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Abstract This paper develops a new identification result for the causal ordering of
observation units in a recursive network or directed acyclic graph. Inferences are
developed for an unknown spatial weights matrix in a spatial lag model under the
assumption of recursive ordering. The performance of the methods in finite sample
settings is very good. Application to data on portfolio returns produces interesting new
evidences on the contemporaneous lead–lag relationships between the portfolios and
generates superior predictions.
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1 Introduction

Considerable attention has been placed in the recent literature to the estimation of
an unknown spatial weights matrix (W ) in spatial regression models, particularly the
spatial autoregressive (SAR, or spatial lag) model or the spatial error model (SEM)
(Anselin 1988, 2001). This paper considers estimation of W in contexts where the
observation units form a directed acyclic graph, with an application to financial market
returns. Denoting Y as a k-dimensional outcome variable and X as exogenous (or
weakly exogenous) regressors observed over k distinct units (either points or regions
in a spatial domain or vertices in a network), the SAR model is described as

Yt = λWYt + Xtβ + εt , (1.1)

where WYt is the spatial lag of Yt , λ is the spatial autoregressive parameter, ε is a
vector of idiosyncratic errors, and W is a k × k matrix with zero diagonal elements.
The subscript t (t = 1, 2, . . .) has the interpretation of replications and, specifically
for panel data, can represent time periods. The corresponding SEMmodel with spatial
autoregressive errors omits the spatial lag of Yt , but includes a spatial lag of the error
term.

In spatial applications, off-diagonal elements of W represent the (directed) inter-
action between outcomes at a pair of locations and are typically measured either by
contiguity or inverse functions of distances (Anselin 1988; Fingleton 2003). In network
applications (such as Ballester et al. 2006), W represents the strength of interactions
between economic agents and are typically measured by observed indicators of reci-
procity or membership of social groups. Then, the SAR or SEMmodels are estimated
either using GMM methods (Kelejian and Prucha 1998, 1999), or maximum likeli-
hood (ML)/ quasi-ML (Lee 2004; Gupta and Robinson 2015), or Bayesian methods
(LeSage and Pace 2009).

Accuracy of the above estimation is quite severely conditioned on correct measure-
ment of W , at the same time as there is substantial uncertainty in applications as to
the correct measures of the spatial weights (Fingleton 2003; Giacomini and Granger
2004). In this context, estimation of spatial weights can be particularly useful. Bhat-
tacharjee and Jensen-Butler (2013) show that, in a spatial lag or spatial error model,
W is only partially identified from an estimated spatial variance–covariance matrix.
Hence, additional structural assumptions are required for inference, and empirical
verification of these assumptions is an important research question.

Beenstock and Felsenstein (2012) and Bhattacharjee and Jensen-Butler (2013) pro-
posed estimation of W in a spatial panel setting under the assumption of symmetric
spatial weights. Bhattacharjee and Holly (2011) and Pesaran and Tosetti (2011) dis-
cuss estimation in contexts where there is, in addition to stationary W -based spatial
dependence, also spatial strong dependence modelled through a factor structure. Bhat-
tacharjee et al. (2012) extend the above methods to pure cross section (spatial) data
setting, and Bhattacharjee and Holly (2013) propose estimation under moment condi-
tions drawing upon connections with the system GMM literature (Arellano and Bond
1991; Blundell and Bond 1998). Finally, Ahrens and Bhattacharjee (2015) and Bai-
ley et al. (2016) propose estimation under the assumption of a sparse spatial weights
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Causal ordering and inference on acyclic networks 215

matrix. Most of the above inference methods are based on sample moments. They
are therefore closely related to GMM estimators in Kelejian and Prucha (1998, 1999)
and Kapoor et al. (2007). In fact, the statistical properties of these estimators can be
developed using asymptotic results in Pötscher and Prucha (1997) and Kelejian and
Prucha (2001).1

This paper is a contribution towards the same literature but with a different identifi-
cation restriction. Specifically, we consider a SARmodel ( 1.1) where the interactions,
modelled by W , represent a directed acyclic graph (DAG). While causal inference on
DAG is not new to the literature, our main contribution is towards identification of the
“true” DAG structure from the data. A DAG is a finite directed graph with no directed
cycles (Harary 1994; Pearl 2009). We consider the most general form of DAG, where
the units have a recursive ordering. In related work, Rebane and Pearl (2013) pro-
posed an identification procedure for poly-trees and Bhattacharjee (2017) developed
a method to recover recursive ordering under homoscedastic errors. Our identifica-
tion result and methodology are different. In addition, we extend inferences in several
ways: (a) provide inferences on recursive ordering when error variance varies by unit
(or location); (b) develop estimators and inference for W ; and (c) propose indices to
quantify the degree to which a network is recursive (acyclic). The Monte Carlo per-
formance of the methods in finite samples is very good. Finally, we apply our methods
to data on returns of 25 stock portfolios constructed by Fama and French (1993), and
find evidence of (contemporaneous) lead–lag relationships between the portfolios in
the nature of recursive ordering, which in turn aids identifying leading and trailing
portfolios in the network. Forecasts from the estimated model are far superior relative
to a benchmark VAR. The rest of the paper is structured as follows. Section 2 discusses
our model and inference methods, followed by a Monte Carlo study in Sect. 3 and the
application to the Fama–French portfolios in Sect. 4. Finally, Sect. 5 concludes.

2 Identification and inference

In this section, we discuss our theoretical results on identification and inference, and
their implications for empirical analysis. We collect assumptions and theory in the
first subsection and discuss the use of this theory for applications in the second.2

2.1 Assumptions and theoretical results

Consider initially the pure SAR model (without regressors) as

Yt = WYt + εt , (2.1)

1 Pötscher and Prucha (1997) is an excellent monograph providing very general theory on M-estimation.
This theory can be used to develop many of the moment based results from the current literature in spatial
econometrics.
2 The structure and improvedpresentation of the section owesmuch to the kind suggestions of an anonymous
reviewer.

