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1 Introduction and summary

Non-geometric backgrounds of string theory are of interest not only because of their po-

tential phenomenological applications, but also because they make explicit use of string

duality symmetries which allows them to probe stringy regimes beyond supergravity. Many

of them can be obtained by duality transformations of geometric backgrounds in flux com-

pactifications of ten-dimensional and eleven-dimensional supergravity (see e.g. [13, 25, 27]

for reviews). They have been studied extensively for the NS-NS sector of ten-dimensional

supergravity which involves non-geometric Q-fluxes and R-fluxes.
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One of the most interesting recent assertions concerning non-geometric strings is that

they probe noncommutative and nonassociative deformations of closed string background

geometries [12, 40]. This has been further confirmed through explicit string computations

in left-right asymmetric worldsheet conformal field theory [1, 5, 9, 14, 22] and in double

field theory [15], and also in a topological open membrane sigma-model [44] and in Matrix

theory [19] which both suggest origins for non-geometric fluxes in M-theory. Quantiza-

tion of these backgrounds through explicit constructions of phase space star products were

provided in [4, 37, 44, 45], and subsequently applied to building nonassociative models of

quantum mechanics [45] and field theories [8, 43]; the physical significance and viability of

these nonassociative structures in quantum mechanics is clarified in [16, 17]. A nonasso-

ciative theory of gravity describing the low-energy effective dynamics of closed strings in

locally non-geometric backgrounds is currently under construction [2, 6, 7, 11, 45].

Until very recently, however, there had been two pieces missing from this story: firstly,

the M-theory version of this deformation of geometry and, secondly, the role played by the

octonions which are the archetypical example of a nonassociative algebra. In [30], these two

ingredients are treated simultaneously and shown to be related. Their approach is based

on lifting the non-geometric string theory R-flux to M-theory within the context of SL(5)

exceptional field theory, following [10], which extends the SL(4) = Spin(3, 3) double field

theory of string theory with three-dimensional target spaces and is relevant for compactifi-

cations of eleven-dimensional supergravity to seven dimensions. They argue that the phase

space of the four-dimensional locally non-geometric M-theory background, which is dual

to a twisted three-torus, lacks a momentum mode and consequently is seven-dimensional.

The corresponding classical quasi-Poisson brackets can then be mapped precisely onto the

Lie 2-algebra generated by the imaginary octonions. In the contraction limit gs → 0 which

reduces M-theory to IIA string theory, the quasi-Poisson brackets contract to those of the

non-geometric string theory R-flux background obtained via T-duality from a geometric

three-torus with H-flux. The goal of the present paper is to quantize these phase space

quasi-Poisson brackets, and to use it to describe various physical and geometrical features

of the non-geometric M-theory background.

For this, we derive a phase space star product which lifts that of the three-dimensional

string theory R-flux background [44], in the sense that it reduces exactly to it in the

appropriate contraction limit which shrinks the M-theory circle to a point; our derivation

is based on extending and elucidating deformation quantization of the coordinate algebra

related to the imaginary octonions that was recently considered in [36]. The contraction

limit reduces the complicated combinations of trigonometric functions appearing in the

resulting star product to the elementary algebraic functions of the string theory case. Our

constructions exploit relevant facts from calibrated geometry, particularly the theory of G2-

structures and Spin(7)-structures, simplified to the case of flat space, that may in future

developments enable an extension of these considerations to more general compactifications

of M-theory on manifolds of G2-holonomy. In contrast to the usual considerations of

calibrated geometry, however, for deformation quantization our structure manifolds involve

corresponding bivectors and trivectors, respectively, rather than the more conventional

three-forms and four-forms. All of the relevant deformation quantities are underpinned by

vector cross products, whose theory we review in the following.
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In fact, in this paper we emphasise a common underlying mathematical feature of the

star products which quantise non-geometric string theory and M-theory backgrounds: they

all originate, via the Baker-Campbell-Hausdorff formula, from the theory of cross products

on real vector spaces; non-trivial cross products only exist in dimensions three (where

they are associative) and seven (where they are nonassociative). In the three-dimensional

case, relevant for the quantisation of the string theory R-flux background, the vector cross

product determines a 3-cocycle among Fourier momenta that appears as a phase factor

in the associator for the star product, whereas in the seven-dimensional case, relevant for

the quantisation of the M-theory R-flux background, the vector cross product determines

a nonassociative deformation of the sum of Fourier momenta. In the generalisation to

the full eight-dimensional M-theory phase space, wherein the physical seven-dimensional

R-flux background arises as a certain gauge constraint, triple cross products determine

an underlying 3-algebraic structure akin to those previously found in studies of multiple

M2-branes (see e.g. [3] for a review). Higher associativity of the 3-bracket is governed by a

5-bracket, but it is not related in any simple way to a 5-vector. This parallels the situation

with the lift of non-geometric string theory fluxes: unlike the NS-NS R-flux, the M-theory

R-flux is not a multivector. This point of view should prove helpful in understanding

generalisations of these considerations to both higher dimensions and to the treatment of

missing momentum modes in M-theory backgrounds dual to non-toroidal string vacua.

Armed with the phase space star product, we can use it to describe various physical

and geometrical features of the membrane phase space. In particular, we derive quantum

uncertainty relations which explicitly exhibit novel minimal area cells in the M-theory phase

space, as well as minimal volumes demonstrating a coarse-graining of both configuration

space and phase space itself, in contrast to the string theory case [45]. We also derive

configuration space triproducts, in the spirit of [2], which quantize the four-dimensional

3-Lie algebra A4 and suggest an interpretation of the quantum geometry of the M-theory

R-flux background as a foliation by fuzzy membrane worldvolume three-spheres; in the

contraction limit gs → 0, these triproducts consistently reduce to those of the string theory

configuration space which quantize the three-dimensional Nambu-Heisenberg 3-Lie alge-

bra [2, 14]. In contrast to the string theory case, this curving of the configuration space

by three-spheres also results in a novel associative but noncommutative deformation of the

geometry of momentum space itself. The origin of these configuration space triproducts in

the present case is most naturally understood in terms of quantisation of the 3-algebraic

structure of the eight-dimensional membrane phase space: the G2-structure, which deter-

mines the star product quantising the seven-dimensional phase space, extends to a Spin(7)-

structure determining phase space triproducts that restrict to those on the four-dimensional

configuration space.

The organisation of the remainder of this paper is as follows. In section 2 we briefly

review relevant aspects of the parabolic non-geometric string theory R-flux model on a

three-torus with constant fluxes and its deformation quantization; in particular, we point

out that star product algebras of functions generally spoil the classical Malcev-Poisson

algebraic structure that sometimes appears in discussions of nonassociativity in physics,

see e.g. [17, 29]. As preparation for the M-theory lift of this model, in section 3 we
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review pertinent properties of the algebra of octonions and the associated linear algebra

of vector cross products, and use them to derive a deformed summation operation on

Fourier momenta that defines the pertinent star products. This technical formalism is

then applied in section 4 to derive a star product quantising the phase space quasi-Poisson

brackets proposed by [30], whose derivation we also review; we demonstrate in detail that

it reduces appropriately to that of section 2 in the contraction limit that sends M-theory to

IIA string theory, and further apply it to derive quantum uncertainty relations, as well as

the nonassociative geometry of configuration space induced by the M-theory R-flux and the

radius of the M-theory circle. Finally, after briefly reviewing how 3-algebra structures have

arisen in other contexts in M-theory as motivation, in section 5 we extend the vector cross

products to triple cross products and use them to postulate a novel 3-algebraic structure

of the full eight-dimensional membrane phase space which reproduces the quasi-Poisson

brackets of [30] upon imposing a suitable gauge fixing constraint; we describe a partial

quantisation of this 3-algebra and show how it naturally encompasses both the phase space

and the configuration space nonassociative geometry from section 4.

2 Quantization of string theory R-flux background

In this section we review and elaborate on features of the quantization of the parabolic

phase space model for the constant string R-flux background in three dimensions.

2.1 Quasi-Poisson algebra for non-geometric string theory fluxes

In our situations of interest, a non-geometric string theory R-flux background originates as

a double T-duality transformation of a supergravity background M of dimension D with

geometric flux; this sends closed string winding number into momentum. The non-trivial

windings, and hence the momentum modes in the R-flux background, are classified by the

first homology group H1(M,Z). The R-flux is represented by a trivector or locally by a

totally antisymmetric rank three tensor Rijk in the framework of double field theory: it is

given by taking suitable “covariant” derivatives ∂̂i along the string winding directions of

a globally well-defined bivector βjk, which is related to an O(D) × O(D) rotation of the

generalised vielbein containing the background metric and two-form B-field after T-duality.

In the parabolic flux model in three dimensions, the background M is a twisted three-

torus which is a circle bundle over the two-torus T 2 whose degree d ∈ Z coincides with

the cohomology class of the three-form H-flux H = dvolT 3 in the original T-duality frame

(consisting of a three-torus T 3). Since the first homology group is H1(M,Z) = Z ⊕ Z ⊕
Zd, there are non-trivial windings along all three directions of M and the non-torsion

winding numbers map to momentum modes of the R-flux model. In this way, the position

and momentum coordinates x = (xi) and p = (pi) of closed strings propagating in the

background of a constant R-flux Rijk = Rεijk (with R = d) define a quasi-Poisson structure

on phase space T ∗M with the classical brackets [40]

{xi, xj} = ℓ3s
~2

Rijk pk , {xi, pj} = δij and {pi, pj} = 0 , (2.1)
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where ℓs is the string length and εijk, i, j, k = 1, 2, 3, is the alternating symbol in three

dimensions normalised as ε123 = +1; unless otherwise explicitly stated, in the following

repeated indices are always understood to be summed over. It is convenient to rewrite (2.1)

in a more condensed form as

{xI , xJ} = ΘIJ(x) =

(
ℓ3s
~2

Rijk pk −δij
δij 0

)
with x = (xI) = (x,p) , (2.2)

which identifies the components of a bivector Θ = 1
2 Θ

IJ(x) ∂
∂xI ∧ ∂

∂xJ . Strictly speaking,

here the coordinates x live on a three-torus T 3, but as we are only interested in local

considerations we take the decompactification limit and consider x ∈ R3 throughout this

paper. From the perspective of double field theory, in this frame the dual phase space

coordinates x̃, p̃ have canonical Poisson brackets among themselves and vanishing brackets

with x,p, and the totality of brackets among the double phase space coordinates (x,p, x̃, p̃)

can be rotated to any other T-duality frame via an O(3, 3) transformation [14, 15]; the

same is true of the star product reviewed below [4]. For ease of notation, in this paper

we restrict our attention to the R-flux frame and suppress the dependence on the dual

coordinates (x̃, p̃).

For any three functions f , g and h on phase space, the classical Jacobiator is defined as

{f, g, h} := {f, {g, h}} − {{f, g}, h} − {g, {f, h}} . (2.3)

By construction it is antisymmetric in all arguments, trilinear and satisfies the Leibniz rule.

For the brackets (2.1) one finds

{f, g, h} = 3 ℓ3s
~2

Rijk ∂if ∂jg ∂kh , (2.4)

where ∂i =
∂
∂xi , which further obeys the fundamental identity of a 3-Lie algebra; in fact,

when restricted to functions on configuration space, it defines the standard Nambu-Poisson

bracket on R3. Hence the classical brackets of the constant R-flux background generate a

nonassociative phase space algebra.

2.2 Phase space star product

To describe the quantization of closed strings in the R-flux background and their dynamics,

as well as the ensuing nonassociative geometry of the non-geometric background, we define

a star product by associating a (formal) differential operator f̂ to a function f as

(f ⋆ g)(x) = f̂ ⊲ g(x) , (2.5)

where the symbol ⊲ denotes the action of a differential operator on a function. In particular

one has

xI ⋆ f = x̂I ⊲ f(x) . (2.6)

The operators

x̂I = xI + i ~
2 ΘIJ(x) ∂J , (2.7)

– 5 –



J
H
E
P
0
2
(
2
0
1
7
)
0
9
9

with ∂i =
∂
∂xi and ∂i+3 = ∂

∂pi
for i = 1, 2, 3, close to an associative algebra of differential

operators; in particular

[x̂i, x̂j ] = i ℓ3s
~

Rijk
(
p̂k + i ~ ∂k

)
. (2.8)

Taking (2.6) and (2.7) as a definition of the star product, one may easily calculate the

quantum brackets

[xI , xJ ]⋆ := xI ⋆ xJ − xJ ⋆ xI = i ~ΘIJ and [xi, xj , xk]⋆ = −3 ℓ3s R
ijk , (2.9)

which thereby provide a quantization of the classical brackets (2.1); in particular, the

quantum 3-bracket represents a Nambu-Heisenberg algebra which quantizes the standard

classical Nambu-Poisson bracket (2.4) on R3.

To define the star product f ⋆ g between two arbitrary functions on phase space, we

introduce the notion of Weyl star product by requiring that, for any f , the differential

operator f̂ defined by (2.5) can be obtained by symmetric ordering of the operators x̂I .

Let f̃(k) denote the Fourier transform of f(x), with k = (kI) = (k, l) and k = (ki), l =

(li) ∈ R3. Then

f̂ = W (f) :=

∫
d6k

(2π)6
f̃(k) e− i kI x̂

I

. (2.10)

For example, W (xI xJ) = 1
2 (x̂

I x̂J + x̂J x̂I). Weyl star products satisfy

(
xI1 · · ·xIn

)
⋆ f =

1

n!

∑

σ∈Sn

xIσ(1) ⋆
(
xIσ(2) ⋆ · · · ⋆ (xIσ(n) ⋆ f) · · ·

)
, (2.11)

where the sum runs over all permutations in the symmetric group Sn of degree n. It should

be stressed that the correspondence f 7→ f̂ is not an algebra representation: since the star

product that we consider here is not necessarily associative, in general f̂ ⋆ g 6= f̂ ◦ ĝ.
To obtain an explicit form for the corresponding star product we first observe that

since [kI x
I , kJ Θ

JL ∂L] = 0 one can write

e− i kI x̂
I

= e− i k ·x e
~

2
kI Θ

IJ (x) ∂J ,

with · the standard Euclidean inner product of vectors. By the relation kIkLΘ
IJ∂JΘ

LM∂M
= ℓ3s

~2
ki kl R

lki ∂k = 0 it follows that

(
kI Θ

IJ ∂J
)n

= kI1 · · · kIn ΘI1J1 · · ·ΘInJn ∂J1 · · · ∂Jn .

