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Abstract  

The selective conversion of biomass-derived carvone in H2 was studied over (Al2O3, C 

and CeO2) supported Pd (mean size 2.8-3.0 nm), taking bulk Pd as benchmark. 100% 

carvacrol yield was achieved over Pd/Al2O3, Pd/C and bulk Pd at an inlet H2/Carvone = 1/6, 

with appreciably higher rates for the supported catalysts. Carveol formation over Pd/CeO2 

was attributed to -C=O activation at surface oxygen vacancies (confirmed by O2 titration) 

generated during TPR. Carvotanacetone and carvomenthone formation were observed at 

H2/Carvone > 1/6. 

 

Keywords: Carvone; carvacrol; hydrogenation; supported Pd.  
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1 Introduction  

Carvone is a terpenoid obtained at low cost by steam distillation of spearmint oil or 

nitrosochlorination of citrus-derived limonene [1]. Carvone contains three reducible 

functionalities, a carbonyl group and an endo- and exo-cyclic -CH=CH-. Reaction of carvone 

with hydrogen generates valuable chemicals (Figure 1) in the pharmaceutical, food and 

agriculture sectors [2]. Reaction selectivity is challenging and most methodologies are non-

selective, generating product mixtures [3-6]. Current carvacrol production includes (i) 

supercritical (300 bar) CO2 extraction from oregano essential oils [7] and (ii) industrial scale 

isopropylation of o-cresol with propylene over activated alumina at 633 K and 50 bar [8]. The 

requirements for high operating pressures and temperatures (>523 K) are major drawbacks. 

Application of supported metal catalysts to promote carvone → carvacrol (in H2) is an 

alternative but studies to date are sparse and inconclusive with work focused on batch 

systems in organic solvents (e.g. toluene, hexane, alcohols) [3,6,9-13]. Solvent-free 

continuous processing at atmospheric pressure offers advantages in terms of throughput and 

sustainability. The carvone → carvacrol reaction mechanism is still a matter of debate. 

Klabunovskii et al. [13] proposed a classical Horiuti-Polanyi mechanism for reaction over Pd 

with carvotanacetone as reaction intermediate (Figure 1, path (IA)). Supported Pt catalysts 

do not promote carvacrol formation [3,10-12] and selectivities reported for the most selective 

Pd catalysts [13,14] are low (≤38%).  

The redox and acid-base properties of the metal support can influence catalytic 

activity/selectivity in the reduction of carbonyl and/or unsaturated groups where stronger  

-C=O (vs. -CH=CH-) polarisation on surface Lewis acid sites promotes unsaturated alcohols 

[15]. Preferential carbonyl and -CH=CH- reduction has been reported over Pd on reducible 

(CeO2, TiO2) [16] and non-reducible (Al2O3) oxides [17], respectively. In this study we set 

out to identify the critical variable(s) that control carvone → carvacrol by examining 
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commercial and laboratory-synthesised Pd catalysts. We compare the catalytic action of 

(unsupported) bulk Pd with Pd on (non-reducible Al2O3 and reducible CeO2) oxides and 

carbon. We evaluate the effect of H2 content in the feed as a critical process variable. 

 

2 Experimental 

2.1 Catalyst Preparation and Activation 

Ceria, 1.2% wt. Pd/Al2O3, 1.1% wt. Pd/C and PdO were obtained from Sigma-Aldrich. 

Synthesis of Pd/CeO2 by deposition-precipitation followed a prior procedure [18]. Samples 

were sieved to mean diameter = 75 μm, activated in 60 cm3 min-1 H2 at 10 K min-1 to 573 K 

and passivated in 1% v/v O2/He at ambient temperature prior to ex-situ characterisation. 

 

2.2 Catalyst Characterisation 

Palladium content was measured by ICP-OES (Vista-Pro, Varian Inc.). Catalyst 

activation by temperature programmed reduction (TPR, in 5% v/v H2/N2 at 10 K min-1 to 573 

K), H2 (at 423 K) and O2 (at ambient temperature) chemisorption and total specific surface 

area (SSA, in 30% v/v N2/He using the single point BET method) measurements were 

conducted on the commercial CHEM-BET 3000 (Quantachrome) unit as described elsewhere 

[19]; results were reproducible to ±7%. Palladium particle morphology was determined by 

scanning transmission electron microscopy (STEM, JEOL 2200FS field emission gun-

equipped TEM), employing Gatan Digital Micrograph 1.82 for data acquisition/manipulation. 