123



216 G. K. Basak et al.

where εt is a vector of idiosyncratic errors for t = 1, 2, . . . , n, with zero mean vector
and uncorrelated components, and W is an unknown spatial weights matrix on which
we aim to conduct inference. In comparison with (1.1), there are no regressors X . Fur-
ther, sinceW is unknown in the current context, λ andW are not separately identified,
and thereforewithout loss of generality, we setλ ≡ 1 (Bhattacharjee and Jensen-Butler
2013). The reduced form of (2.1) is Yt = (I − W )−1εt . Then, our key identification
restriction—recursive structure—is expressed in the following assumption.

Assumption 1 (Recursive Structure) There exists some permutation of the elements

(spatial/observation units) in Yt , say Y [P]
t =

(
Y [1]
t , . . . ,Y [k]

t

)
, for which the corre-

sponding spatial weights matrix W [P] is a lower triangular k × k matrix with zero

diagonal elements. That is, W [P] =
((

w
[P]
i j : w

[P]
i j = 0 if j ≥ i

))
i, j=1,...,k

. Denote

the permutation associated with the vector Y [P]
t by τ = ([1], [2], . . . , [k]) , where τ

is a permutation of the finite sequence 1, 2, . . . , k. Further, we assume that the per-
mutation τ is unique, that is, all elements in the principal subdiagonal of W [P] are
nonzero.

Assumption 1 is the key assumption in this paper and requires several qualifying
comments. First, the recursive structure above constitutes the most general form of
a DAG as well as a generalisation of a causal poly-tree (Cowell et al. 1999). Here,
we provide a very brief discussion of properties of DAGs and related graphs that are
useful for our work.3 A DAG is a directed graph, which means that the edges have
arrows indicating the direction of flow between vertices. A DAG consists of finitely
many vertices and edges, with each edge directed from one vertex to another, such
that there is no way to start at any vertex and follow a directed sequence of edges that
eventually loops back to the same vertex again. In the context of Assumption 1, each
unit i = 1, 2, . . . , k represents a vertex, and wi j represents a directed edge from unit
j to unit i .
A causal graph is typically represented as aDAG,where the directed edges represent

the direction of causal influences between variables, which are represented as vertices.
Clearly, estimation based on solutions to linear equations, such asOLS orYule–Walker
equations (Yule 1927; Walker 1931; Brockwell and Davis 1991), can provide causal
inference only if there is no directed cycle. This is the central reason why DAGs have
been very useful in causal models.

Consider a DAG as defined above. Obviously, for a pair of units i and j , only
one of wi j or w j i can be nonzero; otherwise, there will be a cycle between the two
units. Further, a DAG implies more than just the above restriction, because a cycle
can potentially involve multiple units: for example, h → i → j → h. In order to
negate any such cycles, a DAG should have a topological ordering, a sequence of the
vertices such that every edge is directed from earlier to later in the sequence. However,
the ordering need not be complete; for example, two vertices can in principle have

3 We are grateful to an anonymous reviewer for encouraging us to include in the paper a short discussion
of DAGs and their use in applied work. For further details and discussion in an applied economics context,
we refer to Bessler and Lee (2002) and for a classic treatment in the graph theory context, please see Harary
(1994).

123



Causal ordering and inference on acyclic networks 217

a common child (a vertex that comes later in the ordering), but these two vertices
may not be topologically connected, that is, they may be neither parent nor child
of each other. By contrast, the recursive structure represents a complete ordering,
τ = ([1], [2], . . . , [k]), of the units i = 1, 2, . . . , k. In this sense, recursive structure
is a generalisation of aDAGwhere, by restricting someof the lower triangular elements
of W [P] to zero, one can generate any DAG from a conformable recursive structure.
A poly-tree is a specific kind of DAG whose underlying undirected graph is a tree;
hence, the recursive structure is a generalisation of the poly-tree as well.

Second, as the above discussion highlights, recursive ordering is quite general and
useful inmanycontexts.However,while causal inference typically assumesknowledge
of the true ordering of variables in Y [P]

t , this paper develops a method to identify this
ordering from the data, together with inferences on the corresponding weights matrix
W [P]. The second part of the Assumption 1 is important and provides a necessary and
sufficient condition for W [P] to map to a unique ordering. Consider, for example, the
case k = 2 andW = 0. In this case, both orderings are consistent withW , and there is
no unique mapping from W [P] to τ . Obviously, this possibility needs to be ruled out.

Third, and as emphasised above, Assumption 1 negates the possibility of causal
loops. Hence, if the correct recursive ordering Y [P]

t were known, the corresponding
weights matrix W [P] is identified and can be estimated either by solving the Yule–
Walker equations or by OLS, which are closely related. For this reason, DAGs and
in particular recursive identification have been popular in much applied work: in
macroeconomics (Bessler and Lee 2002; Bernanke et al. 2005), in Bayesian networks
(Cowell et al. 1999; Spiegler 2016) and causal graphs (Spirtes et al. 1993; Pearl 1995,
2009). However, while most of this literature takes the DAG (or recursive structure)
as a given and then conducts causal inference, our work is fundamentally different in
that we propose inference to identify the structure of the DAG itself.

Finally, note that under Assumption 1, the reduced form is always identified. This
is becauseWk = 0, and hence (I −W )−1 = I +W +W 2+ . . .+Wk−1 always exists.
Hence, for identification, we do not need to assume the spatial granularity condition
(Pesaran 2006), which is standard in the literature and closely related to conditions
for spatial stationarity in Kelejian and Prucha (1998) and Lee (2004). However, this
condition is similar to ergodicity and is useful for obtaining asymptotic results; hence,
we make Assumption 2.

Assumption 2 (Spatial granularity condition) The row and column norms of W are
bounded (in absolute value) by 1.

In practice, Assumption 2 requires that strong dependence in the data are modelled
a priori, using for example, a factor structure (Bai 2009; Pesaran and Tosetti 2011).
Then, under the pure-SAR model (2.1), denoting covariance matrix by Cov(.), we
have:

Cov(Yt ) = Cov[(I − W )−1εt ]
= (I − W )−1[Cov(εt )]((I − W )′)−1

= (I − W )−1�ε((I − W )′)−1 (2.2)
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where �ε is the covariance matrix of εt . Since the components of εt are independent
by assumption, �ε = diag

(
σ 2
1 , σ 2

2 , . . . , σ 2
k

)
.