One may also write

(←−
∂ I Θ

IJ −→∂ J

)n
=

←−
∂ I1 · · ·

←−
∂ In Θ

I1J1 · · ·ΘInJn
−→
∂ J1 · · ·

−→
∂ Jn ,

where
←−
∂ I and

−→
∂ I stand for the action of the derivative ∂

∂xI on the left and on the right

correspondingly. Thus the Weyl star product representing quantization of the quasi-Poisson

bracket (2.1) can be written in terms of a bidifferential operator as

(f ⋆ g)(x) =

∫
d6k

(2π)6
f̃(k) e− i kI x̂

I

⊲ g(x) = f(x) e
i ~
2

←−
∂ I Θ

IJ (x)
−→
∂ J g(x) . (2.12)
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It is easy to see that (2.12) is Hermitean, (f ⋆ g)∗ = g∗ ⋆ f∗, and unital, f ⋆ 1 = f = 1 ⋆ f ; it

is moreover 2-cyclic and 3-cyclic under integration in the sense of [45]. This star product

first appeared in [44] where it was derived using the Kontsevich formula for deformation

quantization of twisted Poisson structures. Its realisation through an associative algebra

of differential operators was first pointed out in [45]. The significance and utility of this

star product in understanding non-geometric string theory is exemplified in [2, 4, 44, 45].

For later use, let us rewrite the star product f ⋆ g in integral form through the Fourier

transforms f̃ and g̃ alone. The star product of plane waves is given by

e i k ·x ⋆ e i k′ ·x = e iB(k,k′ ) ·x , (2.13)

where

B(k, k′ ) ·x := (k + k′ ) ·x+ (l+ l′ ) ·p− ℓ3s
2~ Rp · (k×ε k

′ ) + ~
2

(
l ·k′ − k · l′

)
, (2.14)

with (k×ε k
′ )i = εijl kj k

′
l the usual cross product of three-dimensional vectors. Then

(f ⋆ g)(x) =

∫
d6k

(2π)6
d6k′

(2π)6
f̃(k) g̃(k′ ) e iB(k,k′ ) ·x . (2.15)

In this form, the star product follows from application of the Baker-Campbell-Hausdorff

formula to the brackets (2.9) [4, 44], whereas the nonassociativity of the star product is

encoded in the additive associator

A(k, k′, k′′ ) :=
(
B(B(k, k′ ), k′′ ))− B(k,B(k′, k′′ ))

)
·x = ℓ3s

2 Rk · (k′
×ε k

′′ ) , (2.16)

which is antisymmetric in all arguments, and in fact defines a certain 3-cocycle [4, 44, 45].

2.3 Alternativity and Malcev-Poisson identity

A star product is alternative if the star associator of three functions

A⋆(f, g, h) := f ⋆ (g ⋆ h)− (f ⋆ g) ⋆ h

vanishes whenever any two of them are equal (equivalently A⋆(f, g, h) is completely an-

tisymmetric in its arguments, or ‘alternating’). For such products the Jacobiator is pro-

portional to the associator. Since the function (2.16) vanishes whenever any two of its

arguments are equal, it follows that the star product (2.15) restricted to Schwartz func-

tions is alternative. However, for generic smooth functions on phase space this property is

violated; in fact, the simple example A⋆

(
|x|2, |x|2, |x|2

)
= 2 i ℓ6s

~4
R2 p ·x shows that alter-

nativity is even violated on the phase space coordinate algebra C[x,p].1

1To be more precise, alternativity generally holds only for functions with function-valued (rather than

distribution-valued) Fourier transform, such as Lebesgue integrable functions. For some accidental cases,

such as linear coordinate functions or powers of single coordinate generators, the star product is trivially

alternative. The star products considered in this paper are best behaved on algebras of Schwartz functions,

so we will often make this restriction. It is interesting to understand more precisely the class of functions on

which the star product is alternative, but this is not relevant for the present paper; see [18] for a systematic

and general analysis of the non-alternativity of a class of star products containing ours.
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Another way of understanding this violation, which will be relevant in later sections,

is via the observation of [36] that a necessary condition for the star product f ⋆ g to be

alternative is that the corresponding classical bracket {f, g} satisfies the Malcev-Poisson

identity [54]. For any three functions f , g and h the Malcev-Poisson identity can be

written as

{f, g, {f, h}} = {{f, g, h}, f} . (2.17)

As a simple example, let us check both sides of (2.17) for the three functions f = x1,

g = x3 p1 and h = x2. Since {f, h} = {x1, x2} = ℓ3s
~2

Rp3 does not depend on x, the left-

hand side of (2.17) vanishes by (2.4). On the other hand, one has {f, g, h} = −3ℓ3s
~2

Rp1 and

consequently for the right-hand side of (2.17) one finds {{f, g, h}, f} = −3ℓ3s
~2

R {p1, x1} =
3ℓ3s
~2

R. It follows that the classical string R-flux coordinate algebra C[x,p] is not a Malcev

algebra (beyond linear order in the phase space coordinates), and consequently no star

product representing a quantization of (2.1) can be alternative.2

3 G2-structures and deformation quantization

In this paper we are interested in the lift of the string theory phase space model of section 2

to M-theory. As the conjectural quasi-Poisson structure from [30], which we review in

section 4, is intimately related to the nonassociative algebra of octonions, in this section

we shall take a technical detour, recalling some of the algebraic and geometric features of

octonions, together with their related linear algebra, in the form that we need in this paper.

In particular we will derive, following [28, 36], a star product decribing quantization of the

coordinate algebra based on the imaginary octonions, elucidating various aspects which will

be important for later sections and which are interesting in their own right. The reader

uninterested in these technical details may temporarily skip ahead to section 4.

3.1 Octonions

The algebra O of octonions is the best known example of a nonassociative but alternative

algebra. Every octonion X ∈ O can be written in the form

X = k0 1+ kA eA (3.1)

where k0, kA ∈ R, A = 1, . . . , 7, while 1 is the identity element and the imaginary unit

octonions eA satisfy the multiplication law

eA eB = −δAB 1+ ηABC eC . (3.2)

Here ηABC is a completely antisymmetric tensor of rank three with nonvanishing values

ηABC = +1 for ABC = 123, 435, 471, 516, 572, 624, 673 . (3.3)

2The counterexamples always involve momentum dependence, and so alternativity can be restored in a

suitable sense by restricting to configuration space p = 0. We return to this point in section 4.5.
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Introducing fi := ei+3 for i = 1, 2, 3, the algebra (3.2) can be rewritten as

ei ej = −δij 1+ εijk ek , (3.4)

ei fj = δij e7 − εijk fk ,

fi fj = δij 1− εijk ek ,

e7 ei = fi and fi e7 = ei ,

which emphasises a subalgebra H of quaternions generated by ei; we will use this component

form of the algebra O frequently in what follows.

The algebra O is neither commutative nor associative. The commutator algebra of the

octonions is given by

[eA, eB] := eA eB − eB eA = 2 ηABC eC , (3.5)

which can be written in components as

[ei, ej ] = 2 εijk ek and [e7, ei] = 2 fi , (3.6)

[fi, fj ] = −2 εijk ek and [e7, fi] = −2 ei ,

[ei, fj ] = 2 (δij e7 − εijk fk) .

The structure constants ηABC satisfy the contraction identity

ηABC ηDEC = δAD δBE − δAE δBD + ηABDE , (3.7)

where ηABCD is a completely antisymmetric tensor of rank four with nonvanishing values

ηABCD = +1 for ABCD = 1267, 1346, 1425, 1537, 3247, 3256, 4567 .

One may also represent the rank four tensor ηABCD as the dual of the rank three tensor

ηABC through

ηABCD = 1
6 εABCDEFG ηEFG , (3.8)

where εABCDEFG is the alternating symbol in seven dimensions normalized as ε1234567 =

+1. Together they satisfy the contraction identity

ηAEF ηABCD = δEB ηFCD − δFB ηECD + δEC ηBFD − δFC ηBED

+ δED ηBCF − δFD ηBCE . (3.9)

Taking into account (3.7), for the Jacobiator we get

[eA, eB, eC ] := [eA, [eB, eC ]] + [eC , [eA, eB]] + [eB, [eC , eA]] = −12 ηABCD eD , (3.10)

and the alternative property of the algebra O implies that the Jacobiator is proportional to

the associator, i.e., [X,Y, Z] = 6
(
(X Y )Z−X (Y Z)

)
for any three octonions X,Y, Z ∈ O.
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3.2 Cross products

An important related linear algebraic entity in this paper will be the notion of a cross

product on a real inner product space [32] (see [33, 53] for nice introductions), generalising

the well known cross product of vectors in three dimensions. They are intimately related

to the four normed algebras over the field of real numbers R (namely R, C, H and O), and

likewise cross products only exist for vector spaces of real dimensions 0, 1, 3 and 7. In

dimensions 0 and 1 the cross product vanishes, in three dimensions it is the standard one

×ε (up to sign) which has appeared already in our discussion of the star product for the

string theory R-flux background, while in seven dimensions it can be defined (uniquely up

to orthogonal transformation) in a Cayley basis for vectors ~k = (kA),~k′ = (k′A) ∈ R7 by

(~k×η
~k′ )A := ηABC kB k′C (3.11)

with the structure constants ηABC introduced in (3.3). To help describe and interpret the

underlying geometry of the seven-dimensional cross product, it is useful to note that it can

be expressed in terms of the algebra of imaginary octonions by writing X~k
:= kA eA and

observing that

X~k×η
~k′

= 1
2

[
X~k

, X~k′

]
. (3.12)

This bilinear product satisfies the defining properties of cross products [53]:

(C1) ~k×η
~k′ = −~k′×η

~k ;

(C2) ~k · (~k′×η
~k′′ ) = −~k′ · (~k×η

~k′′ ) ;

(C3) |~k×η
~k′ |2 = |~k|2 |~k′ |2 − (~k ·~k′ )2, where |~k| =

√
~k ·~k is the Euclidean vector norm.

As usual property (C1) is equivalent to the statement that the cross product ~k×η
~k′ is

non-zero if and only if ~k, ~k′ are linearly independent vectors, property (C2) is equivalent

to the statement that it is orthogonal to both ~k and ~k′, while property (C3) states that

its norm calculates the area of the triangle spanned by ~k and ~k′ in R7. However, unlike the

three-dimensional cross product ×ε , due to (3.10) it does not obey the Jacobi identity:

using (3.7) the Jacobiator is given by

~Jη(~k,~k
′,~k′′ ) := (~k×η

~k′ )×η
~k′′ + (~k′×η

~k′′ )×η
~k + (~k×η

~k′′ )×η
~k′

= 3
(
(~k×η

~k′ )×η
~k′′ + (~k′ ·~k′′ ) ~k − (~k ·~k′′ ) ~k′

)
, (3.13)

which can be represented through the associator on the octonion algebra O as

X ~Jη(~k,~k′,~k′′ )
= 1

4

[
X~k

, X~k′
, X~k′′

]
= 3

2

(
(X~k

X~k′
)X~k′′

−X~k
(X~k′

X~k′′
)
)
.

Hence properties (C1) and (C2) imply that the products (×η , · ) make the vector space

V = R7 into a pre-Courant algebra [56]. Only rotations in the 14-dimensional exceptional

group G2 ⊂ SO(7) preserve the cross product ×η , where the action of G2 can be described

as the transitive action on the unit sphere S6 ⊂ V identified with the homogeneous space

S6 ≃ G2/SU(3).3 A G2-structure on an oriented seven-dimensional vector space V is the

choice of a cross product that can be written as (3.11) in a suitable oriented frame.

3This means that the Lie group G2 is the stabilizer of a unit vector in V .
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3.3 Baker-Campbell-Hausdorff formula and vector star sums

Let us now work out the Baker-Campbell-Hausdorff formula for O, which will be crucial

for the derivations which follow. The alternative property

(X Y )Y = X (Y Y ) and X (X Y ) = (XX)Y ,

for any pair of octonions X,Y ∈ O, implies in particular that (XX)X = X (XX). Hence

the quantity Xn := X (X (· · · (XX) · · · )) is well-defined independently of the ordering of

parantheses for all n ≥ 0 (with X0 := 1). This implies that power series in octonions

are readily defined [39, 48], and in particular one can introduce the octonion exponential

function eX :=
∑

n≥0
1
n! X

n. By setting X = X~k
= kA eA with ~k = (kA) ∈ R7 and

using the multiplication law (3.2), one can derive an octonionic version of de Moivre’s

theorem [39, 48]

eX~k = cos |~k| 1+
sin |~k|
|~k|

X~k
. (3.14)

We can take (3.14) to define the octonion exponential function eX~k ∈ O.

One can now repeat the derivation of [28], appendix C to obtain a closed form for the

Baker-Campbell-Hausdorff formula for O. Multiplying two octonion exponentials of the

form (3.14) together using (3.2) we get

eX~k eX~k′ =

(
cos |~k| cos |~k′| − sin |~k| sin |~k′|

|~k| |~k′|
~k ·~k′

)
1 (3.15)

+
cos |~k′| sin |~k|

|~k|
X~k

+
cos |~k| sin |~k′|

|~k′|
X~k′

− sin |~k| sin |~k′|
|~k| |~k′|

X~k×η
~k′
,

where ~k×η
~k′ is the seven-dimensional vector cross product (3.11) on V . On the other

hand, the Baker-Campbell-Hausdorff expansion is defined by

eX~k eX~k′ =: e
X~B ′

η(~k,~k′ ) = cos
∣∣ ~B ′

η(
~k,~k′ )

∣∣ 1+
sin

∣∣ ~B ′
η(
~k,~k′ )

∣∣
∣∣ ~B ′

η(
~k,~k′ )

∣∣ X ~B ′
η(
~k,~k′ )

. (3.16)

By comparing (3.15) and (3.16) we arrive at

~B ′
η(
~k,~k′ ) =

cos−1

(
cos |~k| cos |~k′| − sin |~k| sin |~k′|

|~k| |~k′|
~k ·~k′

)

sin cos−1

(
cos |~k| cos |~k′| − sin |~k| sin |~k′|

|~k| |~k′|
~k ·~k′

) (3.17)

×
(

cos |~k′| sin |~k|
|~k|

~k +
cos |~k| sin |~k′|

|~k′|
~k′ − sin |~k| sin |~k′|

|~k| |~k′|
~k×η

~k′
)

.

To rewrite (3.17) in a more manageable form, we use the G2-structure on V to define

a binary operation ⊛η on the unit ball B7 ⊂ V consisting of vectors ~p with |~p | ≤ 1. To

any pair of vectors ~p, ~p ′ ∈ B7, it assigns the vector

~p⊛η ~p
′ = ǫ~p,~p ′

(√
1− |~p ′|2 ~p+

√
1− |~p |2 ~p ′ − ~p×η ~p

′
)
, (3.18)
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where ǫ~p1,~p2 = ± 1 is the sign of
√
1− |~p1|2

√
1− |~p2|2 − ~p1 · ~p2 satisfying

ǫ~p1,~p2 ǫ~p1⊛η~p2,~p3 = ǫ~p1,~p2⊛η~p3 ǫ~p2,~p3 , (3.19)

which follows by properties (C1) and (C2) of the cross product from section 3.2; these

sign factors have a precise intrinsic origin that we shall describe in section 5.3. Using the

properties (C1)–(C3) from section 3.2 we find

1− |~p⊛η ~p
′ |2 =

(√
1− |~p |2

√
1− |~p ′ |2 − ~p · ~p ′

)2 ≥ 0 , (3.20)

and so the vector ~p⊛η ~p
′ indeed also belongs to the unit ball B7 ⊂ V . We call the binary

operation (3.18) on B7 the vector star sum of ~p and ~p ′. It admits an identity element given

by the zero vector in V ,

~p⊛η ~0 = ~p = ~0⊛η ~p , (3.21)

and the inverse of ~p ∈ B7 is −~p ∈ B7,

~p⊛η (−~p ) = ~0 = (−~p )⊛η ~p .