Samples for analysis were crushed and deposited (dry) on a holey carbon/Cu grid (300 

Mesh). Surface area-weighted mean Pd sizes (dSTEM) were determined  from a count of 800 

particles [19]. Metal size for bulk Pd was determined by H2 chemisorption [20]. 
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2.3 Catalytic Procedure 

2.3.1 Materials 

Carvone (98%), carvacrol (98%), dihydrocarvone (99%) and carveol (98%) were 

obtained from Sigma-Aldrich. Carvotanacetone, carvomenthone and carvomenthol were 

synthesised following published methods [21]. All gases (H2, N2, O2 and He) were ultra-high 

purity (BOC, 99.9%). 

 

2.3.2 Catalytic System 

Reactions were conducted at atmospheric pressure and isothermal conditions (423 K) in 

situ after activation in a continuous flow fixed bed vertical tubular glass reactor (15 mm i.d.). 

A layer of borosilicate glass beads served as preheating zone where the organic reactant was 

vaporised and reached reaction temperature before contacting the catalyst. Temperature was 

continuously monitored by a thermocouple inserted in a thermowell within the catalyst bed. 

The organic reactant was delivered via a glass/teflon air-tight syringe and teflon line using a 

microprocessor controlled infusion pump (Model 100 kd Scientific) at a fixed calibrated flow 

rate. A co-current flow of N2, H2 or H2+N2 with carvone (N2/Carvone = 20/1 mol mol-1, 

H2/Carvone = 1/6 – 20/1 mol mol-1) was maintained at gas hourly space velocity (GHSV) = 2 

× 104 – 1 × 105 h-1. Palladium (n) to reactant (F) molar ratio spanned the range 1 × 10-5 – 5 × 

10-2 h. In blank tests, reactions in the absence of catalyst did not result in any measurable 

conversion. The reactor effluent was frozen in a liquid N2 trap for analysis using a Perkin-

Elmer Auto System XL gas chromatograph with split/splitless injector, FID and Stabilwax 

capillary column (RESTEK). Data acquisition/manipulation used the TotalChrom data 

system. Fractional carvone conversion (X) is given by: 

in out

in

[Carvone] [Carvone]

[Carvone]


X                                                   (1) 

with selectivity to carvacrol (SCarvacrol): 
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out

in out
Carvacrol

[Carvacrol]

[Carvone] [Carvone]
(%) 100


 S                                          (2) 

and yield (YCarvacrol): 

           Carvacrol Carvacrol(%)  Y X S                                     (3) 

Catalytic activity is also quantified in terms of reactant consumption rate (R, molCarvone 

molPd
-1 s-1), extracted from time on-stream measurements [22]. Turnover frequency (TOF, 

rate per active site) was determined from particle size measurements [22]. Repeated reactions 

with different samples from the same batch of catalyst delivered raw data reproducibility and 

carbon mass balances within ±5%.  

 

3 Results and Discussion 

3.1 Catalyst Characterisation 

Physicochemical properties of the catalysts in this study are given in Table 1. The 

commercial and laboratory synthesised samples display a range of SSA (3-870 m2 g-1). The 

TPR profiles (Figure 2) exhibit a negative peak (H2 release) at 350-383 K due to 

decomposition of Pd hydride formed by H2 absorption at ambient temperature [20]. The 

lower hydride Pd/H ratio for supported (0.06-0.04) relative to bulk Pd (0.67) is consistent 

with nano-scale metal particles as is the shift to lower decomposition temperatures [20]. TPR 

of Pd/CeO2 (Figure 2(IV)) presents a positive peak at the final isothermal hold (573 K), 

suggesting partial CeO2 reduction (at the metal-support interface) with the formation of 

oxygen vacancies [23]. This was confirmed by O2 titration post-TPR where O2 uptake (160 

μmol g-1) is comparable with values in the literature [24]. Hydrogenation performance is 

determined by the capacity of Pd for H2 adsorption/dissociation [20]. Hydrogen 

chemisorption at reaction temperature (Table 1) was close to detection limits for bulk Pd and 

appreciably lower than that recorded for the supported systems. Uptake was equivalent for 

Pd/Al2O3 and Pd/C and measurably higher for Pd/CeO2. Differences in H2 chemisorption can 
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be due to variations in metal dispersion [19]. The three supported catalysts present pseudo-

spherical Pd particles in the 1-6 nm range (Figure 3(I)) with a similar size distribution 

(Figure 3(II)) and mean (dSTEM ~ 3 nm, Table 1). Greater H2 chemisorption on Pd/CeO2 can 

be linked to partial support reduction with the generation of sites for H2 adsorption. Wang et 

al. [25] have recently discussed the formation of active sites at the interface of metal 

nanoparticles strongly interacting with reducible CeO2. Tu and Cheng [26] reported a 

synergistic effect between Pd and CeO2 that resulted in stronger H2 adsorption and increased 

uptake.   

