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Abstract

Modern industrial robotics is characterised by a need for flex-
ibility in robot design, in order to minimise programming and
development time when a robot’s tasks must be changed. To
address this problem, a recent approach has proposed that
robots be equipped with a set of general, reoccurring oper-
ations called ‘skills’, e.g., picking, placing, or driving. This
paper presents a method for automatically generating plan-
ning problems from existing skill definitions such that the re-
sulting problems can be solved using off-the-shelf planning
software, and the solutions can be used to control robot ac-
tions in the world. As a result, a robot can therefore perform
new tasks simply by specifying the task’s goals via a GUI.
The approach is demonstrated on a set of common tasks in
a simulated industrial environment and has also been tested
successfully on a real-world robotic platform.

Introduction
Robot autonomy is becoming increasingly important in
modern industrial robotics, where factory robots often pos-
sess low degrees of autonomous operation at the task level,
with a relatively large proportion of time spent on robot pro-
gramming, compared with the time the robots spend per-
forming tasks. This has important consequences for the cur-
rent trend towards flexible manufacturing which requires
frequent changeovers to new products: when a changeover
occurs, the robots must be reprogrammed for the new tasks.

Task-level programming provides one way of simplifying
the robot control problem. In this paradigm, a human pro-
grammer specifies what the robot should do in terms of the
high-level actions and objects involved in a task, rather than
focusing on the low-level details of the robot or its operating
space. Actions are abstracted in a way which hides the com-
plexity of the lower layers from the programmer, allowing
users to focus on the task itself. The result is a powerful way
to speed up programming, even with complex robots.

One proposal for implementing such a programming
framework is based on defining tasks as sequences of skills,
where skills are identified as the re-occurring actions needed
to execute standard operating procedures in a factory (e.g.,
operations like pick ‘object’ or place at ‘location’) (Madsen
et al. 2015; Pedersen et al. 2016). Embedded within the skill
definitions are the sensing and motor operations, or primi-
tives, that accomplish the goals of the skill, as well as a set

Figure 1: A robot operating in a factory environment using
the SkiROS system. The robot is executing a six-step plan to
place two parts in the white kitting box it is carrying.

of condition checks that are made before and after execu-
tion to ensure robustness. This methodology also provides a
process for specifying high-level parameters for skills, while
low-level parameters for the primitive operations are mostly
inferred through autonomous reasoning by the robot.

While skills have been shown to be a useful tool for
human operators to programme robot tasks (Madsen et al.
2015), the goal of increased robot autonomy in the factory
environment also relies on the robots themselves being able
to automatically sequence skills to perform tasks. For in-
stance, when a new skill is introduced to a robot, a skills
expert must specify the skill in terms of its input parame-
ters, how it should be executed using low-level primitives,
the conditions that must hold of the world state, and the in-
tended changes to the world model. Previous work (Peder-
sen and Krüger 2015) showed how skill definitions of this
form enabled planning problems to be created by hand and
used to drive robot actions.

This paper instead introduces techniques for automating
the creation of planning domains from the robot’s skills and
world model, so that the entire process of robot control can
itself be automated. In particular, this work focuses on how
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a planning problem can be automatically generated from the
skill definition itself and, given a world model and a set of
goals, how a sequence of parameterised skills can be con-
structed to achieve these goals. This has important conse-
quences for robot control: using this system, and provided
the appropriate skills are implemented, only the goals of
the task need to be specified for a robot to complete a new
task. This process is demonstrated with a set of skills (e.g.,
drive, pick, and place) implemented in a skills framework
called SkiROS (Rovida and Krüger 2015), for a simulated
robot system designed for a real factory environment. This
approach has also been tested in a factory setting using a real
robot and the same set of skills (see Figure 1).

The rest of this paper is organised as follows. First, the
related work is considered. Then, the system architecture is
introduced including a description of the skills framework.
The world model is then outlined, followed by a description
of the task planner and the process for converting skills to
PDDL. The paper concludes with a set of experiments per-
formed in simulation that demonstrate the system function-
ing in a mock factory environment resembling the real-world
environment for which this system has been implemented.