It is noncommutative with commutator given by the G2-structure as

~p⊛η ~p
′ − ~p ′

⊛η ~p = −2 ~p×η ~p
′ , (3.22)

and using (3.19) we find that the corresponding associator is related to the Jacobiator (3.13)

for the cross product (3.11) through

~Aη(~p, ~p
′, ~p ′′ ) := (~p⊛η ~p

′ )⊛η ~p
′′ − ~p⊛η (~p

′
⊛η ~p

′′ ) = 2
3
~Jη(~p, ~p

′, ~p ′′ ) . (3.23)

It follows that the components of the associator (3.23) take the form

Aη(~p, ~p
′, ~p ′′ )A = ηABCD pB p′C p′′D .

It is non-vanishing but totally antisymmetric, and hence the seven-dimensional vector star

sum (3.18) is nonassociative but alternative, making the ball B7 ⊂ V into a 2-group.

To extend the 2-group structure (3.18) over the entire vector space V we introduce

the map

~p =
sin(~ |~k|)

|~k|
~k with kA ∈ R . (3.24)

The inverse map is given by

~k =
sin−1 |~p |
~ |~p | ~p .

Then for each pair of vectors ~k,~k′ ∈ V , following [28], appendix C we can use the trigono-

metric identities

sin cos−1 s = cos sin−1 s =
√

1− s2 (3.25)

for −1 ≤ s ≤ 1 to find that the deformed vector sum (3.17) can be written in terms of the

vector star sum as

~Bη(~k,~k
′ ) := 1

~
~B ′
η(~

~k, ~~k′ ) =
sin−1 |~p⊛η ~p

′ |
~ |~p⊛η ~p ′ | ~p⊛η ~p

′

∣∣∣∣
~p=~k sin(~ |~k|)/|~k|

. (3.26)

From (3.26) one immediately infers the following properties:
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(B1) ~Bη(~k,~k
′ ) = − ~Bη(−~k′,−~k ) ;

(B2) ~Bη(~k,~0 ) = ~k = ~Bη(~0, ~k ) ;

(B3) Perturbative expansion: ~Bη(~k,~k
′ ) = ~k + ~k′ − 2 ~~k×η

~k′ +O(~2) ;

(B4) The associator

~Aη(~k,~k
′,~k′′ ) := ~Bη

(
~Bη(~k,~k

′ ) , ~k′′
)
− ~Bη

(
~k , ~Bη(~k

′,~k′′ )
)

is antisymmetric in all arguments.

One can explicitly compute the products
(
eX~k eX~k′

)
eX~k′′ and eX~k

(
eX~k′ eX~k′′

)
of oc-

tonion exponentials using (3.14) and (3.15), and after a little calculation using the identi-

ties (3.20) and (3.25) one finds for the associator

~Aη(~k,~k
′,~k′′ ) =

sin−1
∣∣(~p⊛η ~p

′ )⊛η ~p
′′
∣∣

~
∣∣(~p⊛η ~p ′ )⊛η ~p ′′

∣∣ ~Aη(~p, ~p
′, ~p ′′ )

∣∣∣∣∣
~p=~k sin(~ |~k|)/|~k|

. (3.27)

3.4 Quasi-Poisson algebra and Malcev-Poisson identity

Consider the algebra of classical brackets on the coordinate algebra C[~ξ ] which is isomor-

phic to the algebra (3.5),

{ξA, ξB}η = 2 ηABC ξC , (3.28)

where ~ξ = (ξA) with ξA ∈ R, A = 1, . . . , 7. This bracket is bilinear, antisymmetric and

satisfies the Leibniz rule by definition. Introducing σi := ξi+3 for i = 1, 2, 3 and σ4 := ξ7,

one may rewrite (3.28) in components as

{ξi, ξj}η = 2 εijk ξk and {σ4, ξi}η = 2σi , (3.29)

{σi, σj}η = −2 εijk ξk and {σ4, σi}η = −2 ξi ,

{σi, ξj}η = −2 (δij σ
4 − εijk σ

k) .

Using (3.10) the non-vanishing Jacobiators can be written as

{ξi, ξj , σk}η = −12 (εij
k σ4 + δkj σi − δki σj) , (3.30)

{ξi, σj , σk}η = 12 (δji ξk − δki ξj) ,

{σi, σj , σk}η = 12 εijk σ4 ,

{ξi, ξj , σ4}η = 12 εijk σ
k ,

{ξi, σj , σ4}η = 12 εi
jk ξk ,

{σi, σj , σ4}η = −12 εijk σk .

The Malcev-Poisson identity (2.17) is satisfied for monomials. However, we can show

in an analogous way as in section 2.3 that it is violated in general on C[~ξ ]. For this,

consider f = ξ1, g = ξ3 σ
1 and h = ξ2. Using (3.29) and (3.30) one finds that the left-hand
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side of (2.17) is given by {f, g, {f, h}η}η = −24 ξ3 σ
3, while for the right-hand side one has

{{f, g, h}η, f}η = 24 (ξ2 σ
2 − ξ3 σ

3). We conclude that the Malcev-Poisson identity for the

classical brackets (3.28) is violated. This is in contrast to the well-known fact that the pre-

Lie algebra (3.5) of imaginary octonions defines a Malcev algebra, due to the identity (3.9)

and the multiplication law (3.2) on the finite-dimensional algebra O. Hence the Malcev

identity (2.17) holds for octonions, while it is violated in general for the quasi-Poisson

structure (3.28) on the infinite-dimensional polynomial algebra C[~ξ ]; this is also implied

by the general results of [18].

3.5 G2-symmetric star product

Let us now work out the quantization of the classical brackets (3.28). Consider the quasi-

Poisson bivector

Θη := ηABC ξC ψA ∧ ψB with ψA = ∂A = ∂
∂ξA

(3.31)

defining the brackets (3.28). It can be regarded as a pre-homological potential on T ∗ΠV

with coordinates (ψA, ξB) and canonical Poisson bracket; then the corresponding derived

brackets are [[ξA, ξB]]Θη = {ξA, ξB}η giving T ∗ΠV the structure of a symplectic nearly Lie

2-algebra [49]. We can extend this structure to the entire algebra of functions by defining

a star product through

(f ⋆η g)(~ξ ) =

∫
d7~k

(2π)7
d7~k′

(2π)7
f̃(~k ) g̃(~k′ ) e i ~Bη(~k,~k′ ) · ~ξ , (3.32)

where again f̃ stands for the Fourier transform of the function f and ~Bη(~k,~k
′ ) is the

deformed vector sum (3.26). By definition it is the Weyl star product.

Due to the properties (B1) and (B2) from section 3.3 of the deformed vector addition
~Bη(~k,~k

′ ), this star product is Hermitean, (f ⋆η g)
∗ = g∗⋆ηf

∗, and unital, f ⋆η1 = f = 1⋆ηf .

It can be regarded as a quantization of the dual of the pre-Lie algebra (3.5) underlying

the octonion algebra O; in particular, by property (B3) it provides a quantization of the

quasi-Poisson bracket (3.28): defining [f, g]⋆η = f ⋆η g − g ⋆η f , we have

lim
~→0

[f, g]⋆η
i ~

= 2 ξA ηABC ∂Bf ∂Cg = {f, g}η . (3.33)

Property (B4) implies that the star product (3.32) is alternative on monomials and

Schwartz functions, but not generally because of the violation of the Malcev-Poisson iden-

tity discussed in section 3.4.

Let us calculate ξA ⋆η f explicitly using (3.32). We have

ξA ⋆η f = −
∫

d7~k′

(2π)7
ξD

∂Bη(~k,~k
′ )D

∂kA

∣∣∣∣
~k=~0

f̃(~k′ ) e i ~Bη(~0,~k′ ) · ~ξ

and after some algebra one finds

∂Bη(~k,~k
′ )D

∂kA

∣∣∣∣
~k=~0

= −~ ηADE k′E + δAD ~ |~k′ | cot(~ |~k′ |) + k′A k′D

|~k′ |2
(
~ |~k′ | cot(~ |~k′ |)− 1

)
.
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Taking into account property (B2) from section 3.3 and integrating over ~k′, we arrive at

ξA ⋆η f =
(
ξA + i ~ ηABC ξC ∂B (3.34)

+
(
ξA△~ξ

− (~ξ ·∇~ξ
) ∂A

)
△

−1
~ξ

(
~△

1/2
~ξ

coth(~△
1/2
~ξ

)− 1
))

⊲ f(~ξ )

where △~ξ
= ∇2

~ξ
= ∂A ∂A is the flat space Laplacian in seven dimensions. In particular for

the Jacobiator one finds

[ξA, ξB, ξC ]⋆η = 12 ~2 ηABCD ξD , (3.35)

which thereby provides a quantization of the classical 3-brackets (3.30).

3.6 SL(3)-symmetric star product

Setting eA = 0 for A = 4, 5, 6, 7 (equivalently fi = e7 = 0) reduces the nonassociative

algebra of octonions O to the associative algebra of quaternions H, whose imaginary units

ei generate the su(2) Lie algebra [ei, ej ] = 2 εijk ek. To see this reduction at the level of our

vector products, consider the splitting of the seven-dimensional vector space V according

to the components of section 3.4 with ~k = (l,k, k4), where l = (li),k = (ki) ∈ R3. With

respect to this decomposition, by using (3.6) the seven-dimensional cross product can be

written in terms of the three-dimensional cross product as

~k×η
~k′ =

(
l×ε l

′ − k×ε k
′ + k′4 k − k4 k

′ , k×ε l
′ − l×ε k

′ + k4 l
′ − k′4 l , l ·k

′ − k · l′
)
.

(3.36)

The symmetry group G2 preserving ×η contains a closed SL(3) subgroup acting on these

components as l 7→ g l, k 7→ (g−1)⊤ k and k4 7→ k4 for g ∈ SL(3). In particular, reduction

to the three-dimensional subspace spanned by ei gives

(l,0, 0)×η (l
′,0, 0) = (l×ε l

′,0, 0) , (3.37)

and so yields the expected three-dimensional cross product. This reduction is implemented

in all of our previous formulas by simply replacing ×η with ×ε throughout. In particular,

the corresponding Jacobiator Jε from (3.13) now vanishes by a well-known identity for the

cross product in three dimensions; as a consequence, the pair (×ε , · ) defines a Courant

algebra structure on the vector space R3 [56]. The cross product ×ε is preserved by

the full rotation group SO(3) ⊂ G2 in this case, acting transitively on the unit sphere

S2 ≃ SO(3)/SO(2) in R3.

Similarly, the reduction of the seven-dimensional vector star sum (3.18) on this three-

dimensional subspace reproduces the three-dimensional vector star sum ⊛ε from [38],

(q,0, 0)⊛η (q
′,0, 0) = (q ⊛ε q

′,0, 0) , (3.38)

which by (3.23) is now associative; as a consequence, it makes the unit ball B3 ⊂ R3 into

a non-abelian group. The reduction of the deformed vector sum (3.26) reproduces the

three-dimensional vector sum Bε(l, l
′ ) from [28, 38],

~Bη

(
(l,0, 0) , (l′,0, 0)

)
=

(
Bε(l, l

′ ),0, 0
)
, (3.39)
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with vanishing associator (3.27). From (3.39) it follows that, for functions f, g on this

three-dimensional subspace, the corresponding star product (f ⋆ε g)(ξ,0, 0) from (3.32)

reproduces the associative star product of [28, 38] for the quantization of the dual of the

Lie algebra su(2). In the general case (3.36), the evident similarity with the terms in the

vector sum (2.14) will be crucial for what follows.

4 Quantization of M-theory R-flux background

In this section we use the constructions of section 3 to derive a suitable star product which

quantizes the four-dimensional locally non-geometric M-theory background which is dual to

a twisted torus [30]. We demonstrate explicitly that it is the lift of the star product which

quantizes the string theory R-flux background of section 2, by showing that it reduces to

the star product of section 2.2 in the weak string coupling limit which reduces M-theory to

IIA string theory. We apply this construction to the description of the quantum mechanics

of M2-branes in the non-geometric background, as well as of the noncommutative and

nonassociative geometry these membranes probe.

4.1 Quasi-Poisson algebra for non-geometric M-theory fluxes

Let us start by reviewing the derivation of the classical quasi-Poisson algebra for the four-

dimensional non-geometric M-theory background from [30], beginning again with some

general considerations. String theory on a background M is dual to M-theory on the total

space of an oriented circle bundle

S1 �

�

// M̃

π

��

M

over M , where the radius λ ∈ R of the circle fibre translates into the string coupling con-

stant gs. T-duality transformations become U-duality transformations sending membrane

wrapping numbers to momentum modes, which are classified by the second homology group

H2(M̃,Z). The homology groups of M̃ are generally related to those of M through the

Gysin exact sequence

· · · −→ Hk(M̃,Z)
π∗−−−→ Hk(M,Z)

∩ e−−−→ Hk−2(M,Z)
π!

−−→ Hk−1(M̃,Z) −→ · · ·
(4.1)

where π∗ and π! are the usual pushforward and Gysin pullback on homology, and ∩ e is

the cap product with the Euler class e ∈ H2(M,Z) of the fibration. For instance, in the

case of a trivial fibration M̃ = M × S1, wherein e = 0, the Gysin sequence collapses to a

collection of short exact sequences, and in particular by the Künneth theorem there is a

splitting H2(M̃,Z) ≃ H1(M,Z)⊕H2(M,Z). More generally, for an automorphism g of M

we can define a twisted lift to an M -bundle M̃g over S1 whose total space is the quotient
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of M × R by the Z-action4

(x, t) 7−→
(
gn(x), t+ 2π nλ

)
,

where x ∈ M , t ∈ R and n ∈ Z. The Gysin sequence (4.1) shows that H1(M,Z) generally

classifies “vertical” wrapping modes around the S1-fibre which are dual to momenta along

M , whereas H2(M,Z) classifies “horizontal” wrapping modes dual to momenta along the

S1-fibre.

In the situations we are interested in from section 2.1, the lift of the non-geometric

string theory R-flux can be described locally within the framework of SL(5) exceptional

field theory as a quantity Rµ,νραβ : it is derived by taking suitable “covariant” derivatives

∂̂µν along the membrane wrapping directions of a trivector Ωραβ , which is related to an

SO(5) rotation of the generalised vielbein containing the background metric and three-

form C-field after U-duality. Its first index is a vector index while the remaining indices

define a completely antisymmetric rank four tensor. Because of the possibly non-trivial

Euler class e ∈ H2(M,Z), it is proposed in [30] that, generally, the phase space T ∗M̃

of the locally non-geometric background in M-theory is constrained to a codimension one

subspace defined by the momentum slice

Rµ,νραβ pµ = 0 , (4.2)

reflecting the absence of momentum modes in the dual R-flux background.

