), 4.50 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95$ (dd, $J=8.7,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.71 (dd, $J=11.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (dd, $J=11.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ $=170.5,138.6,135.9,135.0,129.1,125.5,120.4,111.7,87.8,50.8,50.4,34.0$ IR ($\mathbf{c m}^{-1}$): 3117, 3098, 3067, 2992, 1688, 1552, 1500, 1489, 1472, 1358, 1292, 1156, 1116, 1055. HRMS (ESI - ion trap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4} 273.0870$; Found 273.0869 (δ $\mathrm{ppm}=-0.1$).
(3aRS,6RS)-2-Phenyl-7-propyl-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-1(6H)-one (3b):
 A solution of (E)- N-(furan-2-ylmethyl)- N-phenylhex-2-enamide ($122 \mathrm{mg}, 0.45$ mmol) in toluene (10 mL) under nitrogen was heated to reflux and stirred for 48 hours. The solution was concentrated to yield the crude product as crystals which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to provide compound $\mathbf{3 b}$ as white crystals ($22 \mathrm{mg}, 18 \%, 50 \%$ BRSM). M. p.: $106-108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~ C D C l ~}{ }_{3}$): $\delta=7.69 \sim 7.60(\mathrm{~m}, 2 \mathrm{H}), 7.42 \sim 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.18 \sim 7.10(\mathrm{~m}, 1 \mathrm{H})$, 6.56 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.43 (dd, $J=5.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=4.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.09 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.64(\mathrm{tt}, J=8.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~d}, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.53 \sim 1.40(\mathrm{~m}, 2 \mathrm{H}), 1.28 \sim 1.19(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ MHz, CDCl_{3}): $\delta=173.5,139.6,135.7,134.3,129.0,124.7,120.2,88.6,82.1,55.4,51.1$, 43.6, 35.0, 22.0, 14.2. IR (cm^{-1}): 2985, 2968, 2922, 2850, 1682, 1597, 1470, 1397, 1355,

1244, 1190, 1075, 1038, 987, 881, 757. HRMS (ESI - ion trap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2} 270.1489$; Found $270.1489(\delta \mathrm{ppm}=0.2)$.
(3aRS,6RS)-6-Nitro-2-phenyl-7-propyl-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-1(6H)one (4b):

A solution of $(E)-N-((5-n i t r o f u r a n-2-y l) m e t h y l)-N$-phenylhex-2-enamide (100 $\mathrm{mg}, 0.33 \mathrm{mmol}$) in toluene (10 mL) under nitrogen was heated to reflux and stirred for 48 hours. The solution was concentrated to yield the crude product as crystals which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to provide compound $\mathbf{4 b}$ as white crystals ($110 \mathrm{mg}, 67 \%$). M. p.: 194-196 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.66 \sim 7.59(\mathrm{~m}, 2 \mathrm{H}), 7.45 \sim 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.22 \sim 7.14$ ($\mathrm{m}, 1 \mathrm{H}$) , $6.79(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ (dt, $J=11.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90 \sim 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.58 \sim 1.40(\mathrm{~m}, 2 \mathrm{H})$, $1.14 \sim 1.00(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}\right.$, CDCl $\left._{3}\right): \delta=170.5,138.7$, 136.4, 132.9, 129.0, 125.2, 120.1, 105.0, 87.2, 56.9, 50.4, 48.6, 33.2, 21.1, 13.8. IR (cm^{-1}): 3144, 3112, 2961, 2925, 2870, 2358, 1704, 1594, 1505, 1464, 1356, 1331, 1294, 1235, 1189, 1130, 1016, 980, 913. HRMS (ASAP+ - TOF) m/z: [M+H] Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$ 315.1345; Found 315.1349 ($\delta \mathrm{ppm}=1.3$).
(3aRS,6RS)-7,7a-Dimethyl-2-phenyl-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-1(6H)-one (3c):

