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Comparison and Assessment of
Epidemic Models
Gavin J. Gibson, George Streftaris and David Thong

Abstract. Model criticism is a growing focus of research in stochastic epi-
demic modelling, following the successful addressing of model fitting and
parameter estimation via powerful computationally intensive statistical meth-
ods in recent decades. In this paper, we consider a variety of stochastic
representations of epidemic outbreaks, with emphasis on individual-based
continuous-time models, and review the range of model comparison and
assessment approaches currently applied. We highlight some of the factors
that can serve to impede checking and criticism of epidemic models such
as lack of replication, partial observation of processes, lack of prior knowl-
edge on parameters in competing models, the nonnested nature of models to
be compared, and computational challenges. Based on a wide selection of
approaches as reported in the literature, we argue that assessment and com-
parison of stochastic epidemic models is complex and often, by necessity,
idiosyncratic to specific applications. We particularly advocate following the
advice of Box [J. Amer. Statist. Assoc. 71 (1976) 791–799] to be selective re-
garding the model inadequacies for which one tests and, moreover, to be open
to the blending of classical and Bayesian ideas in epidemic model criticism,
rather than adhering to a single philosophy.

Key words and phrases: Epidemic models, model comparison, model crit-
icism, Bayesian methods, classical methods.

1. INTRODUCTION

The past three decades have seen a rapid growth in
the use of stochastic models to quantify and understand
the spread of infectious diseases in populations. With
the advent of modern computing power and methods,
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which enable stochastic epidemics to be simulated effi-
ciently and, central to this paper, to be fitted to observa-
tions of real-world epidemics, the stochastic approach
is now an essential part of the modern toolkit for statis-
tical epidemic modelling.

Key to facilitating the uptake of stochastic models,
such as those described in Section 2, was the develop-
ment of computational techniques for fitting stochas-
tic models to observations within a formal Bayesian
framework. The challenge arose due to the fact that ob-
servations of real-world epidemics are typically incom-
plete, with many aspects of the epidemic process not
being directly observed. Consequently, given observa-
tions y from an epidemic, the likelihood π(y|θ), where
θ is the model parameter vector, is often intractable.
As described in Section 2, the technique of data aug-
mentation [46] has proved invaluable in addressing this
challenge [39].

New techniques for parameter estimation facilitated
numerous studies where stochastic models were ap-
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plied to characterise the dynamics of infectious dis-
eases of humans, animals and plants. Such studies are
often motivated by the need to assess the likely efficacy
of putative control strategies [27, 9, 47, 11] and the fit-
ted models are used in predictive simulation studies. In
this context, questions of model assessment and com-
parison become particularly important.

In this paper, we discuss some challenges associated
with assessment and comparison of epidemic models
and review the range of approaches taken, highlight-
ing their reported strengths and weaknesses. We find
that assessment and comparison of stochastic epidemic
models is a nontrivial task, the optimal approach to
which depends on the practical questions that motivate
the modelling. We recommend that researchers con-
sider a wide range of approaches to model assessment
and comparison and advocate pragmatism over dogma-
tism. We particularly recommend following the advice
of Box [5] to ‘worry selectively about model inadequa-
cies’ and to target assessment methods towards detect-
ing inadequacies that have a bearing on the underlying
decision problem.

We further highlight the nonstandard nature of many
inferential problems related to epidemic models, which
may invalidate some standard assumptions that un-
derlie theoretical results on model assessment. Conse-
quently, we find that assessment of epidemic models
is a field with considerable scope for innovation, and
that extending the tool-kit currently available is a valu-
able and important pursuit for the statistical epidemic
modelling community.

Modelling infectious diseases is a very broad field
and we cover only some aspects in this paper. It is
noted in [14] that ‘model assessment is already chal-
lenging when only one source of data is involved . . .
and becomes even more problematic when simultane-
ously modelling multiple sources of information’. Our
study focuses on the former situation but we believe
that its relevance extends to more complex epidemio-
logical settings and, indeed, to fields outside epidemi-
ology where dynamical stochastic models for partially
observed, unreplicated systems are applied.

2. MODELS FOR INFECTIOUS DISEASES

Many forms of models are used to represent the
dynamics of infectious diseases. Here, we focus on
stochastic models that explicitly represent the random
nature of the events during an epidemic and the lack of
determinism apparent in real-world observations. This
class encompasses many variates including discrete-
time formulations (e.g., [16, 35, 47])—convenient for

the analysis, for example, of monthly incidence data
for epidemics in large populations—and continuous-
time, individual-based models (e.g., [9, 21, 22]). While
models of this latter type are the main focus of this pa-
per, the messages are relevant more broadly.

Real-world epidemics of infectious diseases typi-
cally spread via local (as well as possibly long-range)
interactions so that the population does not mix homo-
geneously. For this reason, epidemic models often rep-
resent spatial aspects of spread explicitly and it is often
these aspects which demand most scrutiny in model as-
sessment exercises [41].