This proposal was checked explicitly in [30] for the parabolic toroidal flux model in

three dimensions from section 2.1, wherein M is a twisted three-torus. In the M-theory lift

to the four-manifold M̃ = M ×S1, with local coordinates (xµ) = (x, x4) where x ∈ M and

x4 ∈ S1, by Poincaré duality the second homology group is H2(M,Z) = H1(M,Z) = Z⊕Z,

which does not contain the requisite non-trivial two-cycle that would allow for non-trivial

wrapping modes dual to momenta along the x4-direction, i.e., p4 = 0. As a consequence

the phase space of the M-theory lift of the R-flux background is only seven-dimensional and

lacks a momentum space direction. The only non-vanishing components of the M-theory

R-flux in this case are R4,µναβ = Rεµναβ , µ, ν, · · · = 1, 2, 3, 4, where εµναβ is the alternating

symbol in four dimensions normalised as ε1234 = +1. Note that this reduction only occurs

in the presence of non-trivial flux: when d = 0 there is no torsion in the homology or coho-

mology of the torus M = T 3 and Poincaré-Hodge duality implies H2(M,Z) = H1(M,Z) =

H1(M,Z) = Z⊕ Z⊕ Z, so that all two-cycles are homologically non-trivial.

The main conjecture of [30] is that the classical brackets of this seven-dimensional

phase space are given by the quasi-Poisson brackets of section 3.4 after a suitable choice

of affine structure on the vector space R7, i.e., a choice of linear functions. For this, let us

introduce the 7× 7 matrix

Λ =
(
ΛAB

)
=

1

2~




0
√
λ ℓ3s R 13 0

0 0
√
λ3 ℓ3s R

−λ ~ 13 0 0


 (4.3)

4The precise sort of automorphism should be specified by the intended application; for example, g could

be an automorphism preserving some background form field.
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with 13 the 3×3 identity matrix. The matrix Λ is non-degenerate as long as all parameters

are non-zero, but it is not orthogonal. Using it we define new coordinates

~x =
(
xA

)
=

(
x, x4,p

)
:= Λ ~ξ = 1

2~

(√
λ ℓ3s R σ ,

√
λ3 ℓ3s R σ4 , −λ ~ ξ

)
. (4.4)

From the classical brackets (3.28) one obtains the quasi-Poisson algebra

{xA, xB}λ = 2λABC xC with λABC := ΛAA′

ΛBB′

ηA′B′C′ Λ−1
C′C , (4.5)

which can be written in components as

{xi, xj}λ = ℓ3s
~2

R4,ijk4 pk and {x4, xi}λ = λ ℓ3s
~2

R4,1234 pi , (4.6)

{xi, pj}λ = δij x
4 + λ εijk x

k and {x4, pi}λ = λ2 xi ,

{pi, pj}λ = −λ εijk p
k ,

where we recall that the M-theory radius λ incorporates the string coupling constant gs.

The corresponding Jacobiators are

{xA, xB, xC}λ = −12λABCD xD with λABCD := ΛAA′

ΛBB′

ΛCC′

ηA′B′C′D′ Λ−1
D′D ,

with the components

{xi, xj , xk}λ = 3 ℓ3s
~2

R4,ijk4 x4 , (4.7)

{xi, xj , x4}λ = −3λ2 ℓ3s
~2

R4,ijk4 xk ,

{pi, xj , xk}λ = 3λ ℓ3s
~2

R4,1234
(
δji p

k − δki p
j
)
,

{pi, xj , x4}λ = 3λ2 ℓ3s
~2

R4,ijk4 pk ,

{pi, pj , xk}λ = −3λ2 εij
k x4 − 3λ

(
δkj xi − δki xj

)
,

{pi, pj , x4}λ = 3λ3 εijk x
k ,

{pi, pj , pk}λ = 0 .

The crucial observation of [30] is that in the contraction limit λ = 0 which shrinks

the M-theory circle to a point, i.e., the weak string coupling limit gs → 0 which reduces

M-theory to IIA string theory, the classical brackets (4.6) and (4.7) of the M-theory R-flux

background reduce to the quasi-Poisson structure (2.1) and (2.4) of the string theory R-

flux background; in this limit the circle fibre coordinate x4 is central in the algebra defined

by (4.6) and so may be set to any non-zero constant value, which we conveniently take to

be x4 = 1. In the following we will extend this observation to the quantum level. As in

section 3.4 the classical coordinate algebra here is not a Malcev algebra, which is another

way of understanding the violation of the Malcev-Poisson identity from section 2.3 in the

contraction limit λ = 0.
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4.2 Phase space star product

We will now quantize the brackets (4.6). For this, we use the G2-symmetric star prod-

uct (3.32) to define a star product of functions on the seven-dimensional M-theory phase

space by the prescription

(f ⋆λ g)(~x ) = (fΛ ⋆η gΛ)(~ξ )
∣∣
~ξ=Λ−1 ~x

(4.8)

where fΛ(~ξ ) := f(Λ ~ξ ). Using the deformed vector addition ~Bη(~k,~k
′ ) from (3.26), we can

write (4.8) as

(f ⋆λ g)(~x ) =

∫
d7~k

(2π)7
d7~k′

(2π)7
f̃(~k ) g̃(~k′ ) e i ~Bη(Λ~k,Λ~k′ ) ·Λ−1 ~x . (4.9)

The star product (4.9) may also be written in terms of a (formal) bidifferential operator as

(f ⋆λ g)(~x ) = f(~x ) e i ~x · (Λ−1 ~Bη(− iΛ
←−
∂ ,− iΛ

−→
∂ )+ i

←−
∂ + i

−→
∂ ) g(~x ) ,

which identifies it as a cochain twist deformation [45]. For the same reasons as (3.32) the

star product (4.9) is unital, Hermitean and Weyl, and it is alternative on monomials and

Schwartz functions.

To show that (4.9) provides a quantization of the brackets (4.6), we calculate xA ⋆λ f

by making the change of affine structure (4.4) in (3.34) to get

xA ⋆λ f = x̂A ⊲ f

where

x̂A = xA + i ~λABC xC ∂B + ~2
(
xA △̃~x − (~x · ∇̃~x ) ∂̃

A
)
χ
(
~2 △̃~x

)
, (4.10)

with

∇̃~x =
(
∂̃A

)
:=

(
ΛBA ∂

∂xB

)
= 1

2~

(√
λ ℓ3s R ∇x ,

√
λ3 ℓ3s R

∂
∂x4 , −λ ~ ∇p

)
(4.11)

and

△̃~x = ∇̃2
~x = λ

4~2

(
ℓ3s R△x + λ2 ℓ3s R

∂2

∂x2
4
+ λ ~2△p

)
. (4.12)

We have also introduced the (formal) differential operator

χ
(
△̃~x

)
:= △̃

−1
~x

(
△̃

1/2
~x coth △̃

1/2
~x − 1

)
.

We thus find for the algebra of star commutators and Jacobiators

[xA, xB]⋆λ = 2 i ~λABC xC and [xA, xB, xC ]⋆λ = 12 ~2 λABCD xD . (4.13)

Written in components, these quantum brackets coincide with those of [30], eq. (3.30).5

5Our definition of the Jacobiator differs from that of [30] by a factor of −3. We have also corrected the

expression for the 3-bracket [xi, xj , x4]⋆λ which is missing a factor λ2 in [30], eq. (3.30).
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We will now show that this quantization is the correct M-theory lift of the quan-

tization of the string theory R-flux background from section 2.2, in the sense that the

star product (4.9) reduces to (2.15) in the contraction limit λ = 0; this calculation will

also unpackage the formula (4.9) somewhat. For this, we need to show that the quan-

tity ~Bη(Λ~k, Λ~k′ ) ·Λ−1 ~x reduces to (2.14) in the λ → 0 limit. We do this by carefully

computing the contractions of the various vector products comprising (3.26) and (3.18).

First, let us introduce

~pΛ :=
sin

(
~ |Λ~k|

)

|Λ~k|
Λ~k (4.14)

=
sin

(
1
2

√
λ (λ ~2 l2 + ℓ3s Rk2 + λ2 ℓ3s Rk24)

)

√
λ (λ ~2 l2 + ℓ3s Rk2 + λ2 ℓ3s Rk24)

(√
λ ℓ3s R k ,

√
λ3 ℓ3s R k4 , −λ ~ l

)

in the conventions of section 3.6. Evidently

lim
λ→0

sin
(
~ |Λ~k|

)

|Λ~k|
= ~ ,

so that from (4.14) we find the limit

lim
λ→0

~pΛ = ~0 . (4.15)

From the identity (3.20) we thus find

lim
λ→0

∣∣~pΛ ⊛η ~p
′
Λ

∣∣ = 0 (4.16)

and

lim
λ→0

sin−1
∣∣~pΛ ⊛η ~p

′
Λ

∣∣
~
∣∣~pΛ ⊛η ~p ′

Λ

∣∣ =
1

~
.

These limits imply that

lim
λ→0

sin−1
∣∣~pΛ ⊛η ~p

′
Λ

∣∣
~
∣∣~pΛ ⊛η ~p ′

Λ

∣∣
(√

1−
∣∣~pΛ

∣∣2 ~p ′
Λ +

√
1−

∣∣~p ′
Λ

∣∣2 ~pΛ

)
·Λ−1 ~x =

(
~k + ~k′

)
· ~x .

Next, using (3.36) one easily finds

2
(
Λ~k×η Λ~k′

)
·Λ−1 ~x= λx · (k×ε l

′ − l×ε k
′ ) + λx · (k′4 l− k4 l

′ ) + x4 (k · l′ − l ·k′ )

+ ℓ3s R
~2

p ·(k×ε k
′)− λp · (l×ε l

′) + λ ℓ3s R
~2

p · (k4 k
′ − k′4 k) (4.17)

and from (4.17) we compute

lim
λ→0

sin−1
∣∣~pΛ ⊛η ~p

′
Λ

∣∣
~
∣∣~pΛ ⊛η ~p ′

Λ

∣∣
(
~pΛ×η ~p

′
Λ

)
·Λ−1 ~x = lim

λ→0

(
sin−1

∣∣~pΛ ⊛η ~p
′
Λ

∣∣
~
∣∣~pΛ ⊛η ~p ′

Λ

∣∣
sin

(
~|Λ~k|

)

|Λ~k|
sin

(
~|Λ~k′ |

)

|Λ~k′ |

×
(
Λ~k×η Λ~k′

)
·Λ−1 ~x

)

= 1
2~

(
ℓ3s Rp · (k×ε k

′ ) + ~2 x4 (k · l′ − l ·k′ )
)
.
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Putting everything together we conclude that

lim
λ→0

~Bη(Λ~k, Λ~k′ ) ·Λ−1 ~x = (k + k′ ) ·x+ (k4 + k′4 )x
4 + (l+ l′ ) ·p

− 1
2~

(
ℓ3s Rp · (k×ε k

′ ) + ~2 x4 (k · l′ − l ·k′ )
)
. (4.18)

Up to the occurance of the circle fibre coordinate x4, this expression coincides exactly

with (2.14). In the dimensional reduction of M-theory to IIA string theory we restrict

the algebra of functions to those which are constant along the x4-direction; they reduce

the Fourier space integrations in (4.9) to the six-dimensional hyperplanes k4 = k′4 = 0.

From (4.10) we see that x4 ⋆λ f = x4 f + O(λ), and hence the coordinate x4 is central in

the star product algebra of functions in the limit λ → 0; as before we may therefore set it

to any non-zero constant value, which we take to be x4 = 1. In this way the λ → 0 limit

of the star product (4.9) reduces exactly to (2.15),

lim
λ→0

(f ⋆λ g)(~x ) = (f ⋆ g)(x) .

With similar techniques, one shows that the dimensional reduction of the M-theory asso-

ciator from (3.27) coincides precisely with the string theory associator (2.16):

lim
λ→0

~Aη(Λ~k, Λ~k′, Λ~k′′ ) ·Λ−1 ~x = A(k, k′, k′′ ) . (4.19)

4.3 Closure and cyclicity

We are not quite done with our phase space quantization of the non-geometric M-theory

background because the star product (4.9), in contrast to its string theory dual counter-

part (2.15) at λ = 0, has the undesirable feature that it is neither 2-cyclic nor 3-cyclic in

the sense of [45]; these properties are essential for a sensible nonassociative phase space

formulation of the quantisation of non-geometric strings [45], for matching with the expec-

tations from worldsheet conformal field theory in non-geometric string backgrounds [2, 44],

and in the construction of physically viable actions for a nonassociative theory of gravity

underlying the low-energy limit of non-geometric string theory [8]. It is natural to ask for

analogous features involving M2-branes and a putative nonassociative theory of gravity

underlying the low-energy limit of non-geometric M-theory.

Although for the classical brackets (4.5) of Schwartz functions one has
∫
d7~x {f, g}λ =∫

d7~x ∂A(2λ
ABC xC f ∂Bg) = 0, this is no longer true for the quantum brackets [f, g]⋆λ .

The issue is that the star product (4.9) is not closed with respect to Lebesgue measure on

R7, i.e.,
∫
d7~x f ⋆λ g 6=

∫
d7~x f g, and no modification of the measure can restore closure.

In particular, using (4.10) a simple integration by parts shows that

∫
d7~x

(
xA ⋆λ f − xA f

)
= 6 ~2

∫
d7~x χ

(
~2 △̃~x

)
∂̃A ⊲ f . (4.20)

To overcome this problem we seek a gauge equivalent star product

f •λ g = D−1
(
Df ⋆λ Dg

)
with D = 1 +O(λ) . (4.21)
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The construction of the invertible differential operator D implementing this gauge trans-

formation is analogous to the procedure used in [38]. Order by order calculations, see

e.g. [36], show that D contains only even order derivatives, and in fact it is a functional

D = D(~2 △̃~x). Since D ⊲ xA = xA, we have

xA •λ f = D−1
(
DxA ⋆λ Df

)
= D−1 x̂AD ⊲ f . (4.22)

Using now [D−1, xC ] = −2 ~2D−2D′ ∂̃C , where D′ stands for the (formal) derivative of D
with respect to its argument, together with the explicit form (4.10) we find

xA •λ f = xA ⋆λ f − 2 ~2D−1D′ ∂̃A ⊲ f . (4.23)

The requirement
∫
d7~x xA •λ f =

∫
d7~x xA f , with the help of (4.20) and (4.23), gives the

elementary Cauchy problem

D−1 dD
dt

= 3

√
t coth

√
t− 1

t
with D(0) = 1 ,

whose solution finally yields

D =
((

~ △̃
1/2
~x

)−1
sinh

(
~ △̃

1/2
~x

))6
.

We may therefore write the star product (4.21) as

(f •λ g)(~x ) =

∫
d7~k

(2π)7
d7~k′

(2π)7
f̃(~k ) g̃(~k′ ) e i ~Bη(Λ~k,Λ~k′ ) ·Λ−1 ~x (4.24)

×
(

sin
(
~ |Λ~k|

)
sin

(
~ |Λ~k′ |

)

~ |Λ~k| |Λ~k′ |
| ~Bη(Λ~k, Λ~k′ )|

sin
(
~ | ~Bη(Λ~k, Λ~k′ )|

)
)6

.