A solution of (Z)- N -(furan-2-ylmethyl)-2-methyl- N-phenylbut-2-enamide (100 $\mathrm{mg}, 0.33 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ under nitrogen was heated to reflux and stirred for 48 hours. The solution was concentrated to yield the crude product as crystals which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to provide compound $\mathbf{3 c}(54 \mathrm{mg}, 54 \%)$. M. p.: $116-118{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathbf{3 0 0}$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.62 \sim 7.54(\mathrm{~m}, 2 \mathrm{H}), 7.35 \sim 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.07$ (ddt, $J=7.7,6.9,1.1 \mathrm{~Hz}$, 1 H), 6.45 (d, J = $1.4 \mathrm{~Hz}, 2 \mathrm{H}$), $4.83 \sim 4.80(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=11.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.71 ($\mathrm{qd}, J=7.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 0.92 (s, 3 H), $0.80(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.0,139.8,137.0,133.2,129.0,124.5,120.0,91.2,82.9,55.5,49.8$, 39.9, 15.7, 13.1. IR (cm ${ }^{-1}$): 2960, 2929, 2874, 1692, 1597, 1493, 1353, 1293, 1220, 1092, 1055, 1008, 893, 758. HRMS (ESI - ion trap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2} 256.1332$; Found 256.1333 ($\delta \mathrm{ppm}=0.4$).

(3aRS,6RS)-7,7a-Dimethyl-6-nitro-2-phenyl-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-

 1(6H)-one (4c):A solution of 3-methyl- N-((5-nitro-1H-pyrrol-2-yl)methyl)- N-phenylbut-2-enamide (160 mg , 0.53 mmol) in toluene (10 mL) under nitrogen was heated to reflux and stirred for 24 hours. The solution was concentrated to yield the crude product as crystals which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to provide compound $\mathbf{4 c}$ as white crystals ($124 \mathrm{mg}, 78 \%$). M. p.: $126-128{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.68 \sim 7.58(\mathrm{~m}$, 2 H), $7.44 \sim 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.22 \sim 7.13(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}$, 1 H), 4.38 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.23 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.08 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCI}_{3}\right): \delta=175.4,139.1,136.0,133.6$, 129.2, 125.2, 120.2, 114.4, 90.1, 58.2, 49.1, 45.6, 15.6, 12.3. IR (cm ${ }^{-1}$): 2971, 1693, 1641, 1599, 1548, 1493, 1354, 1331, 1306, 1217, 1175, 1069, 1024, 877, 809, 706. HRMS (ASAP+ - TOF) m/z: [M+H] Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}$ 301.1188; Found 301.1185 ($\delta \mathrm{ppm}=-$ 1.0).

(3aRS,6RS)-7,7-Dimethyl-6-nitro-2-phenyl-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-1(6H)-one (4d).

A solution of 3-methyl- N-((5-nitro-1H-pyrrol-2-yl)methyl)-N-phenylbut-2enamide ($100 \mathrm{mg}, 0.33 \mathrm{mmol}$) in toluene (10 mL) under nitrogen was heated to reflux and stirred for 48 hours. The solution was concentrated to yield the crude product as crystals which was chromatographed on silica gel (Pet. Ether/EtOAc 4:1) to provide compound 4d as white crystals ($43 \mathrm{mg}, 43 \%$). M. p.: $175-178{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.60 \sim 7.52(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{dd}, \mathrm{J}=8.5,7.5 \mathrm{~Hz}$, 2H), $7.23 \sim 7.14(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.47 (s, 1H), 1.38 (s, 3H), 1.35 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.5,138.6,135.9$, 134.4, 129.1, 125.5, 120.6, 116.2, 86.3, 58.1, 50.1, 47.4, 25.8, 19.9. IR (cm ${ }^{-1}$): 3073, 2981, 2359, 2340, 1677, 1597, 1555, 1493, 1454, 1396, 1361, 1296, 1212, 1159, 1073, 997. HRMS (ASAP+ - TOF) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}$ 301.1188; Found 301.1185 (δ ppm $=-1.0$).