Related Work
During the last three decades, three main approaches to
robot control have dominated the research community: re-
active, deliberative, and hybrid control (Kortenkamp and
Simmons 2008). Reactive systems rely on a set of con-
currently running modules, called behaviours, which di-
rectly connect input sensors to particular output actuators
(Arkin 1998; Brooks 1986). In contrast, deliberative sys-
tems employ a sense-plan-act paradigm, where reasoning
plays a key role in an explicit planning process. Hybrid sys-
tems attempt to exploit the best of both worlds, through
mixed architectures with a deliberative high level, a reac-
tive low level, and a synchronisation mechanism in the mid-
dle that mediates between the two (Firby 1989). Most mod-
ern autonomous robots use a hybrid approach (Gat 1998;
Ferrein and Lakemeyer 2008; Bensalem and Gallien 2009;
Magnenat 2010), with researchers focused on finding ap-
propriate interfaces between declarative high-level reason-
ing and procedural low-level control.

SkiROS (Skills-ROS) (Rovida and Krüger 2015), the skills
architecture used in this paper, is a hybrid framework fol-
lowing concepts from model-driven software engineering
(Vanthienen, Klotzbücher, and Bruyninckx 2014; Schlegel
et al. 2015). SkiROS splits the robot programming process
into several layers of abstraction, with two main goals: (i)
provide a state-of-the-art architecture for autonomous robot
control, and (ii) make high-level robot programming simple
and accessible even to non-experts.

Knowledge representation also plays a fundamental role
in cognitive robotic systems (Vernon, von Hofsten, and
Fadiga 2010), especially with respect to defining world mod-
els formalised in an ontology. A prominent example of
knowledge processing in robotics is the KnowRob system
(Tenorth and Beetz 2012; 2013), which combines knowl-
edge representation and reasoning methods for acquiring
and grounding knowledge in physical systems. KnowRob

uses a semantic library which facilitates loading and access-
ing ontologies represented in the Web Ontology Language
(OWL). KnowRob uses the ontology to store semantic repre-
sentations of the world scene in order to reason about object
positions in space and time, along with models of the robot
hardware and the robot skills. A similar approach is pre-
sented in (Björkelund et al. 2012; Stenmark and Malec 2013;
Bjørkelund and Edstrom 2011) as part of the Rosetta project,
which focuses on how skills should be modelled for indus-
trial assembly tasks. A similar study in (Huckaby 2014) de-
fines a precise taxonomy of skills. However, none of these
projects integrate skills into a consistent framework.

Automated planning has also been used for autonomous
robot control since the days of Shakey (Nilsson 1984).
While early approaches largely separated symbolic plan-
ning from other forms of planning like geometric plan-
ning, it was recognised that solutions often benefited from
a hybrid approach (Cambon, Alami, and Gravot 2009). Re-
cently, robot task planning has become an active research
area, with approaches taken from diverse areas such as
sampling-based motion planning (Plaku and Hager 2010;
Barry 2013), integration of symbolic planning with robot-
level processes (Dornhege et al. 2009), and probabilistic
back-chaining (Kaelbling and Lozano-Pérez 2013).

A typical approach to robot task planning is to evaluate
symbolic actions in a forward manner, sampling geometric
choices and backtracking on failure. For instance, (Cambon,
Alami, and Gravot 2009) use a symbolic planner that follows
several heuristics to guide a geometric search. Symbolic
and geometric searches are interleaved, with backtracking
in both layers, and probabilistic roadmaps created for all
combinations of robot manipulators and objects to repre-
sent the search space. Approaches like (Eiter et al. 2006;
Dornhege et al. 2009; Erdem et al. 2011; Gaschler et al.
2013) add robot-level functions to a symbolic planning prob-
lem through an interface that allows external processes to be
invoked during high-level planning. Other approaches like
(Srivastava et al. 2014) solve scenarios given symbolic ex-
planations for all failures in the geometric search, which
are fed back to the symbolic search. Kaelbling and Lozano-
Pérez (2013) perform a hierarchical, back-chaining search,
combining geometric abstractions at the robot level with be-
lief space planning.