 

3.2 Gas Phase Conversion of Carvone 

Reaction thermodynamics establishes greater stability of conjugated endo-cyclic  

-CH=CH- and carbonyl functionalities in carvone [27] with the following order of decreasing 

reactivity based on Gibbs free energy [28]: exo -CH=CH- > endo -CH=CH- > -C=O. This 

can account for the reported formation of unsaturated and saturated ketones (Figure 1 (path 

(II))) as principal products in the hydrogenation of carvone [6]. Variations in H2 content in 

the feed (represented as inlet H2/Carvone) were tested in order to probe reaction pathway. A 

range of H2/Carvone ratios was considered, from 0 (reaction in N2) to sub- (H2/Carvone = 

1/6), stoichiometric (= 1/1) and H2 in excess (= 20/1) for the reduction of a single carvone 

functionality. Under all reaction conditions, formation of dihydrocarvone (endo -CH=CH- 

reduction, path (III)) and carvomenthol (-C=O reduction in carvomenthone, path (II)) was 

negligible with selectivities ≤6%.  

Reaction in N2 did not result in any measurable conversion of carvone. Under hydrogen 

lean conditions (H2/Carvone = 1/6), we achieved full selectivity to the target carvacrol for 

reaction over bulk Pd, Pd/Al2O3 and Pd/C (Table 1 and Figure 4(I)). This result is significant 

given the reports in batch liquid phase carvone hydrogenation where low selectivity to 

carvacrol (≤38%) was obtained over unsupported Pd [13] and (C and Al2O3) supported Pd 
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[13,14]. Variations in contact time can govern selectivity [29] and the exclusivity to carvacrol 

achieved in this study may result from the lower contact time (0.03-0.2 s) in continuous 

operation. Negligible conversion of carvotanacetone was recorded for reactions in N2 or H2 

lean conditions. This indicates direct carvacrol formation from carvone via hydrogen 

migration and keto-enol tautomerisation, following path (IB) in Figure 1. Catalytic inactivity 

for carvone reaction in N2 suggests that carvacrol formation requires H2 in the feed. This is in 

line with recent work by Zhang et al. [30] who reported formation of phenols over Pd/C via 

hydrogen treatment of substituted 2-cychlohexenones. Naito and Tanimoto [31] provided 

direct evidence for intramolecular double-bond migration in propene hydrogenation over 

Pd/SiO2 while Musolino et al. [32] established a hydrogen requirement for double bond 

migration in cis-2-butene-1,4-diol → 2-hydroxytetrahydrofuran transformation over Pd/C.  

Pd/CeO2 exhibited different behaviour in promoting carveol formation (S = 10%) via  

-C=O hydrogenation (path (IV) in Figure 1). This can be attributed to the involvement of 

surface oxygen vacancies where the carbonyl group is activated at Ce3+ sites for hydrogen 

attack to generate carveol. Neri et al. [16] proposed preferential formation of an unsaturated 

alcohol from an unsaturated aldehyde over Pd on reducible oxides (TiO2, ZnO, Fe2O3), which 

they ascribed to reactant activation on the support. Calaza et al. [33] demonstrated (by TPD, 

RAIRS and DFT) carbonyl activation at oxygen vacancies on CeO2. We observed an initial 

decline in conversion that attained steady state for all the systems (see inset to Figure 4(I) for 

Pd/Al2O3). Similar reaction rates (and TOF) were obtained for the three supported Pd 

catalysts, which were appreciably greater than bulk Pd (Table 1) and can be linked to H2 

uptake capacity under reaction conditions. At an inlet H2/Carvone =1/6, carvacrol yield was 

proportional to Pd content (Figure 4(II)) to reach 100% in the case of Pd, Pd/Al2O3 and 