Theorem 1 Let {Yt } be generated by the pure-SAR model (2.1). Under Assumption 1,
if {εt } is homoscedastic, that is, �ε = σ 2 I , where I is the identity matrix (of the same
order as that of ε), then W can be retrieved fully from the covariance matrix of Y .

Proof For notational simplicity, we omit the suffix t . Consider the precision matrix
(inverse of the covariancematrix) of Y , that is, (Cov(Y ))−1 = (I−W )′�−1

ε (I−W ) =
σ−2(I − W )′(I − W ) = σ−2(I − (W ′ + W ) + W ′W ) . Since W is lower triangular
(or, some rearrangement of its rows and columns makes it a lower triangular matrix),
exactly one of its columns, say ik , is a zero vector. Hence, exactly one of the diagonal
element ofW ′W is zero, since the diagonal element ofW ′W is the inner product of the
columns with itself. The corresponding diagonal element of the precision matrix of Y
is σ−2, which is less than any other diagonal, since diagonal elements of (W ′ +W ) are
all zero. The implication is that residual variance of the ik th element is the smallest,
meaning that the ik th element of Y depends highly on the other elements of Y . Hence,
the k th element in the ordering is correctly identified.

Now, delete the ik th row of Y and find the variance of the reduced Y (say, Y−ik )
vector. Then, its inverse would be of the same form, that is, (Cov(Y−ik ))

−1 = σ−2(I −
(W ′−ik

+W−ik )+W ′−ik
W−ik ), whereW−ik is found deleting ik th row and ik th column

of W . We again find the minimum diagonal element which is σ−2, since exactly one
diagonal element ofW ′−ik

W−ik is zero. Take this diagonal element and say it is ik−1th
element. Delete that from the Y−ik vector and continue recursively, till we arrive at the
final element of Y , which we denote as the i1th element. Thus, the downward ordering
will be i1, i2, . . . , ik and the corresponding rearrangement rows and columns of W
is a lower triangular matrix.

Once the order of Y is known, for which W is lower triangular, one can now
solve Yule–Walker type equations to solve for W . For example, it is now clear
that Var(Yi1) = Var(εi1) = σ 2, Cov(Yi2 ,Yi1) = wi2,i1Var(Yi1) = wi2,i1σ

2,
as εi2 and εi1 are uncorrelated which in turn implies εi2 and Yi1 are uncorre-
lated. Thus, wi2 = Cov(Yi2 ,Yi1)/Var(Yi1) = Cov(Yi2 ,Yi1)/σ

2, and Var(Yi2) =
w2
i2,i1

Var(Yi1) + Var(εi2) = w2
i2,i1

σ 2 + σ 2. Further, for j ≥ 3,

Cov(Yi j , (Yi1 , . . . , Yi j−1)) = Cov((wi j ,i1 , . . . , wi j ,i j−1)(Yi1 , . . . , Yi j−1)
′, (Yi1 , . . . , Yi j−1))

since εi j and (Yi1 , . . . , Yi j−1) are uncorrelated

= (wi j ,i1 , . . . , wi j ,i j−1)Cov((Yi1 , . . . , Yi j−1)
′) (2.3)

Hence (wi j ,i1 , . . . , wi j ,i j−1) = Cov(Yi j , (Yi1 , . . . ,Yi j−1))(Cov((Yi1 , . . . , Yi j−1)
′))−1 .

and

Var(Yi j ) = Var((wi j ,i1 , . . . , wi j ,i j−1 )(Yi1 , . . . , Yi j−1 )
′) + Var(εi j )

= (wi j ,i1 , . . . , wi j ,i j−1 )Cov((Yi1 , . . . , Yi j−1 )
′)((wi j ,i1 , . . . , wi j ,i j−1 )

′) + σ 2

= Cov(Yi j , (Yi1 , . . . , Yi j−1 ))(Cov((Yi1 , . . . , Yi j−1 )
′))−1Cov(Yi j , (Yi1 , . . . , Yi j−1 )

′) + σ 2.

(2.4)
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Hence, the result follows.

The constructive proof of Theorem 1 provides our estimator of recursive ordering.
Next, we discuss large sample properties of the estimator. First, consider the simplest
case, k = 2. Our estimated ordering is based on relative variances; for finite sample
data, if s22 > s21 , then τ̂ = (1, 2), or otherwise if s22 < s21 , then τ̂ = (2, 1), where the
sample covariance matrix is

̂Cov(Y ) =
[
s21 s12
s12 s22

]
.

In the first case, ŵ12 = 0, ŵ21 = s12/s21 , and in the latter case, ŵ12 = s12/s22 , ŵ21 =
0.4 Without loss of generality, assume τ0 = (1, 2), so that by the Yule–Walker equa-
tions the true W0 satisfies w12 = 0, w21 = σ12/σ

2
1 . Clearly, Ŵ is consistent because

the moment estimators are consistent, so that in large samples, the correct ordering
between σ 2

1 and σ 2
2 is evident from the sample moments. Also, as a function of sample

moments, Ŵ = ϑ
(
s21 , s

2
2 , s12

)
, the estimate of the nonzero element is a continuous

function of the arguments, but is not differentiable at the margin s21 = s22 .
This has important implications for asymptotic and finite sample properties

of the estimator. Continuity provides standard asymptotic distributions but non-
differentiability ensures that the finite sample distributions are non-regular. Specif-
ically, since estimation is by solving Yule–Walker equations under the estimated
ordering which is correctly identified in large samples, as n → ∞, ŵ12 will have
a degenerate distribution at zero, while ŵ21 will be asymptotically Normal with the
correctmean.However, in finite samples, therewill be instanceswhen s22 < s21 because
of sampling variations, and the finite sample distribution will be bimodal, where the
“wrong” mode will recede with increasing sample size.

It is clear from the above discussion that the sampling distributions are bimodal in
finite samples, and hence the derivation of asymptotic results is somewhat complex in
this case. A full development of the asymptotic theory is beyond the scope of this paper.
Below we provide an intuitive discussion focusing on estimation by least squares, but
outline the nature of technical arguments that are required for fully developed theory.
Here, the correct ordering τ may be viewed as a nuisance parameter, and the data are
dependent and endogenous. Asmentioned before, Pötscher and Prucha (1997) provide
an excellent compendium of results for M-estimation that are useful in this context,
and which we will rely heavily upon.