(3a'RS,6'RS)-6'-Nitro-2'-phenyl-2',3'-dihydro-6'H-spiro[cyclopentane-1,7'-[3a,6]epoxyisoindol]-1'(7a'H)-one (4e):

A solution of 2-cyclopentylidene- N -((5-nitrofuran-2-yl)methyl)-Nphenylacetamide ($90 \mathrm{mg}, 0,276 \mathrm{mmol}$) in Toluene (6 mL) under nitrogen was heated to reflux and stirred for 27 h . The solution was concentrated to yield the crude product which was chromatographed on silica gel using as eluent Petroleum Ether/EtOAc (7:1) to provide compound $\mathbf{4 e}(21 \mathrm{mg}, 23 \%)$ as a white solid. M. p.: $210-212{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.66-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.38(\mathrm{~m}$, 2H), $7.27-7.19$ (m, 1H), 6.87 (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (d, $J=12.0$

Hz, 1H), 4.27 (d, J=12.0 Hz, 1H), 2.61 (s, 1H), 2.34 (ddd, $J=13.2,8.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-$ $2.03(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{dd}, \mathrm{J}=7.6,5.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=169.5,138.6,136.5,134.8,129.0,125.4,120.6,115.8,86.2,61.8,57.9,49.9,37.4,29.5$, 25.2, 24.8. IR (cm ${ }^{-1}$): 1676, 1554, 1492, 1409, 1209, 1145, 833, 771, 690. HRMS (ASAP+ TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} 327.1339$; Found 327.1340 ($\delta \mathrm{ppm}=0.2$).

(3a'RS,6'RS)-6'-Nitro-2'-phenyl-2',3'-dihydro-6'H-spiro[cyclohexane-1,7'-[3a,6]epoxyisoindol]-1'(7a'H)-one (4f)

A solution of 3-methyl- N-((5-nitro-1H-pyrrol-2-yl)methyl)- N-phenylbut-2enamide ($109 \mathrm{mg}, 0.32 \mathrm{mmol}$) in toluene $(7 \mathrm{~mL})$ under nitrogen was heated to reflux and stirred for 48 hours. The solution was concentrated to yield the crude product as crystals which was chromatographed on silica gel as eluent Petroleum Ether/EtOAc (4:1) to provide compound 4 f as white crystals ($35 \mathrm{mg}, 32 \%$). M. p.: $183-185{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.62 \sim 7.53(\mathrm{~m}, 2 \mathrm{H}), 7.42 \sim 7.33(\mathrm{~m}$, $2 \mathrm{H}), 7.22 \sim 7.14(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=11.9$ Hz, 1H), 4.21 (d, J = $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 2.52 \sim 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.05 \sim 1.02(\mathrm{~m}$, 10H). ${ }^{13} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=169.4,138.6,135.3,135.2,129.0,125.4,120.8,117.1$, 86.6, 58.1, 52.8, 49.9, 35.3, 28.5, 24.7, 23.6, 22.6. IR (cm ${ }^{-1}$): 2932, 2855, 1677, 1597, 1570, 1550, 1492, 1356, 1289, 1243, 1138, 1076, 1043, 976, 917, 844, 731, 697. HRMS (ASAP+ - TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} 341.1501$; Found 341.1497 ($\delta \mathrm{ppm}=-1.2$).
(3aRS,6RS,9aSR)-2-Phenyl-2,3,6a,7,8,9-hexahydro-1H,6H-3a,6-epoxycyclopenta[d]isoindol-1-one (3g):

A solution of N -(furan-2-ylmethyl)- N -phenylcyclopent-1-ene-1-carboxamide ($94 \mathrm{mg}, 0,352 \mathrm{mmol}$) in Toluene $(7.6 \mathrm{~mL}$) under nitrogen was heated to reflux and stirred for 22 h . The solution was concentrated to yield the crude product which was chromatographed on silica gel using as eluent Pet. Ether/EtOAc (4:1) to provide compound $\mathbf{3 g}$ ($48 \mathrm{mg}, 41 \%$ yield) as a white solid. M. p.: 41-43 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.08$ $(\mathrm{m}, 1 \mathrm{H}), 6.62-6.51(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{dd}, J=5.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (ddd, $J=8.9,5.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.45$ (m, 2H), $1.37-1.22(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCI}_{3}\right): \delta=177.4,139.6,138.1,133.5$, 128.9, 124.4, 120.0, 90.6, 82.0, 67.3, 52.7, 50.3, 30.9, 28.5, 27.1. IR (cm ${ }^{-1}$): 2951, 1687, 1599, 1556, 1493, 1464, 1446, 1396, 1354, 1311, 1294, 1279, 1217, 1202, 1181, 1149, 1132, 1100, 1060, 1012, 998, 976, 962, 904, 856, 823, 787, 708, 688, 614, 575, 560. HRMS (ESI - ion trap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2} 268.1332$; Found 268.1332 ($\delta \mathrm{ppm}=0.0$).
(3aRS,6RS)-6-Nitro-2-phenyl-2,3,6a,7,8,9-hexahydro-1H,6H-3a,6-epoxycyclopenta[d]isoindol-1-one (4 g)