This star product still provides a quantization of the brackets (4.6),

lim
~,ℓs→0

ℓ3s/~
2=constant

[f, g]•λ
i ~

= {f, g}λ .

Using the limits computed in section 4.2, the extra factors in (4.24) are simply unity in

the contraction limit λ → 0, and so the star product (4.24) still dimensionally reduces

to (2.15),

lim
λ→0

(f •λ g)(~x ) = (f ⋆ g)(x) .

It is Hermitean, (f •λ g)∗ = g∗ •λ f∗, and unital, f •λ 1 = f = 1 •λ f , but it is no longer

a Weyl star product, i.e., it does not satisfy (2.11); in particular, the star products of

plane waves e i~k · ~x •λ e i~k′ · ~x are no longer given simply by the Baker-Campbell-Hausdorff

formula. However, it is now closed,

∫
d7~x f •λ g =

∫
d7~x f g ,
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which identifies it as the Kontsevich star product; in particular, the desired 2-cyclicity

property follows:
∫
d7~x [f, g]•λ = 0. The closure condition can be regarded as the absence

of noncommutativity (and nonassociativity) among free fields.

Under the gauge transformation (4.21) the star associator and Jacobiator transform

covariantly:

A•λ(f, g, h) = D−1A⋆λ(Df,Dg,Dh) and [f, g, h]•λ = D−1[Df,Dg,Dh]⋆λ .

The star product (4.9) is alternative on the space of Schwartz functions, and since the

differential operator D preserves this subspace it follows that the star product (4.24) is

also alternative on Schwartz functions, i.e., it satisfies

A•λ(f, g, h) =
1
6 [f, g, h]•λ . (4.25)

By 2-cyclicity the integrated star Jacobiator of Schwartz functions vanishes, and together

with (4.25) we arrive at the desired 3-cyclicity property
∫

d7~x (f •λ g) •λ h =

∫
d7~x f •λ (g •λ h) .

This property can be regarded as the absence on-shell of nonassociativity (but not non-

commutativity) among cubic interactions of fields.

4.4 Uncertainty relations

The closure and cyclicity properties of the gauge equivalent star product •λ enable a con-

sistent formulation of nonassociative phase space quantum mechanics, along the lines given

in [45] (see also [46], section 4.5 for a review). In particular, this framework provides a

concrete and rigorous derivation of the novel uncertainty principles which are heuristically

expected to arise from the commutation relations (4.13) that quantize the brackets (4.6)

and (4.7) capturing the nonassociative geometry of the M-theory R-flux background. It

avoids the problems arising from the fact that our nonassociative algebras are not alterna-

tive (which has been the property usually required in previous treatments of nonassocia-

tivity in quantum mechanics).

In this approach, observables f are real-valued functions on the seven-dimensional

phase space that are multiplied together with the star product (4.24); dynamics in the

quantum theory with classical Hamiltonian H is then implemented via the time evolution

equations
∂f

∂t
=

i

~
[H, f ]•λ .

States are characterized by normalized phase space wave functions ψa and statistical prob-

abilities µa. Expectation values are computed via the phase space integral

〈f〉 =
∑

a

µa

∫
d7~x ψ∗

a •λ (f •λ ψa) ,

which using closure and cyclicity can be expressed in terms of a normalized real-valued

state function S =
∑

a µa ψa •λ ψ∗
a as 〈f〉 =

∫
d7~x f S.
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From the non-vanishing Jacobiators (4.7) in the present case we expect in fact to obtain

a coarse graining of the M-theory phase space, rather than just the configuration space as

it happens in the reduction to the string theory R-flux background [45]. This can be

quantified by computing the expectation values of oriented area and volume uncertainty

operators following the formalism of [45]. In this prescription, we can define the area

operator corresponding to directions xA, xB as

A
AB = Im

(
[x̃A, x̃B]•λ

)
= − i

(
x̃A •λ x̃B − x̃B •λ x̃A

)
, (4.26)

while the volume operator in directions xA, xB, xC is

V
ABC = 1

3 Re
(
x̃A •λ [x̃B, x̃C ]•λ + x̃C •λ [x̃A, x̃B]•λ + x̃B •λ [x̃C , x̃A]•λ

)
, (4.27)

where x̃A := xA − 〈xA〉 are the operator displacements appropriate to the description of

quantum uncertainties. Explicit computations using the fact that the star product •λ is

alternative on monomials give the operators (4.26) and (4.27) as

A
AB = 2 ~λABC x̃C and V

ABC = 1
6 [x̃

A, x̃B, x̃C ]•λ = 2 ~2 λABCD x̃D . (4.28)

Let us now write the expectation values of the operators (4.28) in components. For

the fundamental area measurement uncertainties (or minimal areas) we obtain

〈Aij〉 = ℓ3s
~

∣∣R4,ijk4 〈pk〉
∣∣ and 〈A4i〉 = λ ℓ3s

~

∣∣R4,1234 〈pi〉
∣∣ , (4.29)

〈Axi,pj 〉 = ~
∣∣δij 〈x4〉+ λ εijk 〈xk〉

∣∣ and 〈Ax4,pi〉 = λ2 ~ 〈xi〉 ,

〈Api,pj 〉 = λ ~
∣∣εijk 〈pk〉

∣∣ .

The first expression 〈Aij〉 demonstrates, as in the string theory case [45], an area uncer-

tainty on M proportional to the magnitude of the transverse momentum, while the second

expression 〈A4i〉 gives area uncertainties along the M-theory circle proportional to the mo-

mentum transverse to the fibre direction. The third expression 〈Axi,pj 〉 describes phase

space cells of position and momentum in the same direction with area ~ |〈x4〉|, together
with new cells proportional to the transverse directions; in the contraction limit λ = 0

it reduces to the standard minimal area (for x4 = 1) governed by the Heisenberg uncer-

tainty principle. For λ 6= 0 the area uncertainties 〈Axµ,pi〉 suggest that there are new

limitations to the simultaneous measurements of transverse position and momentum in the

seven-dimensional M-theory phase space, induced by a non-zero string coupling constant

gs, although we will see below that this interpretation is somewhat subtle. The final ex-

pression 〈Api,pj 〉 is also a new area uncertainty particular to M-theory, yielding cells in

momentum space with area proportional to λ ~ (and to the magnitude of the transverse

momentum), a point to which we return in section 4.6.

For the fundamental volume measurement uncertainties (or minimal volumes) we

obtain

〈Vijk〉 = ℓ3s
2

∣∣R4,ijk4 〈x4〉
∣∣ and 〈Vij4〉 = λ2 ℓ3s

2

∣∣R4,ijk4 〈xk〉
∣∣ ,

〈Vpi,x
j ,xk〉 = λ ℓ3s

2

∣∣R4,1234
(
δji 〈pk〉 − δki 〈pj〉

)∣∣ and 〈Vpi,x
j ,x4〉 = λ2 ℓ3s

2 R4,ijk4 〈pk〉 ,
〈Vpi,pj ,x

k〉 = λ ~2

2

∣∣λ εijk 〈x4〉+ δkj 〈xi〉 − δki 〈xj〉
∣∣ and 〈Vpi,pj ,x

4〉 = λ3 ~2

2

∣∣εijk 〈xk〉
∣∣ . (4.30)
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They demonstrate volume uncertainties in position coordinates xµ, xν , xα proportional

to the magnitude of the transverse coordinate direction; in particular, there is a volume

uncertainty on M proportional to the magnitude of the circle fibre coordinate x4, which

reduces for x4 = 1 to the expected minimal volume in non-geometric string theory [45].

A geometric interpretation of these position volume uncertainties will be provided in sec-

tion 4.5. There are also phase space cubes for position and momentum in the same direction

as well as in transverse directions, reflecting the fact that the corresponding nonassociating

triples of M-theory phase space coordinates cannot be measured simultaneously to arbi-

trary precision; these new volume uncertainties vanish in the contraction limit λ = 0. In

the string theory limit the volume uncertainties can be interpreted as the non-existence

of D-particles in the R-flux background due to the Freed-Witten anomaly in the T-dual

H-flux frame [15, 30]; it would interesting to understand the corresponding meaning in the

presence of non-geometric M-theory R-fluxes, which involves the full seven-dimensional

M-theory phase space. However, there are no minimal volumes in momentum space, as we

discuss further in section 4.6.

The present situation is much more complicated in the case of the actual quantum

uncertainty principles imposing limitations to position and momentum measurements; they

encode positivity of operators in nonassociative phase space quantum mechanics [45]. To

calculate the uncertainty relations amongst phase space coordinates, we use the Cauchy-

Schwarz inequality derived in [45] to obtain the uncertainty relations

∆xA∆xB ≥ 1
2

∣∣〈[xA, xB]◦λ
〉∣∣ , (4.31)

where

[xA, xB]◦λ •λ ψ := xA •λ (xB •λ ψ)− xB •λ (xA •λ ψ) (4.32)

for any phase space wave function ψ.

We first observe that from (4.10) one obtains the commutator

[x̂A, x̂B] = 2 i ~λABC x̂C − 4 ~2 λABDE xE ∂D . (4.33)

It is easy check that in the limit λ → 0 the relations (4.33) reproduce the algebra of

differential operators (2.8) for the string theory R-flux background. From the contraction

identity (3.7) we can rewrite (4.33) as

[x̂A, x̂B] = 2 i ~λABC x̂C + 4 ~2 λABC λCDE xE ∂D + xB ∂̄A − xA ∂̄B ,

where (
∂̄A

)
:= 4 ~2

(
ΛBA ∂̃B

)
=

(
λ ℓ3s R ∇x , λ3 ℓ3s R

∂
∂x4 , λ

2 ~2 ∇p

)
.

Next we calculate

xA ⋆λ (xB ⋆λ ψ)− xB ⋆λ (xA ⋆λ ψ) = [x̂A, x̂B] ⊲ ψ (4.34)

= 2 i ~λABC (xC ⋆λ ψ − 2 i ~λCDE xE ∂Dψ)

+ (xB ∂̄A − xA ∂̄B) ⊲ ψ

= 2 i ~λABC ψ ⋆λ xC + (xB ∂̄A − xA ∂̄B) ⊲ ψ .
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To translate the expression (4.34) into the definition (4.32) via the closed star product •λ,
we use the gauge transformation (4.22) to obtain

[xA, xB]◦λ •λ ψ = D−1
(
xA ⋆λ (xB ⋆λ Dψ)− xB ⋆λ (xA ⋆λ Dψ)

)
(4.35)

= D−1
(
2 i ~λABC Dψ ⋆λ xC + (xB ∂̄A − xA ∂̄B) ⊲Dψ

)

= 2 i ~λABC ψ •λ xC + (xB ∂̄A − xA ∂̄B) ⊲ ψ ,

where in the last equality we used D = D(~2 △̃~x).

The explicit computation of the uncertainty relations (4.31) is complicated by the

second term in the last line of (4.35). The differential operator xA ∂̄B − xB ∂̄A is of order

O(λ), and it can be regarded as a generator of “twisted” rotations in the phase space plane

spanned by the vectors xA and xB; in the limit λ → 0, the result (4.35) reproduces exactly

the corresponding calculation from ([45], eq. (5.33)) where this problem does not arise. If

we restrict to states which are rotationally invariant in this sense, so that the corresponding

wave functions ψ obey (xB ∂̄A−xA ∂̄B)⊲ψ = 0, and which obey the “symmetry” condition

of [45], then the corresponding uncertainty relations (4.31) for phase space coordinate

measurements reads as

∆xA∆xB ≥ ~
∣∣λABC 〈xC〉

∣∣ ,

with similar interpretations as those of the area measurement uncertainties derived

in (4.29). However, the uncertainty relations (4.31) seem too complicated to suggest a

universal lower bound which does not depend on the choice of state.

4.5 Configuration space triproducts and nonassociative geometry

Thus far all of our considerations have applied to phase space, and it is now natural to

look at polarizations which suitably reduce the physical degrees of freedom as is neces-

sary in quantization. From the perspective of left-right asymmetric worldsheet conformal

field theory, closed strings probe the nonassociative deformation of the R-flux background

through phase factors that turn up in off-shell correlation functions of tachyon vertex op-

erators, which can be encoded in a triproduct of functions on configuration space M [14];

this triproduct originally appeared in [24, 55] (see also [12]) as a candidate deformation

quantization of the canonical Nambu-Poisson bracket on R3. This geometric structure was

generalised to curved spaces with non-constant fluxes within the framework of double field

theory in [15], and in [2] it was shown that these triproducts descend precisely from polar-

isation of the phase space star product along the leaf of zero momentum p = 0 in phase

space T ∗M . Although at present we do not have available a quantum theory that would

provide an M2-brane analog of the computation of conformal field theory correlation func-

tions for closed strings propagating in constant non-geometric R-flux compactifications, we

can imitate this latter reduction of the phase space star product in our case and derive

triproducts which geometrically describe the quantization of the four-dimensional M-theory

configuration space.
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For this, we consider functions which depend only on configuration space coordinates,

that we denote by ~x0 = (x, x4,0) ∈ R4, and define the product

(
f △

(2)

λ g
)
(~x0) := (f ⋆λ g)(x, x4,p)

∣∣
p=0

=

∫
d4~k

(2π)4
d4~k′

(2π)4
f̃(~k ) g̃(~k′ ) e i ~Bη(Λ~k,Λ~k′ ) ·Λ−1 ~x0 .

From (3.36) we see that the cross product of four-dimensional vectors ~k = (0,k, k4) ∈ R4

gives

Λ~k×η Λ~k′ = λ ℓ3s R
4~2

(
− k×ε k

′ + λ k′4 k − λ k4 k
′ , 0 , 0

)
,

and it is therefore orthogonal to Λ−1 ~x0, i.e.,
(
Λ~k×η Λ~k′

)
·Λ−1 ~x0 = 0. Hence the source

of noncommutativity and nonassociativity vanishes in this polarization, and using the vari-

ables (4.14) we can write the product succinctly as

(
f △

(2)

λ g
)
(~x0) =

∫
d4~k

(2π)4
d4~k′

(2π)4
f̃(~k ) g̃(~k′ ) e i ~T

(2)
Λ (~k,~k′ ) ·Λ−1 ~x0 , (4.36)

where we introduced the deformed vector sum

~T (2)

Λ (~k,~k′ ) =
sin−1

∣∣~pΛ ⊛η ~p
′
Λ

∣∣
~
∣∣~pΛ ⊛η ~p ′

Λ

∣∣
(√

1−
∣∣~p ′

Λ

∣∣2 ~pΛ +
√
1−

∣∣~pΛ
∣∣2 ~p ′

Λ

)
.

It has a perturbative expansion given by

Λ−1 ~T (2)

Λ (~k,~k′ ) = ~k + ~k′ +O
(√

λ
)
.