Setting our notations in line with Pötscher and Prucha (1997), consider a data
generating process {zt : t ∈ N}defined on a probability space (	, U, P), with zt taking
values in a non-empty measurable space (Z ,�), and let (B, ρB) and (T, ρT ) be non-
empty metric spaces. Here, zt has the interpretation of current and past values of
endogenous and exogenous variables. In the case of our pure-SAR model (2.1), zt ≡
Yt , but one can have additional regressors, both exogenous or weakly exogenous (such
as lags of Yt ). Z is a Euclidean space or a subset thereof, B is the space of parameters

4 The indeterminate case, s22 = s21 , has zero measure in finite samples and is negated in the population by
the uniqueness of τ (Assumption 1).
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of interest,5 and T is the space of nuisance parameters; B and T need not be subsets of
a Euclidean space, which is important in our case because the nuisance parameter is
the permutation τ . Let Qn (Y1,Y2, . . . ,Yn, τ,W ) be a real valued function defined on
Zn × T × B, where n denotes the sample size. Also assume that Qn is U-measurable
for all (τ,W ) ∈ T × B. Then, an M-estimator Ŵn is one that satisfies the relation
Qn (̂τn, Ŵn) = inf

W∈BQn (̂τn,W ).6 Now, by Assumption 1, the mapping from W0 to τ

is unique, and once τ̂ has been estimated, this determines the structural zeroes in Ŵ ,
which is then estimated by OLS; hence Ŵ ≡ Ŵ (̂τ ). Specifically, since estimation is
by least squares,

Qn (̂τn, Ŵn) = n−1
n∑

t=1

qt (Yt ,W (̂τn))

where
qt (Yt ,W (̂τn)) = [Yt − W (̂τn)Yt ]

′ [Yt − W (̂τn)Yt ] .

Noting that τ0 is the population analogue of τ̂n , define Qn(τ0,W ) = EQn(τ0,W ),

where the expectation is taken over all W ’s consistent with the ordering τ0.
Then, the limiting behaviour of Ŵn can be analysed by relating it to the limiting

behaviour of the minimisers Wn of Qn (τ0,W (τ0)). Thus, demonstration of consis-
tency basically consists of three steps (Pötscher and Prucha 1997). First, we need to
show that Qn−Qn → 0 uniformly on T ×B. Second, the sequence of minimisersWn

of Qn need to be identifiably unique, where the definition of identifiable uniqueness
is given in Pötscher and Prucha (1997) (Definition 3.1, p.16); see also White (1980)
and Domowitz and White (1982). Third, Qn should not be too flat at the minimiser.
With the above background, we now proceed to our outline proof of consistency.

Corollary 1 As in Theorem 1, let {Yt } be given by the pure-SAR model (2.1), let
Assumption 1 hold, and assume that {εt } is homoscedastic, that is, �ε = σ 2 I . Then,
the elements of W can be estimated consistently from the data. Order of consistency
is the square root of sample size (n).

Proof Let us first provide an intuitive exposition of the consistency result. Under the
assumption of recursive ordering of W , there exists exactly one column of W which
is a zero vector, therefore exactly one diagonal element of W ′W is zero and all the
other diagonals are strictly positive. Therefore

(Cov(Yt ))
−1 = (I − W )′�−1

ε (I − W ) = σ−2(I − W )′(I − W )

= σ−2(I − (W ′ + W ) + W ′W )

has exactly one diagonal element which is σ−2 > 0 and all the other diagonal ele-

ments are of the form σ−2
(
1 + ∥∥w j

∥∥2), where w j is a nonzero column of W , and

hence strictly larger than σ−2. Since the sample covariance of Y is consistent for its

5 For the moment, W ∈ B is our parameter of interest. We will include additional regressors later.
6 Qn() is a function of Y1, Y2, . . . , Yn , but the reference to Y1, Y2, . . . , Yn is suppressed here for the sake
of notational simplicity. Further, Ŵn needs to satisfy the condition only asymptotically.
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population counterpart, the diagonal elements of the inverse of the covariance of Y
are also estimated consistently by its sample counterparts, given the parameter values
of σ 2 and W . Hence, the minimum is consistently identified from the data. In other
words, the element in the kth place is determined consistently. Then, we reduce the
dimension by deleting the row given by the minimum of the diagonal and consider the
covariance matrix of the reduced dimension and proceed as before to show that the
(k − 1)th element in the recursive order is estimated consistently.

Proceeding sequentially, we recover the entire recursive order consistently. Given
the determined order, that is, rearranging the rows ofW in triangular form, estimation
ofW is done throughYule–Walker type ofmethodologypurely based on corresponding
sample variances and covariances, which are consistent for their population counter-
parts. Further, given the correct recursive ordering, the estimates of elements of W
are continuous functions of the variances and covariances. Hence, the order of con-
vergence is the same as the sample second moments, which implies

√
n-consistency.

Hence the result follows.
The technical proof is based on asymptotic theory discussed in Pötscher and Prucha

(1997). The main step is demonstrating identifiable uniqueness of Wn . Specifically,
with the choice of Qn as outlined above, Qn does not depend on n. This is because
Qn(τ0,W ) ≡ ERn(τ0,W ),where

Rn(τ,W ) = n−1
n∑

t=1

[Yt − W (τ )Yt ]
′ [Yt − W (τ )Yt ]

= n−1
n∑

t=1

ε′
tεt + 2n−1

n∑
t=1

ε′
t [W (τ ) − W0] Yt

+n−1
n∑

t=1

Y ′
t [W (τ ) − W0]

′ [W (τ ) − W0] Yt ,

where the final two terms converge to zero as n → ∞ . Then, identifiable uniqueness
of Wn ≡ W implies that W is the unique minimiser of ERn . This follows from the
Yule–Walker system because in this case, the response function corresponding toW is
the conditional mean of the outcomes for each unit given the outcomes for other units
which come before the index unit in the true recursive order τ ; see related discussion
in Pötscher and Prucha (1997, p. 17, pp. 23–24). Then, Lemma 3.1 in Pötscher and

Prucha (1997) applies and we have consistency, that is, Ŵn
P→ W0 as n → ∞. 
�

Next, we consider asymptotic distribution of the estimator. Here as well, we first
present an intuitive proof. Then,we refer toPötscher andPrucha (1997) for an extensive
collection of sufficient conditions for asymptotic normality, which can be used in
our context to develop a more technical argument. Here, we abstract from the more
technical details.