A solution of N-((5-nitrofuran-2-yl)methyl)-N-phenylcyclopent-1-ene-1carboxamide ($119 \mathrm{mg}, 0,38 \mathrm{mmol}$) in Toluene ($8,3 \mathrm{~mL}$) under nitrogen was heated to reflux and stirred for 22 h . The solution was concentrated to yield the crude product which was chromatographed on silica gel using as eluent Pet. Ether/EtOAc (4:1) to provide compound $\mathbf{4 g}$ ($111 \mathrm{mg}, 93 \%$ yield) as a pale yellow solid. M. p.: 198-201 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.72-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.33$ $(\mathrm{m}, 2 \mathrm{H}), 7.24-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.21 (dd, $J=11.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 ($\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.07-1.55$ (m, 6 H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=174.7,138.8,136.2,134.9,129.0,125.1,120.1,113.3$, 89.6, 69.7, 57.8, 49.6, 30.9, 28.1, 27.0. IR (cm^{-1}): 2952, 2860, 1686, 1599, 1556, 1489, 1464, 1446, 1407, 1356, 1294, 1279, 1217, 1185, 1150, 1101, 1062, 1034, 1010, 970, 937, 907, 899, 854, 819, 794, 726, 688, 643, 619, 590, 577, 560. HRMS (ASAP+ - TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} 313.1183$; Found $313.1183(\delta \mathrm{ppm}=0.1)$.

(3aRS,6RS,6aSR,10aSR)-6-Nitro-2-phenyl-2,3,6,6a,7,8,9,10-octahydro-1H-3a,6-epoxybenzo[d]isoindol-1-one (4h)

A solution of N-((5-nitrofuran-2-yl)methyl)- N-phenylcyclohex-1-ene-1carboxamide ($215 \mathrm{mg}, 0.66 \mathrm{mmol}$) in toluene (10 mL) under nitrogen was heated to reflux and stirred for 48 hours. The solution was concentrated to yield the crude product as crystals which was chromatographed on silica gel using as eluent Pet. Ether/EtOAc (4:1) to provide compound 4 h as a white solid (119 mg , 55%). M. p.: 178-180 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.66 \sim 7.60(\mathrm{~m}, 2 \mathrm{H}), 7.44 \sim 7.33$ (m, 2H), 7.17 (ddt, $J=8.0,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.82(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, 1 H), 4.38 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.22 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85 (dd, $J=12.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.16 \sim 0.81(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta=174.4,139.2,136.1,134.0,129.1$, 125.1, 120.0, 114.0, $90.2,57.4,49.1,47.5,25.1,22.1,18.4,16.2$. IR ($\mathbf{c m}^{-1}$): 3114, 2947, 2869, 1685, 1598, 1552, 1491, 1459, 1357, 1305, 1294, 1126, 1093, 937, 851, 758, 627. HRMS (ESI - ion trap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} 327.1339$; Found 327.1342 (δ ppm $=0.8$).
(3a'RS,6'RS)-7a'-Methyl-6'-nitro-2'-phenyl-2',3'-dihydro-6'H-spiro[cyclohexane-1,7'-[3a,6]epoxyisoindol]-1'(7a'H)-one (4i):