Other approaches that attempt to bridge the gap between
high-level and low-level robotics actions include ROSco
(Nguyen et al. 2013) and Smach (Bohren and Cousins 2010)
which use Hierarchical Finite State Machines as opposed to
the planning approach taken in this paper. Approaches that
use planning include ROSPlan (Cashmore et al. 2015) and
the work of Vaquero et al. (2015). The former requires man-
ual definition of planning domains, while the latter uses a
translation approach specific to their application domain. In
contrast, SkiROS is designed so that the user can define and
modify skills on the fly, and the planning domains built to
use these skills will be automatically generated.

Skills and the SkiROS Architecture
This section introduces the system architecture and skills
model used in this work. Developing a robot system is, at
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Figure 2: An overview of the SkiROS architecture. The robot
presents an external interface from the task manager and the
world model, accessed in this case by a GUI. The robot
is composed of several subsystems, each one composed of
a skill, primitive, and device manager. A skill coordinates
the execution of several primitives to realise a world state
change. The primitives implement atomic behaviours and in-
terface to the hardware using standardised interfaces.

some level, a software engineering problem. However, robot
architectures are distinguished from other software architec-
tures by the special needs of robot systems. The most salient
of these requirements, from a system design standpoint, is
that robot systems must interact asynchronously and in real
time with an uncertain, dynamic environment. At the same
time, there is a need to define the tasks the robot can perform
in a declarative way, in order to simplify task specification
for end users. The skills model attempts to bridge this gap,
with skills forming high-level building blocks that can be
combined to solve complex tasks, yet containing all the nec-
essary reasoning and control information to be executed by
the robot in real time in a dynamic environment.

Skills Model
Robot skills like the ones in (Pedersen et al. 2016) can be
thought of as general and robust software constructs that
model self-contained, re-occurring operations that a robot
might perform. Skills are intended to be designed such that
they map easily to simple intuitive tasks. For example, a
system might include calibration skills, manipulation skills
for operations like picking and placing, as well as driving
skills for mobile robots. Skills are implemented by experts
to contain the necessary sensing and action operations for
self-contained execution on the robot platform.

One benefit of a skills-based system is that non-experts
can typically programme a robot task in a straightforward
manner by selecting an appropriate skill sequence that re-
sults in the desired state changes to the robot’s environment.
This paper further removes the need for a non-expert user,
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Figure 3: The conceptual model of a SkiROS skill.

and shows how skill sequences can be constructed using
planning techniques in a completely automated way.

The skills framework used in this paper, SkiROS (Skills-
ROS), is a Robot Operating System (ROS)1 package imple-
mented as an architecture with several layers of abstraction,
as shown in Figure 2. The SkiROS architecture is designed
to serve several tasks, including: (i) separating the bottom
reactive layers from the top deliberative layers of the robot
system, (ii) supporting hardware abstraction, and (iii) mod-
ularising robot programming to make it scalable.

The conceptual model of a robot skill is shown in Fig-
ure 3. A skill takes as input a set of parameters and a repre-
sentation of the world state; it outputs a set of state changes.
A skill contains both precondition and postcondition checks
which monitor the environment, either through sensing or
based on the world model. These checks allow the task layer
to infer the likely causes of execution failures. For example,
a precondition check for a pick skill might be that the item
to be picked must be visible to a camera, and a postcondition
check might be that the picked item must be in the gripper.

Skills Framework
The SkiROS framework is organised into four layers, each
of which is represented by a manager. At the lowest layer
is the device manager, which loads proxies (drivers which
conform to a standard interface) and presents standard in-
terfaces for similar devices (e.g., gripper, arm, camera, etc.).
Standardised device interfaces extend the portability of all
code, allowing drivers to be changed on the fly, for instance
in the case of hardware changes like an updated end-effector.
They also greatly simplify the switch between simulation
and real-world execution.