The product (4.36) inherits properties of the phase space star product ⋆λ; in particular,

since ~T (2)

Λ (~k,~0 ) = ~k = ~T (2)

Λ (~0, ~k ), it is unital:

f △
(2)

λ 1 = f = 1 △
(2)

λ f .

It is commutative and associative, as expected from the area uncertainties 〈Aµν〉 of (4.29)
in this polarisation; from the limits (4.15) and (4.16) it follows that it reduces at λ = 0

to the ordinary pointwise product of fields on R3, as anticipated from the corresponding

string theory result [2, 14]. However, the product (4.36) is not generally the pointwise

product of functions on R4, f △
(2)

λ g 6= f g; in particular

xµ △
(2)

λ f = xµ f + ~2
(
xµ △̃~x0

− (~x0 · ∇̃~x0
) ∂̃µ

)
χ
(
~2 △̃~x0

)
⊲ f ,

so that off-shell membrane amplitudes in this case experience a commutative and associative

deformation. Moreover,
∫
d4~x0 f △

(2)

λ g 6=
∫

d4~x0 f g, but this can be rectified by defining

instead a product N
(2)

λ based on the closed star product (4.24); then
∫
d4~x0 fN(2)

λ g =∫
d4~x0 f g.

Next we define a triproduct for three functions f , g and h of ~x0 = (x, x4) ∈ R4 by a

similar rule:

(
f △

(3)

λ g △
(3)

λ h
)
(~x0) :=

(
(f ⋆λ g) ⋆λ h

)
(x, x4,p)

∣∣
p=0

.
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As before, the Fourier integrations truncate to four-dimensional subspaces and we can write

(
f △

(3)

λ g △
(3)

λ h
)
(~x0) =

∫
d4~k

(2π)4
d4~k′

(2π)4
d4~k′′

(2π)4
f̃(~k ) g̃(~k′ ) h̃(~k′′ ) e i ~Bη( ~Bη(Λ~k,Λ~k′ ),Λ~k′′ ) ·Λ−1 ~x0 .

As in the calculation which led to (3.27), we can compute the deformed vector addition

from products of octonion exponentials

e
X~Bη(~Bη(Λ~k,Λ~k′ ),Λ~k′′ ) =

(
eX

Λ~k eX
Λ~k′

)
eX

Λ~k′′

using (3.14) and (3.15), together with the identities (3.20) and (3.25). The final result

is a bit complicated in general, but is again most concisely expressed in terms of the

variables (4.14). Exploiting again the property that the vector cross product ~p ′
Λ×η ~pΛ lives

in the orthogonal complement R3 to the four-dimensional subspace R4 in R7 containing

~pΛ, so that
(
~p ′
Λ×η ~pΛ

)
·Λ−1 ~x0 = 0, after a bit of calculation one finds that the triproduct

can be written as

(
f △

(3)

λ g △
(3)

λ h
)
(~x0) =

∫
d4~k

(2π)4
d4~k′

(2π)4
d4~k′′

(2π)4
f̃(~k ) g̃(~k′ ) h̃(~k′′ ) e i ~T

(3)
Λ (~k,~k′,~k′′ ) ·Λ−1 ~x0 , (4.37)

where we defined the deformed vector sum

~T (3)

Λ (~k,~k′,~k′′ ) =
sin−1

∣∣(~pΛ ⊛η ~p
′
Λ)⊛η ~p

′′
Λ

∣∣
~
∣∣(~pΛ ⊛η ~p ′

Λ)⊛η ~p ′′
Λ

∣∣
(
~Aη

(
~pΛ, ~p

′
Λ, ~p

′′
Λ

)
+ ǫ~p ′

Λ,~p
′′

Λ

√
1−

∣∣~p ′
Λ ⊛η ~p ′′

Λ

∣∣2 ~pΛ

+ ǫ~pΛ,~p ′′

Λ

√
1−

∣∣~pΛ ⊛η ~p ′′
Λ

∣∣2 ~p ′
Λ + ǫ~pΛ,~p ′

Λ

√
1−

∣∣~pΛ ⊛η ~p ′
Λ

∣∣2 ~p ′′
Λ

)
(4.38)

which contains the associator (3.27). It has a perturbative expansion given by

Λ−1 ~T (3)

Λ (~k,~k′,~k′′ ) =~k + ~k′ + ~k′′ + ~2

2

(
2Λ−1 ~Aη(Λ~k, Λ~k′, Λ~k′′ )

+ |Λ~k′ + Λ~k′′ |2 ~k + |Λ~k + Λ~k′′ |2 ~k′ + |Λ~k + Λ~k′ |2 ~k ′′
)
+O(λ) .

Using the triproduct (4.37), we then define a completely antisymmetric quantum 3-

bracket in the usual way by

[f1, f2, f3]
△
(3)
λ

:=
∑

σ∈S3

(−1)|σ| fσ(1) △
(3)

λ fσ(2) △
(3)

λ fσ(3) .

It reproduces the 3-brackets from (4.13) amongst linear functions that encodes the nonas-

sociative geometry of configuration space,

[xµ, xν , xα]
△
(3)
λ

= −12 ~2 λµναβ xβ

for µ, ν, α, β = 1, 2, 3, 4. For λ = 1, these are just the brackets (up to rescaling) of the 3-Lie

algebra A4,

[xµ, xν , xα]
△
(3)
1

= 3 ℓ3s Rεµναβ xβ , (4.39)

familiar from studies of multiple M2-branes in M-theory where it describes the polari-

sation of open membranes ending on an M5-brane into fuzzy three-spheres [3]; indeed,
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the brackets (4.39) quantize the standard Nambu-Poisson structure on the three-sphere

S3 ⊂ R4 of radius
√
3 ℓ3s R/~2. In the present case we are in a sector that involves only

membranes of M-theory and excludes M5-branes, but we can nevertheless interpret the

nonassociative geometry modelled on (4.39): it represents a (discrete) foliation of the M-

theory configuration space R4 by fuzzy membrane worldvolume three-spheres,6 and in this

sense our triproduct (4.37) gives a candidate deformation quantization of the standard

Nambu-Poisson structure on S3. We will say more about this perspective in section 5.

From the limits (4.15) and (4.16), together with (4.19), we see that the triproduct (4.37)

reproduces that of the string theory configuration space R3 in the contraction limit λ →
0 [2, 14]; in particular

lim
λ→0

[xi, xj , xk]
△
(3)
λ

= −3 ℓ3s Rεijk . (4.40)

Thus while the string theory triproduct represents a deformation quantization of the

Nambu-Heisenberg 3-Lie algebra, its lift to M-theory represents a deformation quanti-

zation of the 3-Lie algebra A4. Since the associator ~Aη

(
~pΛ, ~p

′
Λ, ~p

′′
Λ

)
is ~0 whenever any

of its arguments is the zero vector, using (3.21) we have ~T (3)

Λ (~k,~k′,~0 ) = ~T (3)

Λ (~k,~0, ~k′ ) =
~T (3)

Λ (~0, ~k,~k′ ) = ~T (2)

Λ (~k,~k′ ) and so we obtain the unital property

f △
(3)

λ g △
(3)

λ 1 = f △
(3)

λ 1 △
(3)

λ g = 1 △
(3)

λ f △
(3)

λ g = f △
(2)

λ g ,

as expected from the λ → 0 limit [2, 14]. However, in contrast to the string theory

triproduct, here the M-theory triproduct does not trivialise on-shell, i.e.,
∫
d4~x0 f △

(3)

λ

g △
(3)

λ h 6=
∫
d4~x0 f g h. This is again related to the fact that the precursor phase space

star product ⋆λ is not closed, and presumably one can find a suitable gauge equivalent

triproduct N(3)

λ analogous to the closed star product •λ that we derived in section 4.3. In

section 5 we will give a more intrinsic definition of this triproduct in terms of an underlying

Spin(7)-symmetric 3-algebra on the membrane phase space.

We close the present discussion by sketching two generalisations of these constructions

in light of the results of [2, 14, 15]. Firstly, one can generalize these derivations to work

out explicit n-triproducts for any n ≥ 4, which in the string theory case would represent

the off-shell contributions to n-point correlation functions of tachyon vertex operators in

the R-flux background [14]. For functions f1, . . . , fn of ~x0 = (x, x4) ∈ R4 we set

(
f1 △

(n)

λ · · · △(n)

λ fn
)
(~x0) :=

((
· · ·

(
(f1 ⋆λ f2) ⋆λ f3

)
⋆λ · · ·

)
⋆λ fn

)
(x, x4,p)

∣∣
p=0

=

∫ n∏

a=1

d4~ka
(2π)4

f̃a(~ka) e i ~Bη( ~Bη(...,( ~Bη(Λ~k1,Λ~k2),Λ~k3),... ),Λ~kn) ·Λ−1 ~x0

and as before the nested compositions of vector additions can be computed from products

of corresponding octonion exponentials
(
· · ·

(
( e

X
Λ~k1 e

X
Λ~k2 ) e

X
Λ~k3

)
· · ·

)
eX

Λ~kn . The cal-

culation simplifies again by dropping all vector cross products Λ~ka×η Λ~kb (which do not

contribute to the inner product with Λ−1 ~x0), by correspondingly dropping many higher

6See e.g. [23] for an analogous description of a noncommutative deformation of R3 in terms of discrete

foliations by fuzzy two-spheres.
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iterations of associator terms using the contraction identity (3.9), and by making repeated

use of the identities from section 3.3. Here we only quote the final result:

(
f1 △

(n)

λ · · · △(n)

λ fn
)
(~x0) =

∫ n∏

a=1

d4~ka
(2π)4

f̃a(~ka) e i ~T
(n)
Λ (~k1,...,~kn) ·Λ−1 ~x0 ,

where

~T (n)

Λ (~k1, . . . ,~kn) =
sin−1

∣∣( · · ·
(
(~p1Λ ⊛η ~p2Λ)⊛η ~p3Λ

)
⊛η · · ·

)
⊛η ~pnΛ

∣∣
~
∣∣( · · ·

(
(~p1Λ ⊛η ~p2Λ)⊛η ~p3Λ

)
⊛η · · ·

)
⊛η ~pnΛ

∣∣

×
( n∑

a=1

√
1−

∣∣( · · ·
(
(~p1Λ ⊛η ~p2Λ)⊛η · · ·

)
⊛η ~̂paΛ

)
⊛η · · ·

)
⊛η ~pnΛ

∣∣2 ǫa ~paΛ

×
∑

a<b<c

√
1−

∣∣( · · ·
(
~p1Λ ⊛η · · ·

)
⊛η ~̂paΛ

)
⊛η · · ·

)
⊛η ~̂pbΛ

)
⊛η · · ·

)
⊛η ~̂pcΛ

)
⊛η · · ·

)
⊛η ~pnΛ

∣∣2

× ǫabc ~Aη

(
~paΛ, ~pbΛ, ~pcΛ

))

and ~̂paΛ denotes omission of ~paΛ for a = 1, . . . , n; here we abbreviated signs of square roots

analogous to those in (4.38) by ǫa and ǫabc. Again we see that

~T (n)

Λ

(
~k1, . . . , (~ka=~0 ), . . . ,~kn

)
= ~T (n−1)

Λ

(
~k1, . . . , ~̂ka, . . . ,~kn

)
,

which implies that the n-triproducts obey the expected unital property

f1 △
(n)

λ · · · △(n)

λ (fa=1) △(n)

λ · · · △(n)

λ fn = f1 △
(n−1)

λ · · · △(n−1)

λ f̂a △
(n−1)

λ · · · △(n−1)

λ fn

for a = 1, . . . , n. As previously, these n-triproducts reduce to those of the string theory

R-flux background in the limit λ → 0 [2, 14].

Secondly, one can consider more general foliations of the M-theory phase space by

leaves of constant momentum p = p̄. This would modify the product (4.36) by introducing

phase factors

exp

(
sin−1

∣∣~pΛ ⊛η ~p
′
Λ

∣∣
~
∣∣~pΛ ⊛η ~p ′

Λ

∣∣
i ℓ3s
2~2

R p̄ ·
(
pΛ×ε p

′
Λ + λ pΛ4 p

′
Λ − λ p′Λ4 pΛ

))

= exp

(
i ℓ3s
2~

R p̄ ·
(
k×ε k

′ + λ k4 k
′ − λ k′4 k

)
+O

(√
λ
))

into the integrand, exactly as for the Moyal-Weyl type deformation of the string theory R-

flux background which is obtained at λ = 0 [2] (see (2.14)). This turns the product △(2)

λ into

a noncommutative (but still associative) star product. One can likewise include such phase

factors into the calculations of higher n-triproducts △(n)

λ to obtain suitable noncommutative

deformations. In the string theory setting, the physical meaning of these non-zero constant

momentum deformations is explained in [2], and it would be interesting to understand their

interpretation in the M-theory lift.
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4.6 Noncommutative geometry of momentum space

Polarisation along leaves of constant momentum is of course not the only possibility; see [2]

for a general discussion of polarised phase space geometry in our context. A natural alter-

native polarisation is to set xµ = 0 and restrict to functions on momentum space p ∈ R3.

This is particularly interesting in the M-theory R-flux background: in the string theory

case momentum space itself undergoes no deformation, whereas here we see from the brack-

ets (4.6) and (4.7) that momentum space experiences a noncommutative, but associative,

deformation by the M-theory radius λ alone. As pointed out already in section 3.6, in this

polarisation the nonassociative star product (4.9) reproduces the associative star product

on R3 for quantisation of the dual of the Lie algebra su(2). Unlike the star product of

configuration space functions, the star product ⋆λ restricts to the three-dimensional mo-

mentum space, so the projections employed in section 4.5 are not necessary and one can

work directly with the star product restricted to R3; for functions f and g of p ∈ R3 it

reads as

(f ⋆λ g)(p) =

∫
d3l

(2π)3
d3l′

(2π)3
f̃(l) g̃(l′ ) e− 2 i

λ
Bε(−λ

2
l,−λ

2
l′) ·p . (4.41)

Thus the M-theory momentum space itself experiences an associative, noncommutative

deformation of its geometry, independently of the R-flux. We will say more about this

purely membrane deformation in section 5.

We can understand this noncommutative deformation by again restricting configura-

tion space coordinates to the three-sphere (x, x4) ∈ S3 ⊂ R4 of radius 1
λ , similarly to

the fuzzy membrane foliations we described in section 4.5, although the present discussion

also formally applies to a vanishing R-flux. Then on the upper hemisphere x4 ≥ 0 the

quantization of the brackets (4.6) yields the star commutators

[pi, pj ]⋆λ = − i ~λ εijk p
k and [xi, pj ]⋆λ = i ~λ

√
1
λ2 − |x|2 δij + i ~λ εijk x

k .

These commutation relations reflect the fact that the configuration space is curved: they

show that the momentum coordinates p are realised as right-invariant derivations on config-

uration space S3 ⊂ R4, and as a result generate the brackets of the Lie algebra su(2). This

noncommutativity has bounded position coordinates, which is consistent with the minimal

momentum space areas 〈Api,pj 〉 computed in (4.29). At weak string coupling λ = 0, the

three-sphere decompactifies and one recovers the canonical quantum phase space algebra

of flat space R3. The star product (4.41) enables order by order computations of M-theory

corrections to closed string amplitudes in this sense. The noncommutative geometry here

parallels that of three-dimensional quantum gravity [26], where however the roles of posi-

tion and momentum coordinates are interchanged.