Corollary 2 Let {Yt } be given by the pure-SAR model (2.1) above, and assume
homoscedastic {εt }, that is,�ε = σ 2 I , where I is the identity matrix. If Assumptions 1
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222 G. K. Basak et al.

and 2 hold, then the Yule–Walker estimator of elements of W is jointly asymptotically
normally distributed.

Proof The basic idea behind our intuitive proof is that, given the recursive order ofW ,
the Yule–Walker estimator ofW are jointly asymptotically Normal; see, for example,
Brockwell and Davis (1991). Now, since the estimated order converges in probability
(in fact, it converges almost surely) to τ , asymptotic normality of the estimator follows.

The technical arguments are based on Theorem 11.2 in Pötscher and Prucha (1997)
together with Assumptions 11.1, 11.2, 11.3 and 11.4; see also Bierens (1982). The
key assumptions are that there exist non-random sequences τ n ≡ τ and Wn such
that τ̂n → τ and Ŵn → Wn , together with assumptions on smoothness of the score
functions. 
�

Next, we relax the assumption of homoscedastic errors. For this purpose, we con-
sider a more general model. Our central example is the popular time-space dynamic
model (Anselin 2001; Elhorst 2001; Giacomini and Granger 2004; Baltagi et al. 2014)
where, in addition to the spatial lag (WYt ), there is also an additional regressor—a
temporal lag (yi,t−1) with heterogenous persistence across the units

yit = λi yi,t−1 + Wi.yt + εi t , i = 1, . . . , k, t = 1, . . . , n,

where Wi. denotes the i th row of W . The model can be written in vector notation as

Yt = WYt + �Yt−1 + εt , (2.5)

where� = diag(λ1, λ2, . . . , λk) is a diagonal matrix. Then, the reduced form of (2.5)
is given by

Yt = (I − W )−1 �Yt−1 + (I − W )−1 εt . (2.6)

The reduced form (2.6) can be estimated as a vector autoregressive (VAR) model
(Hamilton 1994; Stock and Watson 2001). Then, we have the following result.

Theorem 2 Let {Yt } be generated by the time-space dynamic model (2.5). Under
Assumption 1, if {εt } is heteroscedastic, that is, �ε = diag

(
σ 2
1 , σ 2

2 , . . . , σ 2
k

)
, then

the error standard deviations can be estimated from the estimates of the reduced form
(2.6).

Proof We write the reduced form (2.6) as

Yt = AYt−1 + ut ;
A = (I − W )−1 �,Cov(ut ) = (I − W )−1 �ε (I − W )−1 ′

.

The reduced form (VAR) estimates provide Â and ̂Cov(ut ). Note that the diagonal
elements of (I − W )−1 are ones, and � is a diagonal matrix. Then, the i th diagonal
element of � must be the corresponding diagonal element of A ≡ ((

ai j
))

i, j=1,...,k ;

that is, λi = aii , i = 1, . . . , k. This implies that a consistent estimator for (I − W )−1
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can be obtained by dividing each column of Â by the corresponding diagonal element.

In other words, construct a matrix A∗ ≡
((

a∗
i j

))
i, j=1,...,k

as follows

a∗
i j = âi j /̂a j j , i, j = 1, . . . , k.

Then, A∗ = (I − Ŵ )−1 has unit diagonal elements and constitutes a consistent
estimator of (I − W )−1 , and therefore, A∗ −1 = (I − Ŵ ) is a consistent estimator
of (I − W ).

Now, consider ̂Cov(ut ). Since Cov(ut ) = (I − W )−1 �ε (I − W )−1 ′
, the diago-

nal elements of (I−Ŵ )̂Cov(ut )(I−Ŵ )′ provide consistent estimators for the elements
of �ε , that is, σ̂ 2

1 , σ̂ 2
2 , . . . , σ̂ 2

k . 
�

2.2 Discussion of theoretical results and implementation

The above results suggest an applied approach consisting of three steps. Estimat-
ing the idiosyncratic error standard deviations is the first step, and for this we use
Theorem 2, and estimate using an unconstrained reduced form VAR (2.6). These
estimated standard deviations are then used to convert the model to a homoscedas-
tic error case. In the second step, we infer on the recursive ordering. Finally, in
step three, we estimate W , as well as other parameters in the model, by solving
Yule–Walker equations where zeroes implied by the estimated recursive order are
imposed. The identification result underlying steps 2 and 3 is given in Theorem 1,
while consistency and asymptotic normality are established in Corollaries 1 and 2,
respectively.7

Several comments are in order for our Theorem 1. First, while we establish the
result based on a pure SAR model (2.1), we can have additional regressors in the
model. This does not change our core order identification result.

Second, once the recursive ordering is estimated, estimation of the elements of
W can proceed based on an estimate of Cov(Y ) from sample data. The recursive
structure in Assumption 1 suggests simply solving Yule–Walker equations or OLS
under the estimated ordering τ̂n = (i1, i2, . . . , ik); both methods are closely related.
Then, our estimator for W is Ŵ (̂τn) estimated by Yule–Walker method under the
ordering τ̂n .

Third, the identification result in Theorem 1 is based on the diagonal elements of
the precision matrix. It is interesting to note that, for the closely related conditional
autoregressive (CAR) model, the off-diagonal elements of precision matrix are zeroes
precisely for units that are conditionally independent. It has been noted that the CAR
and SAR models are observationally very similar (Wall 2004) and difficult to distin-
guish in the data. Thus, the above result provides an explicit link between the two
popular models SAR and CAR and is new to the literature.

7 As pointed out by an anonymous reviewer, we could alternatively use constrained VAR estimation in step
three, and then iterate steps 1–3 until convergence. This would be more efficient.
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Fourth, alternate identification of recursive structure can be based directly on the
covariance matrix, rather than implicitly through the precisionmatrix as in Theorem 1.
An alternate identification result using the structure of the covariance matrix is pro-
vided in the working paper version, together with extensive Monte Carlo results; see
also Bhattacharjee (2017).