A solution of 2-cyclohexylidene- $\mathrm{N}-((5-$ nitrofuran-2-yl)methyl)- N phenylpropanamide ($110 \mathrm{mg}, 0,310 \mathrm{mmol}$) in Toluene (6.7 mL) under nitrogen was heated to reflux and stirred for 26 h . The solution was concentrated to yield the crude product which was chromatographed on silica gel using as eluent Pet. Ether/EtOAc (6:1) to provide compound $4 \mathbf{i}(22 \mathrm{mg}, 20 \%$ yield) as a white solid. M. p.: $166-169{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.63-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.46-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.26 (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.17 (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.37-2.10$ ($\mathrm{m}, 2 \mathrm{H}$), 1.85 (ddd, $J=15.3$, $11.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.77-1.41$ (m, 6H), 1.34 (ddd, $J=14.0,10.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.24 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.6,138.8,135.7,134.7,129.0,125.2,120.6,117.2$, 89.0, 60.2, 54.1, 48.2, 30.7, 30.3, 24.9, 23.4, 23.1, 17.8. IR (cm ${ }^{-1}$): 2948, 1694, 1549, 1490, 1471, 1452, 1404, 1371, 1351, 1289, 1228, 1215, 1165, 1098, 1087, 1063, 1039, 1021, 979, 886, 866, 848, 818, 801, 763, 686, 661, 591, 566. HRMS (ASAP+ - TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} 355.1652$; Found $355.1654(\delta \mathrm{ppm}=0.5$).
(3aRS,6SR)-2,7-diphenyl-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-1(6H)-one (3j):

A solution of N-(furan-2-ylmethyl)- N-phenylcinnamamide (207 mg , $0.68 \mathrm{mmol})$ in Toluene (14.8 mL) under nitrogen was heated to reflux and stirred for 24 h . The solution was concentrated to yield the crude product which was chromatographed on silica gel using as eluent Petroleum Ether/EtOAc (4:1) to provide compound $3 \mathbf{j}$ as a white solid ($16 \mathrm{mg}, 8 \%$). M. p.: $132-132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.73-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.39$ (dd, J $=8.9,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7-27(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 4 \mathrm{H}), 6.66$ (d, J = $5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.37 (dd, $J=5.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (dd, $J=4.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.19(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.8,139.5,139.1,136.4,134.1,128.9,128.4,127.9$, 126.8, 124.7, 120.2, 89.3, 82.9, 56.5, 51.0, 48.1. IR ($\mathbf{c m}^{-1}$): 3063, 1692, 1599, 1498, 1401, 1352, 1316, 1188, 1124, 1082, 988, 968, 888, 862, 753, 692. HRMS (ESI - ion trap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{2}$ 304.1332; Found 304.1333 ($\delta \mathrm{ppm}=0.5$).
(3aRS,6RS)-6-nitro-2,7-diphenyl-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-1(6H)one (4j).

A solution of N-((5-nitrofuran-2-yl)methyl)-N-phenylcinnamamide (150 $\mathrm{mg}, 0.15 \mathrm{mmol}$) in Toluene (9.3 mL) under nitrogen was heated to reflux and stirred for 5 h . The solution was concentrated to yield the crude product which was chromatographed on silica gel using as eluent Petroleum Ether/EtOAc (1:1.5) to provide compound $\mathbf{4 j}$ as an orange solid (35 $\mathrm{mg}, 23$ \%). M. p.: $170-171^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.68-7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.40-7.29$ (m, 2H), 7.25 (ddt, J = 5.7, 4.0, $2.4 \mathrm{~Hz}, 3 \mathrm{H}$), $7.18-7.03$ (m, 3H), 6.91 (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCI}_{3}\right)$: $\delta=170.2,138.9136 .9,136.2,133.3,129.1,128.7,128.6,128.1,125.4,120.3,114.7$, 88.4, 59.1, 52.7, 50.4.. IR (cm^{-1}): 2923.6, 1691.6, 1552.6, 740.0, 699.7, 689.7. HRMS (ESI - ion trap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}$ 349.1183; Found 349.1179 (δ ppm $=0.4$).
(3aRS,6RS)-6-Nitro-7-(4-nitrophenyl)-2-phenyl-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-1(6H)-one (4k):