Pd/C. The lower yield over Pd/CeO2 was due to carveol formation. An increase in 

H2/Carvone resulted in decreased carvacrol selectivity where the data for all the catalysts 
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converged on a common trend line (Figure 4(I)). Loss of carvacrol selectivity with 

increasing H2 content was accompanied by formation of carvotanacetone and carvomenthone, 

which were promoted at higher H2/Carvone (Table 1). Olefin conversion over transition 

metal catalysts proceeds through an allyl intermediate that is formed by a hydrogen addition 

[34]. This intermediate can undergo (i) H elimination with bond migration or (ii) insertion of 

a second H to generate the alkane [34]. The switch from double bond migration (path (IB) in 

Figure 1) to hydrogenation (path (II)) is sensitive to H2/Carvone, which is consistent with the 

literature [32]. Hydrogen elimination is favoured under conditions of low surface hydrogen 

(H2/Carvone = 1/6). Increased H2 content facilitates H insertion, directing the reaction to 

preferential hydrogenation. Carveol formation over Pd/CeO2 was insensitive to H2/Carvone. 

 

4 Conclusions 

We have established exclusive formation of carvacrol at full carvone conversion over 

Pd/Al2O3 and Pd/C (mean Pd size = 2.8-3.0 nm) at an inlet H2/Carvone = 1/6. Under the same 

reaction conditions, bulk Pd with lower H2 uptake capacity delivered 100% carvacrol yield at 

a lower rate. Reaction over Pd/CeO2 promoted formation of carveol due to -C=O activation at 

oxygen vacancies created during TPR. Hydrogenation to carvotanacetone and carvomenthone 

was promoted at higher H2/Carvone (>1/6). 
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Table 1: Palladium content, specific surface area (SSA), H2 chemisorption (at 423 K), mean Pd size (dSTEM), carvone consumption 

rate (R) and turnover frequency (TOF) and carvacrol, carvotanacetone and carvomenthone selectivity (SProduct) at X ~ 0.3 for 

different inlet H2/Carvone. 

Catalyst 

Pd  

content        

(% wt.) 

SSA 

(m2 g-1) 

H2 uptake 

(mmol gPd
-1) 

dSTEM  

(nm) 

H2/Carvone = 1/6 

SCarvotanacetone/SCarvomenth

one 

(%) 

R (molCarvone molPd
-1 s-1) / TOF ( s-1) 

SCarvacrol 

(%) 

H2/Carvone 

1/1 5/1 10/1 

Pd - 3 <0.04 - 1.4 × 10-3 / 0.2a 100 30/0 29/13 28/14 

Pd/Al2O3 1.2 145 1.7 3.0 2.3 / 6.2 100 12/1 15/4 21/8 

Pd/C 1.1 870 2.0 2.8 2.3 / 5.7 100 13/1 17/2 27/7 

Pd/CeO2 0.5 37 9.0 3.0 2.5 / 6.7 90 13/0 18/2 24/3 
aTOF obtained using Pd size (=130 nm) from H2 chemisorption (see Experimental section). 
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Figure captions 

 

Figure 1: Reaction pathways in the conversion of carvone to (target) carvacrol (path I, solid 

arrows), carvomenthol (path II, open arrows), dihydrocarvone (path III, dashed arrow) and 

carveol (path IV, dotted arrow). 

      

Figure 2: Temperature programmed reduction (TPR) profiles for (I) PdO, (II) Pd/Al2O3, 

(III) Pd/C and (IV) Pd/CeO2. 

 

Figure 3: (I) Representative STEM image with (II) Pd size histogram for (A) Pd/Al2O3, (B) 

Pd/C and (C) Pd/CeO2. 

 

Figure 4: (I) Effect of inlet H2/Carvone on selectivity to carvacrol (SCarvacrol). Inset: variation 

of carvone fractional conversion (X) with time on-stream over Pd/Al2O3 (); (II) variation of 

carvacrol yield (YCarvacrol) with Pd content in the catalyst bed (n) for reaction over Pd 

(★),Pd/Al2O3 (), Pd/C () and Pd/CeO2 (). Note: Bottom x-coordinate in (II) refers to 

Pd (★). Reaction conditions: T = 423 K, H2/Carvone = 1/6 – 20/1, n/F = 1 × 10-5 – 5 × 10-2 

h, GHSV = 2 × 104 – 1 × 105 h-1.  
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