5 Spin(7)-structures and M-theory 3-algebra

In this final section we shall describe some preliminary steps towards extending the quan-

tum geometry of the R-flux compactification described in section 4 to the full eight-

dimensional M-theory phase space. It involves replacing the notion of G2-structure with
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that of a Spin(7)-structure and the quasi-Poisson algebra with a suitable 3-algebra, as

anticipated on general grounds in lifts of structures from string theory to M-theory. We

show, in particular, that quantisation of this 3-algebra naturally encompasses the triprod-

ucts from section 4.5 and the deformed geometry of the membrane momentum space from

section 4.6.

5.1 Triple cross products

The constructions of this section will revolve around the linear algebraic notion of a triple

cross product on an eight-dimensional real inner product space W [32, 33, 53]. For three

vectors K,K ′,K ′′ ∈ W = R8, their triple cross product K×φK
′×φK

′′ ∈ W is defined by

(K×φK
′
×φK

′′ )Â := φÂB̂ĈD̂ KB̂ K ′ Ĉ K ′′ D̂ , (5.1)

where Â, B̂, · · · = 0, 1, . . . , 7 and φÂB̂ĈD̂ is a completely antisymmetric tensor of rank four

with the nonvanishing values

φÂB̂ĈD̂ = +1 for ÂB̂ĈD̂ = 0123, 0147, 0165, 0246, 5027, 3045, 3076,

4567, 2365, 2374, 1537, 2145, 2176, 3164 .

It can be written more succinctly in terms of the structure constants of the octonion

algebra O as

φ0ABC = ηABC and φABCD = ηABCD . (5.2)

Following [34, 35], the tensor φÂB̂ĈD̂ satisfies the self-duality relation

εÂB̂ĈD̂ÊF̂ ĜĤ φÊF̂ ĜĤ = φÂB̂ĈD̂ ,

where εÂB̂ĈD̂ÊF̂ ĜĤ is the alternating symbol in eight dimensions normalized as ε01234567 =

+1. It also obeys the contraction identity

φÂB̂ĈD̂ φÂ′B̂′Ĉ′D̂ = δÂÂ′ δB̂B̂′ δĈĈ′ + δÂB̂′ δB̂Ĉ′ δĈÂ′ + δÂĈ′ δB̂Â′ δĈB̂′ (5.3)

− δÂÂ′ δB̂Ĉ′ δĈB̂′ − δÂB̂′ δB̂Â′ δĈĈ′ − δÂĈ′ δB̂B̂′ δĈÂ′

− δÂÂ′ φB̂ĈB̂′Ĉ′ − δB̂Â′ φĈÂB̂′Ĉ′ − δĈÂ′ φÂB̂B̂′Ĉ′

− δÂB̂′ φB̂ĈĈ′Â′ − δB̂B̂′ φĈÂĈ′Â′ − δĈB̂′ φÂB̂Ĉ′Â′

− δÂĈ′ φB̂ĈÂ′B̂′ − δB̂Ĉ′ φĈÂÂ′B̂′ − δĈĈ′ φÂB̂Â′B̂′ .

Despite its appearance, the triple cross product is not a simple iteration of the cross

product ×η , but it can also be expressed in terms of the algebra of octonions. For this,

we choose a split W = R ⊕ V with K = (k0, ~k ) ∈ W , and consider the octonion XK :=

k0 1 + kA eA together with its conjugate X̄K := k0 1 − kA eA. As the commutator of two

octonions is purely imaginary, the cross product from (3.12) can in fact be expressed in

terms of eight-dimensional vectors as

X~k×η
~k′

= 1
2

[
XK , XK′

]
. (5.4)
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The natural extension of (5.4) to three vectors K,K ′,K ′′ ∈ W is the antisymmetrization

of
(
XK X̄K′

)
XK′′ , which can be simplified by repeated use of properties of the octonion

algebra to give

XK×φ K′ ×φ K′′ = 1
2

(
(XK X̄K′)XK′′ − (XK′′ X̄K′)XK

)
. (5.5)

This trilinear product satisfies the defining properties of triple cross products [53]:

(TC1) K1×φK2×φK3 = (−1)|σ|Kσ(1)×φKσ(2)×φKσ(3) for all permutations σ ∈ S3 ;

(TC2) K1 · (K2×φK3×φK4) = −K2 · (K1×φK3×φK4) ;

(TC3) |K1×φK2×φK3| = |K1 ∧K2 ∧K3| .

From the definitions above it follows that

K×φK
′
×φK

′′ =
(
~k · (~k′×η

~k′′ ) , (5.6)
1
12

~Jη(~k,~k
′,~k′′ )− k0 (~k

′
×η

~k′′ )− k′0 (
~k′′×η

~k )− k′′0 (
~k×η

~k′ )
)
.

Only rotations in the 21-dimensional spin group Spin(7) ⊂ SO(8) preserve the triple cross

product, where the action of Spin(7) can be described as the transitive action on the unit

sphere S7 ⊂ W identified with the homogeneous space S7 ≃ Spin(7)/G2; the Lie group

Spin(7) is isomorphic to the double cover of SO(7), with the two copies of SO(7) corre-

sponding to the upper and lower hemispheres of S7 and G2 the unique lift to a subgroup

of Spin(7). A Spin(7)-structure on an oriented eight-dimensional vector space W is the

choice of a triple cross product that can be written as (5.1) in a suitable oriented frame.

An important feature of a Spin(7)-structure is that it can be used to generate G2-

structures. For this, let k̂ ∈ W be a fixed unit vector and let Vk̂ be the orthogonal

complement to the real line spanned by k̂ in W . Then W = R ⊕ Vk̂, and using (5.2) the

seven-dimensional subspace Vk̂ carries a cross product ([53], Theorem 6.15)

~k×k̂
~k′ := k̂×φ

~k×φ
~k′ , (5.7)

for ~k,~k′ ∈ Vk̂.

5.2 Phase space 3-algebra

Let us set λ = 1, and consider the symmetries underlying the quasi-Poisson bracket rela-

tions (4.6) and (4.7). For this, we rewrite the bivector (3.31) in component form as

Θη = 1
2 εijk ξk

∂
∂ξi

∧ ∂
∂ξj

+ ξi
(

∂
∂σ4 ∧ ∂

∂σi + εijk
∂

∂σj ∧ ∂
∂σk

)
− ∂

∂ξi
∧
(
σ4 ∂

∂σi + εijk σ
j ∂
∂σk

)
.

From our discussion of G2-structures from section 3.2, it follows that this bivector is invari-

ant under the subgroup G2 ⊂ SO(7) which is generated by antisymmetric 7 × 7 matrices

S = (sAB) satisfying ηABC sBC = 0 for A = 1, . . . , 7. Applying the affine transforma-

tion (4.3) (with λ = 1) generically breaks this symmetry to an SO(4) × SO(3) subgroup

of SO(7). As G2 contains no nine-dimensional subgroups (the maximal compact subgroup

SU(3) ⊂ G2 is eight-dimensional), the residual symmetry group is G2 ∩
(
SO(4) × SO(3)

)
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(see e.g. [41] for a description of the corresponding regular subalgebra G2[α] of the Lie

algebra of G2). This exhibits the non-invariance of the quasi-Poisson algebra under SL(4)

and SL(3) observed in [30]; however, as also noted by [30], the SL(3) symmetry is restored

in the contraction limit by the discussion of section 3.6, and indeed the string theory quasi-

Poisson algebra and its quantization from section 2 are SL(3)-invariant, being based on the

three-dimensional cross product.

This symmetry breaking may be attributed to the specific choice of frame wherein

the R-flux has non-vanishing components R4,µναβ and the momentum constraint (4.2) is

solved by p4 = 0. In [30] it is suggested that this constraint could be implemented in a

covariant fashion on the eight-dimensional phase space by the introduction of some sort

of “Nambu-Dirac bracket”. Here we will offer a slightly different, but related, explicit

proposal for such a construction based on the Spin(7)-structures introduced in section 5.1.

The impetus behind this proposal is that, in the lift from string theory to M-theory, 2-

brackets should be replaced by suitable 3-brackets, as has been observed previously on

many occasions (see e.g. [3, 31] for reviews); it is naturally implied by the Lie 2-algebra

structure discussed at the beginning of section 3.5. This is prominent in the lift via T-

duality of the SO(3)-invariant D1-D3-brane system in IIB string theory to the SO(4)-

symmetric M2-M5-brane system wherein the underlying Lie algebra su(2), representing the

polarisation of D1-branes into fuzzy two-spheres S2
F , is replaced by the 3-Lie algebra A4,

representing the polarization of M2-branes into fuzzy three-spheres S3
F (see e.g. [23, 50–52]

for reviews in the present context); we have already adapted a similar point of view in our

considerations of sections 4.5 and 4.6. Based on this, the BLG model uses a 3-algebra for the

underlying gauge symmetry to construct the N = 2 worldvolume theory on the M-theory

membrane, which is related to N = 6 Chern-Simons theories, while the Moyal-Weyl type

deformation of the coordinate algebra of D3-branes in a flat two-form B-field background

of 10-dimensional supergravity lifts to Nambu-Heisenberg 3-Lie algebra type deformations

of the coordinate algebra of M5-branes in a flat three-form C-field background of 11-

dimensional supergravity [21]. If we moreover adopt the point of view of [44] that closed

strings in R-flux compactifications should be regarded as boundary degrees of freedom of

open membranes whose topological sector is described by an action that induces a phase

space quasi-Poisson structure on the boundary, then this too has a corresponding lift to M-

theory: in that case the action for an open topological 4-brane induces a 3-bracket structure

on the boundary [47], regarded as the worldvolume of M2-branes in the M-theory R-flux

background.

Taking this perspective further, we will adapt the point of view of [20]: in some systems

with gauge symmetry, 3-brackets {{f, g, h}} of fields can be defined without gauge-fixing,

in contrast to quasi-Poisson brackets which depend on a gauge choice, such that for any

gauge-fixing condition G = 0 the quasi-Poisson bracket {f, g}G in that gauge is simply

given by {f, g}G = {{f, g,G}}. This is analogous to the procedure of reducing a 3-Lie

algebra to an ordinary Lie algebra by fixing one slot of the 3-bracket (see e.g. [23, 55]),

and it can be used to dimensionally reduce the BLG theory of M2-branes to the maxi-

mally supersymmetric Yang-Mills theory of D2-branes [42]. It is also reminescent of the

relation (5.7) between cross products and triple cross products, which motivates an appli-
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cation of this construction to the full eight-dimensional M-theory phase space subjected to

the constraint (4.2). Writing Ξ = (ξ0, ~ξ ) ∈ R8, we extend the G2-symmetric bivector Θη

to the Spin(7)-symmetric trivector

Φ := 1
3 φÂB̂ĈD̂ ΞD̂ ∂

∂ΞÂ
∧ ∂

∂ΞB̂
∧ ∂

∂ΞĈ
= ∂

∂ξ0
∧Θη + ηABCD ξD

∂
∂ξA

∧ ∂
∂ξB

∧ ∂
∂ξC

(5.8)

which generates a 3-algebra structure on coordinate functions C[Ξ] with 3-brackets

{{
ΞÂ, ΞB̂, ΞĈ

}}
φ
= 2φÂB̂ĈD̂ ΞD̂ .

The trivector (5.8) is a Nambu-Poisson tensor if these 3-brackets satisfy the fundamental

identity [55], thus defining a 3-Lie algebra structure on C[Ξ], so the Jacobiator (2.3) is now

replaced by the 5-bracket

{f1, f2, g, h, k}φ := {{f1, f2, {{g, h, k}}φ}}φ − {{{{f1, f2, g}}φ, h, k}}φ
−{{g, {{f1, f2, h}}φ, k}}φ − {{g, h, {{f1, f2, k}}φ}}φ ,

which is natural from the index structure of the M-theory R-flux. One can compute it

explicitly on linear functions ΞÂ by using the contraction identity (5.3) to get

{ΞÂ, ΞB̂, ΞĈ , ΞD̂, ΞÊ}φ = 12
(
δÂĈ φD̂ÊB̂F̂ + δÂD̂ φÊĈB̂F̂ + δÂÊ φĈD̂B̂F̂

− δB̂Ĉ φD̂ÊÂF̂ − δB̂D̂ φÊĈÂF̂ − δB̂Ê φĈD̂ÂF̂

)
Ξ F̂

− 12
(
ΞÂ φB̂ĈD̂Ê − ΞB̂ φÂĈD̂Ê

)
.

To write the 3-brackets of phase space coordinates, we use (4.4) to define an affine

transformation of the vector space R8 given by X = (~x, p4) = (xµ, pµ) =
(
Λ ~ξ,−λ

2 ξ0
)
,

which we have chosen to preserve SO(4)-symmetry of momentum space; this breaks (at

λ = 1) the symmetry of the trivector (5.8) to a subgroup Spin(7) ∩
(
SO(4) × SO(4)

)
of

SO(8). Then the 3-brackets are given by

{{
xA, xB, xC

}}
φ
= −λABCD xD − 2

λ ΛAA′

ΛBB′

ΛCC′

ηA′B′C′ p4 ,
{{
p4, x

A, xB
}}

φ
= −λ

2 λ
ABC xC .

Altogether, the phase space 3-algebra of the non-geometric M-theory R-flux background is

summarised by the 3-brackets

{{xi, xj , xk}}φ = ℓ3s
2~2

R4,ijk4 x4 and {{xi, xj , x4}}φ = −λ2 ℓ3s
2~2

R4,ijk4 xk ,

{{pi, xj , xk}}φ = λ2 ℓ3s
2~2

R4,ijk4 p4 +
λ ℓ3s
2~2

R4,ijk4 pk ,

{{pi, xj , x4}}φ = λ2 ℓ3s
2~2

R4,1234 δji p4 +
λ2 ℓ3s
2~2

R4,ijk4 pk ,

{{pi, pj , xk}}φ = −λ2

2 εij
k x4 − λ

2

(
δkj xi − δki xj

)
,

{{pi, pj , x4}}φ = λ3

2 εijk x
k and {{pi, pj , pk}}φ = 2λ εijk p4 ,

{{p4, xi, xj}}φ = −λ ℓ3s
2~2

R4,ijk4 pk and {{p4, xi, x4}}φ = λ2 ℓ3s
2~2

R4,1234 pi ,

{{p4, pi, xj}}φ = λ
2 δ

j
i x

4 + λ2

2 εi
jk xk ,

{{p4, pi, x4}}φ = λ3

2 xi and {{p4, pi, pj}}φ = λ2

2 εijk p
k . (5.9)
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For any constraint

G(X) = 0

on the eight-dimensional phase space, one can now define quasi-Poisson brackets through

{f, g}G := {{f, g,G}}φ .