A solution of $(E)-N-((5-n i t r o f u r a n-2-y l) m e t h y l)-3-(4-n i t r o p h e n y l)-N$ phenylacrylamide ($59 \mathrm{mg}, 0,150 \mathrm{mmol}$) in Toluene ($3,26 \mathrm{~mL}$) under nitrogen was heated to reflux and stirred for 72 h . The solution was concentrated to yield the crude product which was chromatographed on silica gel using as eluent Petroleum Ether/EtOAc (4:1) to provide compound $\mathbf{4 k}\left(19 \mathrm{mg}, 32,2 \%\right.$ yield) as a white solid. $\mathbf{M} . \mathbf{p} .: 105-108^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=8.26-8.15(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.24(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.4,148.0,141.7,138.4,137.2$, 132.9, 129.2, 129.2, 125.7, 123.9, 120.4, 114.1, 88.4, 76.6, 59.4, 52.1, 50.4. IR (cm^{-1}): 2922, 2852, 1688, 1600, 1553, 1520, 1491, 1465, 1403, 1346, 1298, 1271, 1240, 1226. 1204, 1150, 1125, 1108, 1048, 1005, 912, 844, 808, 758, 691, 671, 649, 597, 561. HRMS (ESI ion trap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{6} 394.1034$; Found 394.1032 $(\delta \mathrm{ppm}=-0.4)$.
(3aRS,6RS)-7-(4-Methoxyphenyl)-6-nitro-2-phenyl-2,3,7,7a-tetrahydro-3a,6-epoxyisoindol-1(6H)-one (4I):

,Ph A solution of (E)-3-(4-methoxyphenyl)-N-((5-nitrofuran-2-yl)methyl)-Nphenylacrylamide ($109 \mathrm{mg}, 0.29 \mathrm{mmol}$) in Toluene (6.26 mL) under nitrogen was heated to reflux and stirred for 24 h . The solution was concentrated to yield the crude product which was chromatographed on silica gel using as eluent Petroleum Ether/EtOAc (5:1) to provide compound $4 \mathrm{I}\left(19 \mathrm{mg}, 17 \%\right.$) as a white solid. M. p.: $97-101^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, CDCl_{3}): $\delta=7.64(\mathrm{dt}, J=8.0,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.05$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, 3H), 3.19 (d, J = 4.2 Hz, 1H). ${ }^{13} \mathbf{C}-N M R\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=170.2,159.8,138.7,136.0$, $133.3,129.3,129.1,126.3,125.4,120.3,114.7,114.1,105.0,88.3,59.2,55.3,52.2,50.4$. IR (cm ${ }^{-1}$): 2922, 2852, 1698, 1611, 1597, 1513, 1492, 1463, 1398, 1354, 1307, 1251, 1202, 1180, 1145, 1127, 1116, 1101, 1000, 911, 881, 797, 691, 677, 600, 580, 558. HRMS (ESI ion trap) \mathbf{m} / \mathbf{z} : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5}$ 379.1289; Found $379.1289(\delta \mathrm{ppm}=0.1)$.
Ethyl (3aRS,6RS)-1-oxo-2-phenyl-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole-7carboxylate (3n)
 To a solution of (E)-4-ethoxy-4-oxobut-2-enoic acid ($159 \mathrm{mg}, 1.10 \mathrm{mmol}$) was added thionyl chloride (1.4 mL). The solution was stirred at $80^{\circ} \mathrm{C}$ for 1 hour. The crude solution was concentrated to yield the acyl chloride as a yellow oil. To a solution of N-(furan-2-ylmethyl)aniline (191 mg, 1.1 mmol) and triethylamine $(303 \mu \mathrm{~L}, 2.20 \mathrm{mmol})$ in dichloromethane $(3.8 \mathrm{~mL})$ under nitrogen was added, a solution of the acyl chloride in dichloromethane (3.8 mL). The solution stirred at room temperature for 16 hours where the reaction was quenched with the addition of dilute HCl $(20 \mathrm{~mL})$. The solution was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate and concentrated to yield the crude product which was chromatographed on silica gel (Pet. Ether/EtOAc $4: 1$ to 2:1) to provide compound 3n (186 mg, 63\%) as a white solid. M. p.: $115-117{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70$ $-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{dt}, J=6.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.38 (dd, $J=5.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ $-4.07(\mathrm{~m}, 3 \mathrm{H}), 3.59(\mathrm{dd}, J=4.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.8,170.3,139.2,135.3,134.9,129.0,124.9,120.2$, 89.4, 80.6, 61.3, 52.6, 50.8, 47.5, 14.2. IR (cm ${ }^{-1}$) $1725,1681,1401,1361,1342,1267$, 1203, 1024, 1007, 950, 872, 848, 707, 687. HRMS (ESI - ion trap) m/z: [M+H] Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{4} 300.1230 ;$ Found 300.1231 ($\delta \mathrm{ppm}=0.2$).
(3aRS,6RS)-6-Nitro-1-oxo-2-phenyl-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole-7carboxylate (4n):