Finally, the homoscedasticity assumption in Theorem 1 is strong, and the same
assumption also underlies the identification result in Bhattacharjee (2017). They
develop an estimator of the error variance under the correct recursive ordering. Then,
they suggest considering all possible permutations of the elements in Yt and conduct
inferences under probability distributions on the model space, that is, distributions
over all possible permutations. The idea of considering multiple permutations is also
popular in the applied macroeconomics literature (Diebold and Yilmaz 2009; Klößner
and Wagner 2014), particularly as a robustness check for recursive ordering sug-
gested by theory. However, this approach can be computationally very expensive,
particularly when there are a large number of observation units. In the applica-
tion considered in this paper, k = 25, and hence the above method would require
consideration of k! ≈ 1.55 × 1025 permutations; clearly, this is not quite feasi-
ble.

Then, Theorem 2 shows how the inclusion of an additional covariate aids estima-
tion of the error variances. The initial variables can now be scaled by the estimated
standard deviations, andwe are back to the homoscedastic error case. Then, we can use
Theorem 1 to infer on the recursive order and estimate Ŵ using the Yule–Walker rep-
resentation. The asymptotic properties of the estimator are discussed in Corollaries 1
and 2. There are some important points to note.

First, instead of Yt−1, estimation can use any other regressor as appropriate in an
application context.What is important is that this chosen regressor can have potentially
heterogenous effects on the different units and should not have spatial Durbin effects,
that is, the regressor should have effect on the outcome for the same observation unit,
and not other units. For example, in applications with stock return factor models, this
could be a Fama–French factor (Fama and French 1993, 1996).

Second, other regressors can, in addition, also be included in themodel. In particular,
if some regressor is suspected to have spatial Durbin effects, these may be included
as additional regressors. Typically, there would also be unit-specific fixed effects, and
often, factor variables that account for potential strong spatial dependence (Pesaran
2006; Pesaran and Tosetti 2011).

Third, as the procedure above shows, an unknown W can often be identified from
regression coefficients in spatial regression models. This, in our view, is a fact that
is known in the spatial econometrics literature but may be not highlighted often
enough. In our case, we used an estimator A∗ −1 = (I − Ŵ ) based only on the
reduced form estimates. The question is: why should we then aim to estimate W
under structural constraints? This is because the above type of estimators is in general
not very precise, and the poor estimates are often inadequate for drawing structural
inferences.

Fourth, in our setting, there are other competing regression-based estimators for
(I − W ). For example, one can estimate the structural model (2.1) directly, without
explicitly specifyingW . This can be done by IV or GMM, using as instruments either
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Table 1 Alternate estimators of error variances

k = 3 IV-2SLS IV-3SLS VAR

n 500 1000 500 1000 500 1000

Bias 0.105 −0.019 0.097 −0.024 −0.005 −0.003

RMSE 0.292 0.192 0.288 0.193 0.141 0.078

higher-order lags and differences, as suggested by the panelGMMliterature (for exam-
ple, Arellano and Bond 1991; Blundell and Bond 1998), or peripheral units at higher
spatial lags (Bhattacharjee and Holly 2013). We consider several such estimators in
the Monte Carlo study in the following section. We find that while these estimates
for W may be imprecise, they provide consistent estimates for the error variances.
Further, the above estimator based on reduced form VAR is more efficient and fit for
purpose in our context.

3 Monte Carlo simulations

Based on the above results and discussion, we now proceed to ourMonte Carlo studies.
First, we evaluate the finite sample performance of three alternate regression-based
estimators of the error variances. We consider the time-space dynamic model (2.5)
with k = 3, Gaussian errors, λ1 = λ2 = λ3 = 0.6, initial conditions Y0 = 0, and

W =
⎡
⎣

0 0 0.3
0.1 0 0.2
0 0 0

⎤
⎦ , �ε =

⎡
⎣
4 0 0
0 1 0
0 0 9

⎤
⎦ ,

so that the true ordering is τ0 = (3, 1, 2). Three different estimators are considered: (a)
IV-2SLS of the structural model using one lag each of the 3 variables as instruments;
(b) IV-3SLS, with the same instruments as above; and (c) unrestricted reduced form
VAR as in Theorem 2. Two sample sizes are considered, n = {500, 1000}, and bias
and RMSE of the estimated error variances, based on 500 Monte Carlo replications,
are reported in Table 1. Clearly, all the three estimators are consistent, but the VAR
estimates are the most efficient. Hence, these VAR-based estimates are used in the
application in Sect. 4.

Next, we evaluate the performance of our inferences on recursive order.We consider
two models: (i) a spatial model without temporal dynamics and with homoscedastic
errors, which we consider as the base model (2.1); and (ii) a time-space dynamic
heteroscedastic model (2.5). Data are generated as follows. For model (i), errors
(ε) are standard Normal, and the elements of the weights matrix (W ) are gen-
erated from Uniform (− 0.5, 0.5). For the time-space heteroscedastic model (ii),
the (temporal) persistence coefficient (λi ) is generated as Uniform (0, 1) indepen-
dently for i = 1, . . . , k, and likewise error standard deviations σ1, σ2, . . . , σk as
independent Uniform (1, 2). In the output reported in Table 2, columns represent
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Table 2 Monte Carlo study on estimation of recursive order

n\k Spatial homoscedastic model Time-space heteroscedastic

6 10 20 30 6 10 20 30

(a) Correlation

200 0.288 0.465 0.690 0.821 0.285 0.326 0.518 0.635

500 0.442 0.592 0.834 0.910 0.407 0.437 0.608 0.738

1000 0.522 0.723 0.896 0.947 0.484 0.511 0.679 0.784

2000 0.635 0.790 0.934 0.966 0.589 0.589 0.745 0.850

5000 0.747 0.871 0.961 0.982 0.683 0.715 0.809 0.886

(b) Similarity

200 0.222 0.166 0.119 0.100 0.273 0.173 0.112 0.084

500 0.278 0.201 0.155 0.141 0.309 0.202 0.134 0.113

1000 0.297 0.241 0.194 0.188 0.361 0.226 0.157 0.139

2000 0.378 0.298 0.260 0.242 0.405 0.283 0.206 0.164

5000 0.457 0.405 0.362 0.348 0.487 0.394 0.264 0.224

(c) Concordance

200 0.613 0.677 0.761 0.821 0.587 0.596 0.673 0.725

500 0.680 0.732 0.834 0.878 0.643 0.643 0.712 0.773

1000 0.713 0.789 0.874 0.911 0.685 0.678 0.743 0.799

2000 0.769 0.829 0.906 0.933 0.740 0.722 0.783 0.837

5000 0.827 0.878 0.935 0.956 0.789 0.794 0.826 0.868

different choices of k = {6, 10, 20, 30} and the rows are different sample sizes:
n = {200, 500, 1000, 2000, 5000}.