The second layer contains the primitive manager, which
contains motion primitives, software blocks that realise
movement controlled with multi-sensor feedback, and ser-
vices, software blocks that perform a generic computation.
The modules are parameterised and loaded in the same way
as a skill, but they don’t have pre/postconditions and consist
only of a parameters specification and execution part.

The third layer, the skill manager, loads skills and pro-
vides interfaces to the layer above. It also registers the robot
subsystem on the world model, specifying the hardware,

1http://www.ros.org/
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Figure 4: A simplified world model instance with physical
(blue) and abstract (orange) objects. All physical objects are
connected by a spatial relation in a scene graph structure.

available modules, and available skills. A skill’s execution
is usually implemented as a finite state machine which coor-
dinates the execution of several parameterised primitives.

Finally, the fourth layer of the architecture is the task
manager which monitors the presence of subsystems via
the world model and acts as a general coordinator. The task
manager is the interface for external systems, designed to be
connected to a GUI or the manufacturing execution system
(MES) of a factory. In this paper, the task manager is ex-
tended with an integrated task planner that takes as input a
goal and snapshot of the world model and returns a sequence
of skills to achieve the current task. The task planner, skills,
primitives and proxies are imported as plug-ins using ROS.

World Model
In addition to skills, a key part of SkiROS is the world
model, which acts as a knowledge integration framework.
The world model is a vertical cross-layer component which
links all layers together by gathering information from ev-
ery subsystem at run time, allowing the modules to maintain
a shared working memory, and storing the environment and
skills information that are used to create the planning do-
main. In terms of the architecture, the world model can be
read and modified from almost every part of the system.

The world state is partially predefined by a human oper-
ator in the ontology, partially abstracted from the robot by
perception, and completed with the procedural knowledge
embedded in the skills and primitives. Each skill manager in
the system is responsible for keeping the world model up-
dated with its subsystem information (e.g., hardware, avail-
able primitives, skill state, etc.). Similarly, each primitive
and skill can extend the scene information with the results
of robot operation or sensing. In special cases, the ontology

can be extended automatically by the robot, to learn new
concepts in a long-term memory (e.g., a new grasping pose).

Knowledge Integration
The core part of the robot’s knowledge is organised into an
OWL-DL ontology that can be efficiently embedded, edited,
and extracted from the system. The SkiROS ontology is
comprised of a set of classes C, a set of elements E, a set of
relations R, and a set of properties P . Elements are individ-
uals in a particular instance of the world model, for example
a box or an alternator. Relations (OWL object properties) are
binary relations that link two elements together, while prop-
erties (OWL data properties) are binary relations that link an
element to a piece of typed data.

Every object in the world is represented in the scene as an
Element class, which has the properties type, id, and label,
along with a flexible list of other potential properties. The
id links the Element to the scene, while the type and label
categorise it in the ontology. The type is the most important
property to this paper as it is used as the object’s type in the
planning translation. All other data associated with the Ele-
ment are collected into the properties using a list of variants
defined as parameters. For example, the Gripper element has
the property is_empty which is initially set to true specify-
ing that the gripper is empty. It is defined as a precondition
check in the Pick skill to ensure that the gripper does not try
to pick up an object while already holding one.

The set R of relations contains a special subset of
spatial relations. Apart from the root scene element
(which has no parent), each element in the world model
has a spatial relation to exactly one parent element
which ensures that the world model instantiation forms
a tree (when only considering edges that represent spa-
tial relations). This is particularly convenient for mod-
elling the objects’ spatial transformations. Example spa-
tial relations from the current SkiROS ontology include
RobotAtLocation, Holding, Contains, and Carrying.
We write RobotAtLocation(robot-1,largebox-1) and
say that robot-1 is the subject and largebox-1 is the ob-
ject. It follows from the properties of this tree structure that
an element cannot be both held by one element and con-
tained in another at the same time, or that the robot cannot
be in two locations at once.