A solution of ethyl (E)-4-(((5-nitrofuran-2-yl)methyl)(phenyl)amino)-4-oxobut-2-enoate ($90 \mathrm{mg}, 0.26 \mathrm{mmol}$) in Toluene (5.7 mL) under nitrogen was heated to reflux and stirred for 1 h . The solution was concentrated to yield the crude product which was chromatographed on silica gel using as eluent Petroleum Ether/EtOAc (2:1) to provide compound $\mathbf{4 n}(81 \mathrm{mg}, 90 \%)$ as a white solid. M. p.: 196-198 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta=7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.36(\mathrm{~m}$, 2 H), $7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.34-4.14(\mathrm{~m}, 3 \mathrm{H}), 3.97(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.3,167.8,138.5,137.0,132.5,129.1,125.6$, 120.4, 112.6, 88.8, 62.3, 55.6, 50.9, 50.3, 14.0. IR (cm^{-1}): 2947, 1749, 1649, 1556, 1503, 1467, 1363, 1264, 1251, 1222, 1196, 1026, 1015, 911, 803, 689, 674. HRMS (ESI - ion trap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{6} 345.1081$; Found $345.1082(\delta \mathrm{ppm}=0.3)$.

Acknowledgments: We thank the EPSRC National Mass Spectrometry Facility at the University of Swansea, UK for mass spectra. We also thank The Leverhulme Trust (for funding to M.V. grant no. RPG-2016-008); the European Research Council (for funding to M. J. P and J. M. Z. ERC-SG/258990), and Heriot-Watt University (for funding to T. Y. C., R. L. R and A. W. P.). Supporting information. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all new compounds. Full details of calculated data and images of relevant frontier orbitals.