Table 2 reports three measures of the accuracy of estimation of the recursive order.
Block (a) reports the product moment correlation between the estimated recursive
order and the true ordering.8 In Block (b), we report a similarity index, which is
the proportion of cases when our method gets the rank of an unit exactly correct;
this is a very demanding criterion, particularly for larger k. Block (c) reports the
concordance index, which is the proportion of cases, out of all kC2 combinations,
where our method gets the relative ordering of a pair of units correct. From Table 2, it
is clear that, as sample size increases, the recovery of the true recursive order improves,
in terms of correlation, similarity and concordance.9 Overall, the Monte Carlo results
are promising, and we can now proceed to our application.

8 Spearman’s rank correlation is identical because the random variable is integer valued.
9 Wealso conducted, but donot report here,MonteCarlo experiments for larger number of units (k = 40, 45)
and smaller sample sizes (n = 50, 100). The results are very similar. The only additional points to make are:
(a) the method is simple to apply, and a larger k does not increase computation intensity substantially; and
(b) performance is still quite good even for low sample sizes (n = 50). These extended results are available
in the working paper version together with an alternate identification result based on the covariance matrix,
and comparison of Monte Carlo results for the two methods.
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Size \ BM LOW BM 2 BM 3 BM 4 HIGH

SMALL 1 2 3 4 5

Size 2 86 9

Size 3 12 14 15

Size 4 16 17 20

BIG 23 24 25

7 10

11 13

18 19

21 22

Fig. 1 The 25 Fama–French portfolios, by size (BE) and value (BM, BE/ME)

4 Application

We consider an empirical application to the study of contemporaneous lead–lag rela-
tionships in the 25 stock portfolios constructed by Fama and French (1993), the data
for which are regularly updated and available from French (2015). Three important
considerations guide our choice of application. First, these data have been extensively
used by investors and studied in the finance literature, particularly with regard to opti-
mal portfolio construction and inference, and factor models for portfolio returns; see,
for example, Davis et al. (2000), Basak et al. (2002), Griffin (2002), and Byun and
Rozeff (2003). These Fama/French benchmark portfolios are the intersections of 5
portfolios formed on size (market equity, ME) and 5 portfolios formed on the ratio of
book equity to market equity (BM, that is BE/ME). The size breakpoints for each year
are the NYSE market equity quintiles at the end of June of that year. Likewise, the
BE/ME breakpoints are NYSE quintiles, where BE/ME for an index year is the book
equity for the previous fiscal year end divided by ME for the same period. Monthly
returns of the 25 portfolios thus constructed constitute our data; see French (2017) for
further details.

Second, we prefer an application with sufficiently many observation units, covered
over a substantial period of time, to highlight the use of our methodology as well as to
evaluate in-sample and out-of-sample performance of the estimatedmodels. Following
Basak et al. (2002), we consider monthly returns for the period July 1963 to December
1991, using data for 300 months (1963m7 to 1988m6) as our estimation sample, and
retain 42months data (1988m7 to 1991m12) for evaluation of the estimatedmodel out-
of-sample. The number of portfolios is 25, which implies k! = 25! > 1025 possible
permutations. The 25 portfolios are graphically summarised in Fig. 1.

Third, much has been written about these data, particularly with regard to factor
structure in portfolio returns. For example, Fama and French (1993, 1996) show that
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the size (BE) and value (BE/ME) effects subsume the dividend-to-price and earnings-
to-price behaviours. In addition, the Fama–French 3-factor model effects (Fama and
French 1993) should be important. Hence, if after accounting for factor structure, we
can find any evidence of (contemporaneous) lead–lag relationship between the port-
folio returns, this can have important implications for theory and practise of finance.

The final point is quite important for interpretation of our results and directions for
future research. The standard factor model (Fama and French 1993) posits a strong
relation between risk and return, but ignores any possible spillovers of risk between
stocks or risk portfolios. Interestingly, contagion risk between banks and markets
have been noted in the literature (see, for example, Kodres and Pritsker 2002; Hasman
2013), but not between risk portfolios. However, if there were any such spillovers,
this would point to an alternate source of risk propagated not only by the factors,
but through spillovers. Then, our assumed recursive structure would help identify
portfolios that are influential in propagating risk (the leading portfolios in our estimated
ordering) and those that accumulate such risks (the trailing portfolios). In the absence
of structural theory, it is difficult to anticipate a priori which portfolios would be
leading and which would be trailing. However, we find that the estimated recursive
model provides improved prediction of returns, particularly out-of-sample. Then, this
indicates evidence that there is substantial propagation of spillover risk, and suggests
future research to clarify the nature of such spillovers.

As outlined by our methodology, we conduct our analysis in several steps. First, we
account for factor structure in the returns following current best practise from the large
panel literature. Specifically, we include two factor variables. First, to account for the
heterogenous impact of time-specific factors, we compute cross section average return
across the portfolios. This can be interpreted as the return on the market portfolio, but
is also an application of the common correlated effects methodology (Pesaran 2006).
However, even if the number of time periods here is large (n = 300 for the estimation
sample), it is not clear that the number of portfolios (k = 25) is sufficiently large.
Hence, we also take a statistical approach inspired, for example, by Bai (2009), and
construct a statistical factor by principal components.10 For each portfolio,we consider
one of the above two as a time-specific factor, depending on whichever has higher
correlation with the returns on the portfolio. Second, we also consider a cross section
factor, which in our case is simply a portfolio-specific fixed effect. After accounting
for the above two factors, residual correlation averaged across the 25C2 = 300 distinct
combinations is only−0.038, even if the Pesaran CD test statistic (Pesaran 2015) fails
the null hypothesis of weak cross section dependence because of large sample sizes.
We therefore proceed with our analyses under the assumption of weak cross section
dependence.