Figure 4 shows an example instance of a world model.
The tree formed by the spatial relations forms the scene
graph, a data structure commonly used by modern computer
games to arrange the logical and spatial representation of a
graphical scene. In this structure, an object’s pose is always
defined with respect to the parent frame. The skills are con-
nected to robot elements by the non-spatial relation hasSkill.

Skills are object-centric models that are parameterised
with element types, while their instantiations are expected
to link directly to elements of the appropriate type. A condi-
tion on a skill must specify either a relation or a property of
an element in the world model. If a skill updates the world
model by removing a spatial relation property, then it must
also state the new subject related to that object as this cannot
necessarily be inferred. Type information in skill relations
must also be consistent with the world model.
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Drive(MobileBase, Container) :
add: RobotAt(Container, MobileBase)

Pick(Gripper, Object, Container) :
pre: empty(Gripper)
pre: robotAt(Container, Robot)
pre: objectAt(Container, Object)
del: empty(Gripper)
add: contains(Gripper, Manipulatable)

Figure 5: Skill definitions in the SkiROS ontology.

Figure 6: Overview of the task planning process and the cre-
ation of its internal planning representation.

Figure 5 shows the parameters, preconditions, and post-
conditions for the Drive and Pick skills, as defined in
SkiROS. The preconditions (similarly, postconditions) are
based on the expected and testable requirements of the state
of the world prior to execution (similarly, after execution).
Relations or properties for which postcondition checks are
expected to be false become delete effects, and those ex-
pected to be true become add effects. Parameters are formed
from the inputs needed for the skill’s execution block.

Task Planner
The task planner has three main functions in SkiROS: it cre-
ates a PDDL representation of the skills, current state and
goals; it calls an external planner to attempt to find a plan
for the current goals; and, if a plan is found, it returns a se-
quence of skills to the task manager. The task planner creates
a planning domain (and problem) written in PDDL 1.2 with
only the types requirement. This means that the output is
suitable for use with almost all modern planning systems. In
what follows we use the standard definition of STRIPS-like
planning actions (Fikes and Nilsson 1971) with pre, add, and
del denoting the preconditions, add effects, and delete effects
of an action, respectively.

An overview of the task planner is shown in Figure 6.
This process is invoked (with the internal planning repre-
sentation reset) every time the task manager requires a plan
for completing the current set of goals. This is either trig-
gered by an operator adding a goal via the SkiROS GUI, or
by an external system (e.g., integrated with a factory MES)
when SkiROS is deployed as part of a larger system. The

Algorithm 1: Planning Domain Creation
Input : SkiROS World Model (wm), Goals (goal)
Output: Initial Planning Representation
// Parse Skills

1 foreach Skill s : wm do
2 types.addAllNewTypes(s)
3 predicates.addAllNewPredicates(s)
4 actions.addNewAction(s)
// Add Goal State

5 foreach Goal g : goal do
6 goals.add(g);
// Parse World Model State

7 foreach Predicate p: predicates do
8 initState.addAllTrueGroundings(p, wm)
9 objects.addAllNewObjects(p,wm)

central part of Figure 6 shows the task planner’s planning
library, which contains all the necessary structures to create
a PDDL planning problem from the world state, skills, and
goals. Specifically, this includes structures for types, predi-
cates (both ground and unground), actions, and (typed) ob-
jects. In particular, the main body of a skill as shown in Fig-
ure 3 (surrounded by a black box) is not accessible to the
task planner. Instead, the task planner uses the information
accessible from the world model as shown in Figure 4.

Initial PDDL Creation
The process of creating the initial planning representation is
given in Algorithm 1, which represents the left hand side of
Figure 6 and involves three main steps. The first step is to
parse the skills that exist in the world model. This involves
adding all types and predicates that appear in the skills defi-
nitions to the planning library and also creating an action for
each skill, which has a direct copy of the preconditions and
effects. All relations, properties, and types that do not appear
in a skill are therefore not included in the planning library.