In particular, for the constraint function G(X) = − 2
λ p4 these brackets reproduce the quasi-

Poisson brackets {f, g}λ of the seven-dimensional phase space from section 4.1; the more

general choice G(X) = Rµ,νραβ pµ constrains the 3-algebra of the eight-dimensional phase

space to the codimension one hyperplane defined by (4.2) (which in the gauge p4 = 0

is orthogonal to the p4-direction). Moreover, setting p4 = 0 in the remaining 3-brackets

from (5.9) reduces them to the seven-dimensional phase space Jacobiators from section 4.1;

we shall see this feature at the quantum level later on. Finally, we observe that in the

limit λ → 0 reducing M-theory to IIA string theory, the only non-vanishing 3-brackets

from (5.9) are {{xi, xj , xk}}φ, which at x4 = 1 reproduce the string theory Jacobiator (2.3),

and {{p4, xI , xJ}}φ, which at x4 = 1 reproduce the bivector (2.2). This framework thereby

naturally explains the SO(4)-invariance (at λ = 1) of the M-theory brackets (4.6) and (4.7)

described in [30]: the trivector (5.8) can be alternatively modelled on the space S−(R
4)

of negative chirality spinors over R4 (which is a quaternionic line bundle over R4) with

respect to the splitting W = R4 ⊕ R4 (see e.g. [34] for details).

These consistency checks support our proposal for the M-theory phase space 3-algebra.

It suggests that in the absence of R-flux, Rµ,νραβ = 0, the brackets (5.9) describe the free

phase space 3-algebra structure of M2-branes with the non-vanishing 3-brackets

{{pi, pj , xk}} = −λ2

2 εij
k x4 − λ

2

(
δkj xi − δki xj

)
and {{pi, pj , x4}} = λ3

2 εijk x
k ,

{{pi, pj , pk}} = 2λ εijk p4 and {{p4, pi, xj}} = λ
2 δ

j
i x

4 + λ2

2 εi
jk xk ,

{{p4, pi, x4}} = λ3

2 xi and {{p4, pi, pj}} = λ2

2 εijk p
k , (5.10)

which as expected all vanish in the weak string coupling limit λ → 0. Quantization of this

3-algebra then provides a higher version of the noncommutative geometry of the M-theory

momentum space discussed in section 4.6. In the following we will provide further evidence

for these assertions.

5.3 Vector trisums

At this stage the next natural step is to quantise the 3-algebra (5.9). Although at present

we do not know how to do this in generality, we can show how the star product of section 4.2

and the configuration space triproducts of section 4.5 naturally arise from the 3-algebraic

structure of the full membrane phase space; this is based on a natural ternary extension

of the vector star sum described in section 3.3. To motivate its construction, let us first

provide an alternative eight-dimensional characterisation of the binary operation (3.18)

on the unit ball B7 ⊂ V ⊂ W . For this, we note that for arbitrary vectors P, P ′ ∈ W

one has [53]

XP XP ′ =
(
p0 p

′
0 − ~p · ~p ′

)
1+ p0X~p ′ + p′0X~p +X~p×η ~p ′ . (5.11)
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By restricting to vectors P from the unit sphere S7 ⊂ W , i.e., |P | = 1, we can easily

translate this identity to the vector star sum (3.18): we fix a hemisphere p0 = ±
√
1− |~p |2,

such that for vectors ~p, ~p ′ in the ball B7 = S7/Z2 ≃ SO(7)/G2 we reproduce the seven-

dimensional vector star sum through

X~p⊛η~p ′ = Im
(
XP ′ XP

)
= 1

2

(
XP ′ XP − X̄P X̄P ′

)
, (5.12)

where the sign factor ǫ~p,~p ′ from (3.18), which is the sign of the real part of (5.11), ensures

that the result of the vector star sum remains in the same hemisphere. This interpretation

of the vector star sum is useful for deriving various properties. For example, since the

algebra of octonions O is a normed algebra, for |P | = 1 we have |XP | = 1 and

∣∣XP ′ XP

∣∣2 =
∣∣Re(XP ′ XP )

∣∣2 +
∣∣Im(XP ′ XP )

∣∣2 = 1 .

From (5.11) and (5.12) we then immediately infer the identity (3.20).

By comparing the representation (5.4) of the vector cross product with the defini-

tion (5.12) of the vector star sum, we can apply the same reasoning to the triple cross

product represented through (5.5). We define a ternary operation on B7 = S7/Z2 ⊂ W by

X~p⊛φ~p ′⊛φ~p ′′ := Im
(
(XP XP ′)XP ′′

)
, (5.13)

and call it a vector trisum. To obtain an explicit expression for it we observe that

(XP XP ′)XP ′′ = 1
2

(
(XP XP ′)XP ′′ + (XP ′′ XP ′)XP

)
+XP ×φ P̄ ′ ×φ P ′′ ,

which leads to

~p⊛φ ~p ′
⊛φ ~p ′′ = ǫ~p,~p ′,~p ′′

(
ǫ~p ′,~p ′′

√
1−

∣∣~p ′ ⊛η ~p ′′
∣∣2 ~p+ ǫ~p,−~p ′′

√
1−

∣∣~p⊛η (−~p ′′ )
∣∣2 ~p ′ (5.14)

+ ǫ~p,~p ′

√
1−

∣∣~p⊛η ~p ′
∣∣2 ~p ′′ + ~Aη(~p, ~p

′, ~p ′′ )

+
√
1− |~p |2

(
~p ′

×η ~p
′′
)
+

√
1− |~p ′|2

(
~p ′′

×η ~p
)
+
√

1− |~p ′′|2
(
~p×η ~p

′
))

.

Here ǫ~p,~p ′,~p ′′ = ± 1 is the sign of Re
(
(XP XP ′)XP ′′

)
satisfying

ǫ~p,~p ′ = ǫ~p,~p ′,~0 = ǫ~p,~0,~p ′ = ǫ~0,~p,~p ′ ,

which as previously ensures that the result of the vector trisum remains in the same hemi-

sphere of S7. As before, since |XP | = 1 we have

∣∣(XP XP ′)XP ′′

∣∣2 =
∣∣Re

(
(XP XP ′)XP ′′

)∣∣2 +
∣∣Im

(
(XP XP ′)XP ′′

)∣∣2 = 1 .

This implies that

1−
∣∣~p⊛φ ~p ′

⊛φ ~p ′′
∣∣2 =

∣∣Re(XP XP ′)XP ′′

∣∣2

=
(√

1− |~p |2
√
1− |~p ′|2

√
1− |~p ′′ |2 −

√
1− |~p ′′|2 ~p · ~p

−
√
1− |~p |2 ~p ′

· ~p ′′ −
√
1− |~p ′|2 ~p · ~p ′′ − ~p ′′

· (~p×η ~p
′ )
)2

≥ 0 ,

which shows that the vector ~p⊛φ ~p ′
⊛φ ~p ′′ indeed also belongs to the unit ball B7 ⊂ V .
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The relation between the vector trisum ~p⊛φ ~p
′
⊛φ ~p

′′ and the vector star sum ~p⊛η ~p
′

can be described as follows. From the definitions (5.12) and (5.13) it easily follows that

~p⊛η ~p
′ = ~p⊛φ

~0⊛φ ~p ′ = ~0⊛φ ~p ′
⊛φ ~p = ~p ′

⊛φ ~p⊛φ
~0 . (5.15)

By (5.7), for p̂ = (1,~0 ) ∈ W there is an analogous relation

~p×η ~p
′ = ~p×φ p̂×φ ~p

′ = p̂×φ ~p
′
×φ ~p = ~p ′

×φ ~p×φ p̂ .

From (5.6) it follows that the antisymmetrization of the vector trisum ~p⊛φ ~p
′
⊛φ ~p

′′ repro-

duces the imaginary part of the triple cross product Im(XP ×φ P ′ ×φ P ′′); this is analogous

to the relation (3.22) between the vector star sum and the cross product. However, in

contrast to (5.4), for the antisymmetrization of the product of three octonions one sees

Im
(
XP ×φ P ′ ×φ P ′′

)
6= Im

(
X~p×φ ~p ′ ×φ ~p ′′

)
,

because the antisymmetrization of the vector trisum ~p⊛φ ~p
′
⊛φ ~p

′′ contains terms involving

p0 = ±
√
1− |~p |2.

To extend the vector trisum (5.14) over the entire vector space V ⊂ W , we again apply

the map (3.24). Then for ~k,~k′,~k′′ ∈ V , the corresponding mapping of the vector trisum is

given by

~Bφ(~k,~k
′,~k′′ ) :=

sin−1 |~p⊛φ ~p ′
⊛φ ~p ′′ |

~ |~p⊛φ ~p ′ ⊛φ ~p ′′ | ~p⊛φ ~p ′
⊛φ ~p ′′

∣∣∣∣
~p=~k sin(~ |~k|)/|~k|

. (5.16)

From (5.16) one immediately infers the following properties:

(TB1) ~Bφ(~k1,~k2,~k3) = (−1)|σ| ~Bφ(−~kσ(1),−~kσ(2),−~kσ(3)) for all permutations σ ∈ S3 ;

(TB2) ~Bη(~k,~k
′ ) = ~Bφ(~k,~0,~k

′ ) = ~Bφ(~0,~k
′,~k ) = ~Bφ(~k

′,~k,~0 ) ;

(TB3) Perturbative expansion:

~Bφ(~k,~k
′,~k′′ ) = ~k + ~k′ + ~k′′ + ~

(
~k ×η

~k′ + ~k′′ ×η
~k + ~k′ ×η

~k′′
)

+ ~2

2

(
2 ~Aη(~k,~k

′,~k ′′ )−
∣∣~k ′ + ~k ′′

∣∣2 ~k −
∣∣~k + ~k ′′

∣∣2 ~k ′ −
∣∣~k ′ + ~k

∣∣2 ~k ′′
)

+O
(
~3
)
;

(TB4) The higher associator

~Aφ(~k1,~k2,~k3, ~k4,~k5) := ~Bφ

(
~k1 , ~k2 , ~Bφ(~k3,~k4,~k5)

)
− ~Bφ

(
~Bφ(~k1,~k2,~k3) , ~k4 , ~k5

)

− ~Bφ

(
~k3 , ~Bφ(~k1,~k2,~k4) , ~k5

)
− ~Bφ

(
~k3 , ~k4 , ~Bφ(~k1,~k2,~k5)

)

is antisymmetric in all arguments.
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5.4 Phase space triproducts

We now define a triproduct on the M-theory phase space, analogously to the star product

of section 4.2, by setting

(f ⋄λ g ⋄λ h)(~x ) =
∫

d7~k

(2π)7
d7~k′

(2π)7
d7~k′′

(2π)7
f̃(~k ) g̃(~k′ ) h̃(~k′′ ) e i ~Bφ(Λ~k,Λ~k′,Λ~k′′ ) ·Λ−1 ~x , (5.17)

where as before f̃ stands for the Fourier transform of the function f and ~Bφ(~k,~k
′,~k′′ ) is the

deformed vector sum (5.16). Property (TB2) from section 5.3 implies that the triproduct

f ⋄λ g ⋄λ h is related to the star product f ⋆λ g, in precisely the same way that the triple

cross product is related to the cross product, through the unital property

f ⋆λ g = f ⋄λ 1 ⋄λ g = 1 ⋄λ g ⋄λ f = g ⋄λ f ⋄λ 1 . (5.18)

If we define a quantum 3-bracket in the usual way by

[[f1, f2, f3]]⋄λ :=
∑

σ∈S3

(−1)|σ| fσ(1) ⋄λ fσ(2) ⋄λ fσ(3) , (5.19)

then by property (TB3) it has a perturbative expansion given to lowest orders by

[[f, g, h]]⋄λ = − i ~
(
f {g, h}λ + g {h, f}λ + h {f, g}λ

)
− 3 ~2 {f, g, h}λ +O(~, λ) . (5.20)

The fact that the perturbative expansion (5.20) contains terms without derivatives can be

easily understood from the property (5.18), which together with (5.19) implies

[[f, g, 1]]⋄λ = −3 [f, g]⋆λ . (5.21)

Although this feature may seem unusual from the conventional perspective of deformation

quantization, it is exactly the quantum version of the gauge fixing of 3-brackets to 2-

brackets on the reduced M-theory phase space that we discussed in section 5.2.

All this generalises the properties of the triproducts described in section 4.5; indeed

it is easy to see that the phase space triproduct ⋄λ reduces at p = 0 to the configuration

space triproduct △
(3)

λ by comparing (5.14) and (5.16) with (4.38). In particular, it is

straightforward to show that the 3-bracket (5.19) reproduces the string theory 3-bracket

on configuration space in the collapsing limit of the M-theory circle, as in (4.40): from the

calculations of section 4.2 we find

lim
λ→0

~Bφ(Λ~k, Λ~k′ , Λ~k′′ ) ·Λ−1 ~x = (k + k′ + k′′ ) ·x+ (k4 + k′4 + k′′4 )x
4 + (l+ l′ + l′′ ) ·p

− ℓ3s R
2~ p · (k′

×ε k
′′ + k×ε k

′′ + k×ε k
′ )

+ ~
2 x

4 (k′
· l′′ − l′ ·k′′ − k′′

· l+ l′′ ·k + k · l′ − l ·k′ )

− ℓ3s R
2 x4 k · (k′

×ε k
′′ ) ,

so that in this limit the 3-bracket (5.19) for the configuration space coordinates x upon

setting p = 0 yields

lim
λ→0

[[xi, xj , xk]]⋄λ

∣∣∣
p=0

= −3 ℓ3s Rεijk .
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The phase space triproduct (5.17) also naturally quantises the 3-algebraic struc-

ture (5.10) of the membrane momentum space. Restricting (5.14) to vectors ~p = (q,0, 0)

yields a non-vanishing vector trisum of vectors q ∈ R3 with vanishing associator Jε and

cross products ×η replaced with ×ε . The restriction of the triproduct (5.17) to functions

of p alone thereby produces a non-trivial momentum space triproduct which quantises the

3-algebra (5.10).
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[17] M. Bojowald, S. Brahma, U. Büyükcam and T. Strobl, States in non-associative quantum

mechanics: Uncertainty relations and semiclassical evolution, JHEP 03 (2015) 093

[arXiv:1411.3710] [INSPIRE].

[18] M. Bojowald, S. Brahma, U. Büyükcam and T. Strobl, Monopole star products are

non-alternative, arXiv:1610.08359 [INSPIRE].

[19] A. Chatzistavrakidis and L. Jonke, Matrix theory origins of non-geometric fluxes,

JHEP 02 (2013) 040 [arXiv:1207.6412] [INSPIRE].

[20] C.-S. Chu and P.-M. Ho, D1-brane in constant RR 3-form flux and Nambu dynamics in

string theory, JHEP 02 (2011) 020 [arXiv:1011.3765] [INSPIRE].

[21] C.-S. Chu and D.J. Smith, Towards the quantum geometry of the M5-brane in a constant

C-field from multiple membranes, JHEP 04 (2009) 097 [arXiv:0901.1847] [INSPIRE].
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