Second, we build a model for the data in very similar form as Sect. 2,

yit = λi yi,t−1 + Wi.yt + γ ′
i ft + εi t , i = 1, . . . , 25, t = 1, . . . , 300,

the only extension being the inclusion of a factor structure γ ′
i ft to account for cross

section strong dependence. Themodel is estimated in reduced form and error variances

10 The leading factor accounts for 86% of the total variation in returns across the 25 portfolios.
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are estimated. Third, we scale the returns on each portfolio by the estimated standard
deviation, and a recursive order is estimated. We do not report the entire sequence of
portfolios but point to the leading 4 and final 4 portfolios in Fig. 1; this sequence runs
as: 7 → 21 → 13 → 10 → . . . → 19 → 22 → 18 → 11.

A structural interpretation of these portfolios is beyond the scope of this paper.
However, we make a few comments. First, the evidence of recursive ordering is very
strong, particularly at the beginning and end of the recursive (causal) chain. As empha-
sised in Theorem 1, recovery of the recursive order is based on relative magnitude of
diagonal elements in the precision matrix (inverse of covariance matrix). The ratios
of the precision values for the leading two units at each stage can be viewed as an
approximate indicator of the strength of recursive order, in the sense that it is related
to an F-ratio for comparison of variances. For the 6 comparisons relevant to the 8
portfolios at the ends of the causal chain reported above, the average ratio is 4.55; in
fact, for the 4 leading portfolios, this average ratio is even higher at 7.16.11

Second, Bhattacharjee (2017) developed a different identification result for recur-
sive order which runs in the opposite direction: from the beginning of the causal chain
to the end. We also applied this method to our data and find that the top 4 units in the
causal chain come at exactly the same positions using both methods, but the results
diverge somewhat in the middle of the network. This provides very strong validation
for the methods developed here, particularly since the top of the recursive order is
only identified at the end of our procedure. Third, the relatively smaller ratios in the
middle of the chain suggest that some elements in the principal subdiagonal may be
close to zero. Hence, modelling causal networks using poly-trees may be useful in this
context. This is reminiscent of Rebane and Pearl (2013) and Bhattacharjee (2017);
further development along these lines is retained for future work.

In the third step of inference, we take the above recursive order as a given and esti-
mate a structural model including lag (VAR) effects and contemporaneous recursive
(SVAR) effects. We compare forecasts from the above model (in-sample and out-of-
sample) with a standard VAR model. Estimation is standard (Hamilton 1994; Stock
and Watson 2001). We do not report the full results, but make some comments.

First, the forecast performance of our recursive model is very good relative to the
benchmarkVAR. TheMSE is reduced in-sample relative to theVARby about 48% and
out-of-sample by 54%. Bias is also substantially reduced, by 94 and 89%, respectively.
Importantly, then, predictive performance of themodels may also be used as ameasure
of strength of recursive relationships within a network; see also Lo et al. (2015).

Second, the estimate of the weights matrixW (not reported here) provides exciting
details on the nature of the network relationships. The causal effects are positive in
many cases, but negative in others. This feature of negative spillovers is also reported
in other current research; see, for example, Bhattacharjee and Jensen-Butler (2013)
and Bailey et al. (2016). Further, Bhattacharjee and Holly (2013) suggest a measure
for the influence of each unit within a network. As expected, portfolios at the top of the
network have, in general, the greatest influences. However, there are other portfolios
as well. For example, portfolio 3 of small firms has the third highest network influence.

11 An index of the strength of recursive relationship can in principle be developed from this idea. However,
statistical theory here may be technically challenging because of dependent data.

123



230 G. K. Basak et al.

Another issue of specific importance for traders is identification of portfolios at the
top or the bottom of the recursive order. As expected, small firms (portfolios 1–5) do
not occupy these positions. However, it is interesting to note that portfolios in the top-
end (south-east in Fig. 1: portfolios 25, 20 and 24) also do not occupy these positions.
This is somewhat surprising, since the Fama–French factor model would imply that
these portfolios attract the highest return and therefore the highest risk as well. This
indicates that transmission of risks between stocks is somewhat more nuanced that
what a simple factor model may suggest. More research is necessary to understand
such risk spillovers, both in the context of stock and portfolio returns but also more
generally in contagion models.

Third, as might be expected, the factor structure is very important, with both time-
specific factor (related to market portfolio) and fixed effects (related to firm-specific
factors) exerting very strong effects on the returns of all portfolios. However, in the
structural model, the persistence parameter is statistically significant only for 3 of
the 25 portfolios. In summary, while the application above is mainly illustrative, it
provides exciting new evidences on the possibility of better prediction of portfolio
returns, better understanding of networks in financial markets, and several pointers
towards potential future research.

5 Conclusion

Estimation and inference on spatial weights matrix under various structural con-
straints has been an active research area within the spatial econometrics literature.
We extend this literature by developing a new identification result and inferences
under the assumption of recursive ordering. This resulting networks can be very use-
ful for contemporaneous causal inference. Much of the developments in this paper
as well as the general area owes itself to previous work on GMM-based methods in
spatial econometrics (Kelejian and Prucha 1998, 1999, 2001; Kapoor et al. 2007) and
to asymptotic theory for dynamic nonlinear models in the presence of nuisance param-
eters and dependence (Pötscher and Prucha 1997). Monte Carlo study indicates that
finite sample performance of the proposed methods is very good. Applied to data on
portfolio returns, our methods offer exciting new evidences on leading and following
portfolios and therefore on the flow of information in financial markets.

Several new ideas for future research emerge. Structural models for returns in
financial markets may provide exciting new insights and new tools for research and
practise. Likewise, new methodological research may focus on inferences under order
restrictions, with applications to DAGs and poly-trees, as well as indices of structural
ordering.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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