The second step instantiates the goal. As goals are spec-
ified in the SkiROS GUI using the same predicates and ob-
jects in the world model that the skills use, they are simply
added to the goal for the planning domain. If the goals con-
tain a predicate or object that has not already been added to
the planning library, then the planner returns an error mes-
sage as no plan can exist given the defined skills.

Finally, the third step of the translation is to obtain the
initial state of the planning problem from the current state
of the world model. This process iterates over the predi-
cates added in the previous step and queries the world model
(through the SkiROS API) to find all ground instances of the
predicates that are true. The objects contained in these pred-
icates are added to the planning library as they are found.

The process of iterating through the skills and querying
the world model to find true predicates may result in a plan-
ning library with less elements and types than in the world
model. The omitted data can safely be ignored (and an error
given for an incorrect goal) due to the following:

Lemma 1: Any object with a type that does not appear in a
skills definition can never appear in a solution plan.
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Algorithm 2: Planning Domain Refinement
Input : Initial Planning Representation
Output: Final Planning Representation
// Add Capabilities

1 foreach Action a : actions do
2 predicates.add(can_a ?robot)
3 a.pre.add(can_a ?robot)
4 foreach Robot r : hasSkill(a, r) do
5 initState.add(can_a r)
// Spatial Relation Constraints

6 foreach Action a do
7 foreach Spatial Relation S(o, s) ∈ a.add do
8 if �S ∈ a.pre AND �S ∈ a.del then
9 s.params.add(x, s.type)

10 s.pre.add(S(o, x))
11 s.del.add(S(o, x))
12 else if �S ∈ a.pre then
13 s.pre.add(S(o, s))
14 else if �S ∈ a.del then
15 s.del.add(S(o, s))

Proof Sketch: It is impossible to change the truth value of a
predicate that does not appear in an action’s effects, and the
truth value of a predicate that does not appear in any action’s
preconditions can never be required for a change in state.

Domain Modification
The right hand side of Figure 6 deals with encoding the prop-
erties of the world model in the planning domain. The first
part makes sure that skills are only usable by the correct el-
ements, by querying the hasSkill relation from the world
model. For each action, a new predicate (can_a ?robot) is
added to the planning representation. This predicate is added
as true in the initial state for each robot that can perform a
particular skill and is invariant. An additional precondition
(can_a ?robot) is added to each action to ensure that it
can only be instantiated to the correct robots. If the Robot
parameter is missing from the skill definition then this is
added to the action parameters at this time.

The second part of the transformation step adds any pre-
conditions and delete effects that are necessary to maintain
the tree structure of the spatial relations in the world model.
SkiROS contains methods for internally updating its world
model so that it remains consistent, and these methods need
to be included in the planning domain as they are not always
made explicit in the skill definitions. For instance, referring
to the skills in Figure 5, the Drive skill only contains a single
predicate which specifies the new location of the robot. This
is because the input for the execution block of the drive skill
is only the goal location to which the robot has to move. The
drive action must then be modified so that robotAt is true
of only one grounding for the robot performing the drive
skill, so the old instantiation must be found (it becomes a
precondition) and added as a delete effect of the action.

The algorithm performs the steps in the previous example
in a general manner that works for all spatial relations. It it-
erates over the skills in the planning library and checks each
spatial relation in the add effects. If no corresponding spatial

(:action drive
:param (?R - Agent ?T - Location
* ?preT - Location)

:pre (and
* (can_drive ?R)
* (RobotAtLocation ?R ?preT))

:eff (and
* (not (RobotAtLocation ?R ?preT))
(RobotAtLocation ?R ?T)))

(:action pick
:param ( ?A - Arm ?C - Location ?G - Gripper

?O - Manipulatable ?R - Agent)
:pre (and

(EmptyHanded ?G)
(RobotAtLocation ?R ?C)
(ObjectAtLocation ?C ?O)