References and notes

1. (a) For a review of the intramolecular Diels-Alder reaction, see E. Ciganek, Org. React., Wiley Online Library, 2004, 1-371; (b) for a comprehensive review of the furan Diels-Alder reaction, see C. O. Kappe, S. S. Murphree and A. Padwa, Tetrahedron, 1997, 53, 14179. (c) For a review with a focus on substituted furans, see Chapter 13, [4+2] Cycloaddition chemistry of substituted furans, S. Bur and A. Padwa, In Methods and Applications of Cycloaddition Reactions in Organic Synthesis, Ed. N. Nishiwaki, p. 355. Wiley, 2014.
2 For a review of the use of the product oxanorbornenes in natural product synthesis, see (a) P. Vogel, J. Cossy, J. Plumet and O. Arjona, Tetrahedron, 1999, 55, 13521; b) S. Roscales, J. Plumet, Heterocycles 2015, 90, 741.
3 For selected more recent examples, see a) J. Hu, Z. Wang, Y. Gong, Eur. J. Org. Chem. 2016, 2016, 3603; b) A. D. Pehere, D. Ashok, S. Xu, S. K. Thompson, M. A. Hillmyer, T. R. Hoye, Org. Lett. 2016, 18, 2584; c) E. G. MacKay, M. Norret, L. S-M. Wong, I. Louis, A. L. Lawrence, A. C. Willis, M. S. Sherburn, Org. Lett. 2015, 17, 5517; d) A. S. Lee, M. D. Shair, Matthew D. Org. Lett. 2013, 15, 2390.(e) E. N. Pitsinos, N. Athinaios and V. P. Veroniki, Org.Lett., 2012, 14, 4666; (f) P. Fischer, M. Gruner, A. Jaeger, O. Kataeva and P. Metz, Chem. Eu. J., 2011, 17, 13334; (g) K. Tanino, M. Takahashi, Y. Tomata, H. Tokura, T. Uehara, N. Takashi and M. Miyashita, Nature Chem., 2011, 3, 484; (h) F. R. Petronijevic and P. Wipf, J. Am. Chem. Soc., 2011, 133, 7704; (i) M. B. O'Keefe, D. M. Mans, D. E. Kaelin and S. F. Martin, J. Am. Chem. Soc., 2010, 132, 15528; (j) G. E. Morton and A. G. M. Barrett, Org. Lett., 2006, 8, 2859; (k) A. Padwa and J. D. Ginn, J. Org. Chem., 2005, 70, 5197.
2. a) M. E. Jung Synlett 1990, 4, 186; b) D. P. Dolata, L. M. Harwood, J. Am. Chem. Soc. 1992, 114, 10738; c) M. E. Jung, G. Piizzi, Chem. Rev. 2005, 105, 1735; d) A. Padwa, K. R. Crawford, C. S. Straub, S. N. Pieniazek, K. N. Houk, J. Org. Chem. 2006, 71, 5432.
3. S. N. Pieniazek, K. N. Houk, Angew. Chem. Int. Ed. 2006, 45, 1442.
4. R. L. Rae, J. M. Zurek, M. J. Paterson, M. W. P. Bebbington, Organic \& Biomolecular Chemistry, 2013, 11(45), 7946.
5. J. M. Zurek, R. L. Rae, M. J. Paterson, M. W. P. Bebbington, Molecules, 2014, 19(10), 15535.
6. For earlier studies on IMDAF reactions with nitrated furans, see a) T. Mukaiyama, T. Takebayashi, Chem. Lett. 1980, 1013; b) T. Mukaiyama, N. Iwasawa, T. Takebayashi, Bull. Chem. Soc. Jpn., 1983, 56, 1107; c) M. S. Bailey, B. J. Brisdon, D. W. Brown, K. M. Stark, Tetrahedron Lett. 1983, 24, 3037; d) Z. Klepo and K. Jakopcic, J. Heterocyclic Chem., 1987, 24, 1787; e) A. D. Mance, M. Sindler-Kulyk, K. Jakopcic, A. Hergold-Brundic and A. Nagl, J. Heterocyclic Chem., 1997, 34, 1315; D. Prajapati, D. D. Laskar, J. S. Sandhu Tetrahedron Lett. 2001, 41, 8639; f) K. R. Crawford, S. K. Bur, C. S. Straub and A. Padwa, Org. Lett., 2003, 5, 3337; g) F. I. Zubkov, T. R. Galeev, E. V. Nkitina, I. V. Lazenkova, V. P. Zaytsev A. V. Varlamov, Synlett 2010, 2063; h) Q. Lu, X. Huang, G. Song, C-M. Sung, J. P. Kasinski, A. C. Keeley, W. Zhang, ACS Comb. Sci. 2013, 15, 350.
7. The early Japanese work was focused on substrate activation by use of metal-chelating substituents rather than direct comparison of nitrated and non-nitrated substrates; see references 8 a and 8 b .
8. A Scifinder Scholar ${ }^{T M}$ search for such reactions generated no hits.
9. There is a report of 2-nitrofuran being used as a dienophile: see C. Della Rosa, M. N. Kneeteman, P. M. E. Mancini, Tetrahedron Lett. 2005, 46, 2005, 8711.
10. Some decomposition was observed (NMR) in those reactions where the conversion and yield do not match closely. Reactions to give products $\mathbf{3 c} / \mathbf{4 c}, \mathbf{3 g} / \mathbf{4 g}, \mathbf{3 i} / \mathbf{4 i}, \mathbf{3 j} / \mathbf{j}, \mathbf{3 k} / \mathbf{4 k}, \mathbf{3 I} / \mathbf{4 I}$ appeared to have reached equilibrium and in these cases, the expected amount of starting material was recovered in high yield.
11. M.K. Cyranski, T. M. Krygowski, A. R. Katritzky, P. v. Ragué Schleyer, J. Org. Chem. 2002, 67, 1333.

Abstract

14 . M. J. T. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01. 2009.

15 . A.D. Becke, J.Chem.Phys. 1993, 98, 5648.
16. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B, 1988, 785.
17. M. R. Nyden, G. A. Petersson, J. Chem. Phys. 1981, 75, 1843.
18. J. W. Ochterski, G. A. Petersson, J. A. Montgomery, J. Chem. Phys. 1996, 104, 2598.
19. J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 1999, 110, 2822.
20. J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 2000, 112, 6532.
21. For analogous data calculated at 298.15 K , see $\mathrm{S}-88$ in the supporting information.
22. For a table detailing these values, see Table S-88 in the supporting information
23. D. Hollmann, Angew. Chem. Int. Ed. 2007, 43, 8291.
24. R. Mocelo, Coll. Czech. Chem. Comm. 1983, 48, 2682.