* (can_pick ?R))
:eff (and

(not (EmptyHanded ?G))
* (not (ObjectAtLocation ?C ?O))
(Holding ?G ?O)))

Figure 7: The actions from Figure 5 after translation to
PDDL. The asterisked lines are added by the translation.

relation exists, in either the preconditions or delete effects
of the action (i.e., no predicate with matching relation and
subject as in the case of the drive skill), then a new predicate
of the same spatial relation and the same object, but a new
subject variable, is created and added to the preconditions
and delete effects of the action. If a related spatial relation
exists in just one of the preconditions and delete effects then
it is added (with the same subject) to the other.

Figure 7 shows the skills from Figure 5 after translation
to PDDL. Note that in terms of implementation, the param-
eter added to the drive skill is removed when returning the
parameterised skill to the task manager. The translation adds
three new preconditions and two new delete effects over the
two actions. The following lemma shows that these additions
ensure the world model’s tree structure is maintained:
Lemma 2: Performing an action created by the task planner
on a problem whose spatial relations form a tree will result
in a state in which the spatial relations still form a tree.
Proof Sketch: All that needs to be shown is that any deletion
of a spatial relation property inserts it elsewhere with the
same object (and therefore moves the whole subtree), and
that every addition has a corresponding deletion. The former
is a constraint on the skill definition. For the latter, every
time a new spatial relation appears in the add effects then,
by construction of the algorithm, a spatial relation with the
same subject must appear in the delete effects. This spatial
relation must match the only occurrence of that object in a
spatial relation in the current state otherwise the action could
not be performed as this must exist (again by construction)
as a precondition to the action.

Once the translation is complete, the planning problem is
written to domain and problem files in PDDL for use with an
external planner. The planner’s output (a sequence of instan-
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Figure 8: A visualisation of the simulated environment,
showing an excerpt of the navigation map containing the
robot idle location (I), a number of pallets (P), a pallet with
two boxes of parts (2B), and the robot (R).

tiated actions) is parsed and converted back to parameterised
skills to be sent to the task manager for robot execution.

Experiments
Figure 8 depicts the simulated environment used for test-
ing.2 In this setup, kits can contain six different parts: engine
support, thermal shield, compressor, tube, alternator, and
starter. Four parts (compressor, tube, alternator, and starter)
are located in individual pallets; the two remaining parts (en-
gine support and thermal shield) are located in smaller adja-
cent boxes on a single pallet.

In order to specify this setup in the robot’s world model
within SkiROS, the 2D poses (including orientation) of each
pallet, and the parts contained within, need to be specified
manually. The poses are defined in the world model coordi-
nate system, and the transform between this frame and the
robot navigation map frame is known. This information can
be extracted automatically from the manufacturing execu-
tion system (MES) in real-world deployment; for obvious
reasons, this is not possible for the simulated environment.
The kit that is mounted on the robot is specified as a set of
coordinate frames, with one parent frame defining the kit
with respect to the robot, and the rest defining the individual
compartments in the kit with respect to the kit itself. A part
type is associated with each compartment in the kit.

The experiments used a simulated version of a mobile ma-
nipulator with an articulated robot arm mounted on a mobile
platform. The robot arm was equipped with a 2-finger par-
allel gripper and an RGB-D camera mounted on the gripper.
The execution of skills was simulated using the ROS inter-
faces employed by the real hardware drivers that were re-
placed. For example, the MoveIt arm motion planner (that
outputs joint trajectories for an arm) and the navigation soft-
ware (that outputs velocity commands to a mobile base)
were not modified. Figure 4 shows a (slightly) simplified
version of the spatial relations and components used in the
experiment, with picking, placing, and driving skills.

2Visualisation was performed using rviz, a 3D tool for ROS
(http://wiki.ros.org/rviz).

drive mobbase-2 loc-1 lbox-10
pick lbox-10 gripper-6 t_shield robot-3
drive mobbase-2 lbox-10 lbox-9
place grip-6 t_shield celld-19 kit-15 robot-3
pick lbox-9 gripper-6 starter robot-3
place grip-6 starter cellb-17 kit-15 robot-3

Figure 9: The plan found for the goal of placing two parts
(thermal shield and starter) into a kit.

It is not possible, nor necessary, to simulate sensor infor-
mation in this experiment. However, an inherent part of the
skills is that they perform the necessary sensing operations
to complete the skill. For this reason, a simple simulated ob-
ject detection primitive is added, that places an object in the
world model that is immediately in front of the robot.

This level of simulation makes it possible to visualise the
robot system as it performs the skills, using the same skills
that would be running on a real robot system. In terms of
Figure 2, only the device layer and a single primitive (i.e.,
the object detection primitive) is simulated. Therefore the
system uses, and is completely integrated in, a complete ver-
sion of SkiROS, with the same skills as a real robot.

For the experiments, the FastDownward planner (Helmert
2006) was used, with A* search and the landmark-cut
heuristic. Since the planning problems created by the trans-
lation process did not test the limits of the external planner,
and are solved in less than a second (including world model
querying, extraction, and translation), there was no benefit
in comparing different planners. Instead, any state-of-the-art
planner that supports the required features could be used.

Results
The first experiment tested a two skill setup in which only
the robotic arm and the pick and place skills were used. The
robot was placed in front of a pallet with two smaller boxes
containing thermal shields and engine supports. The system
was tested with the goal that one of each of the two dif-
ferent types of parts must be placed in the robot’s kit. The
extraction of the planning domain, and the planning itself,
was completed in 0.6s, resulting in a plan with four skills
that was successfully executed in 78s.3 The experiment was
then rerun with the goal specifying parts that were not in the
vicinity of the robot. In this case, the task planner correctly
returned that no plan could be found.

The second experiment introduced a second robot subsys-
tem, the mobile base (which carries the robotic arm) and its
associated drive skill. In this case, the task planner automat-
ically included the drive skill in its planning domain. With
this addition, a plan could be found for the previously un-
solvable problem in which the parts are inaccessible without
the ability to drive between locations. When the goal was
specified to build a complete kit with six parts, with the robot
finishing at an idle location, the PDDL extraction and plan-
ning took 0.9s. The resulting plan (with 18 skills) executed

3Planning, motion planning, simulation, SkiROS, and visuali-
sation ran on a 2011 laptop with an i7@2.7GHz processor.
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correctly in 371s. Figure 9 shows the plan for the goal of
filling a kit with two parts (a thermal shield and a starter).

Overall, these experiments demonstrated that the task
planning process is able to work as an integrated compo-
nent in the SkiROS system and that the process is robust
enough to find correct plans when different subsets of the
currently implemented skills are enabled. The experiments
also showed that the planning time is not a significant bot-
tleneck (less than one second in all cases), especially when
compared to execution time for these types of tasks.

Conclusions and Future Work
This paper presented a fully implemented software frame-
work for deploying autonomous robot systems in an indus-
trial setting. The system uses a skills model, called SkiROS,
to bridge the gap between low-level robot control and high-
level planning. Skills are declared explicitly and passed to a
task planner which automatically generates the PDDL plan-
ning domain. The resulting system was shown to operate
successfully in a simulated factory environment and has also
been tested in a real-world factory setting. From an end-user
perspective, the robot is programmed to perform new tasks
by specifying goal conditions; new skills are added by speci-
fying constraints on the world model with no explicit knowl-
edge of planning required.

Work is progressing to test more skill implementations
and further explore the relationship between skills and plan-
ning. Failure handling will be improved by extending the
interaction of the planner with the task manager, to allow for
replanning in the case of unsatisfied pre/postconditions and
execution failures. To optimise cycle time, the assumption of
sequential skill execution will be relaxed, allowing parallel
skill execution from temporal plans.
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