We mainly focus on epidemic models exemplified
by the spatio-temporal SEIR model in which a popu-
lation is partitioned into susceptible (S), exposed (E),
infectious (I) and removed (R) classes through which
(in the absence of controls measures) individuals move
sequentially. It is often assumed that the infection pro-
cess, governing transitions from S to E, is Markovian.
In the general case, infection spreads through contact
between susceptible and infectious individuals (sec-
ondary infection) and additionally may occur via en-
vironmental or other external sources (primary infec-
tion). Under these assumptions, individual i, suscepti-
ble at time t , becomes exposed during [t, t + dt] with
probability

(1) p =
(
ε + β

∑
j∈I (t)

K(dij , α)

)
dt + o(dt),

where ε and β , respectively, quantify the rate of pri-
mary and secondary infection.

The summation in (1) represents the combined chal-
lenges from hosts infectious at time t . The function
K(dij , α), or spatial kernel, where α is a parameter
and dij represents the distance between i and infec-
tious host j , describes how the challenge presented
to i by j declines with distance. The model is com-
pleted on specifying distributions for the random times
TE ∼ πθE

, and TI ∼ πθI
spent by an individual in the

E and I classes, respectively, where θE and θI are ad-
ditional parameters. Here, TE represents the time taken
by an exposed host to incubate the disease to the stage
where they can infect others, while TI represents the
time taken following the onset of infectiousness before
removal which, depending on the epidemic, may occur
through the acquisition of immunity, death, hospitali-
sation or other means. Choices for these distributions
include the Gamma distribution [38, 22] or the Weibull
distribution [44, 45, 28].
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This generic framework can be extended, for exam-
ple, to represent further routes of infection or multi-
level mixing patterns. Where the model is used to rep-
resent a meta-population [9, 21, 22, 47] it may be ex-
tended to represent the dependence of susceptibility or
infectivity of each subpopulation on the local species
mix [22]. Alternative compartmental structures can be
proposed, with class I comprising asymptomatic and
symptomatic subcompartments [41]. Moreover, formu-
lation (1) can incorporate a wide range of patterns of
heterogeneous mixing, since dij need not represent Eu-
clidean distance, but may take discrete values, for ex-
ample, dependent on whether i and j are in the same
household or classroom [26, 36].

2.1 Bayesian Model Fitting

When fitting epidemic models to observations the
partial nature of data y means that certain transitions
between compartments are not directly observable.
A common scenario arises when only removal events
(I → R) are observed (e.g., [39, 7]). In other cases, ob-
servations may capture the status of individuals at dis-
crete, and possibly sparse, survey times—yielding a se-
ries ‘snapshots’ of the population state. This latter sce-
nario arises frequently in studies of diseases of arboreal
pathogens such as that reported in [37]. In epidemics in
metapopulations of households, y may record numbers
of infections in each household [26] rather than precise
times of infections. Data on monthly numbers of re-
ported data (e.g., [35]) may be generated through some
random sampling process applied to the (unobserved)
infected population.

These scenarios involve data y that are a censored,
filtered or noisy version of a notional ‘complete’ pro-
cess and parameter estimation demands that challenges
of ‘missing data’ are routinely faced. This motivates
the adoption of the Bayesian approach, with ‘miss-
ing’ data accommodated using data augmentation as
follows. Let θ denote the parameter vector of an epi-
demic model (and include components parameterising
the observation process as appropriate) and, for the mo-
ment, let x denote the times and nature of all events
in the epidemic—the ‘complete data’. Then the likeli-
hood π(x|θ) is typically computationally tractable.

Where the observed y is an incomplete or ‘noisy’
version of x, then we may conveniently express
π(x, y|θ) ∝ π(x|θ1)π(y|x, θ2) where θ1 and θ2 pa-
rameterise the epidemic and observation processes, re-
spectively. In other settings such as the ‘snapshot’ sce-
nario or removal-only setting, where y = g(x), then
π(x, y|θ) = π(x|θ) for y = g(x) and zero otherwise.

In either scenario given y only, the desired likelihood
is

(2) π(y|θ) ∝
∫

π(x, y|θ) dx,

which is often intractable.
The Bayesian approach avoids the need to com-

pute (2) by assigning a prior parameter distribution,
π(θ), and then sampling from the joint posterior den-
sity π(x, θ |y)—most commonly using Markov chain
Monte Carlo methods (MCMC). When data y do not
distinguish between individuals in certain states, the
number of unobserved event times in x may not be
fixed so that the state space of the Markov chain
comprises components with differing dimension. This
arises for removal data where the number of infected
individuals, and hence the number of unobserved in-
fection times, by the end of the observation period
is unknown. For this reason, ‘reversible-jump’ meth-
ods [20], used to design chains with multi-dimensional
state spaces, are frequently used. The literature in-
cludes numerous accounts of this approach in action
(e.g., [39, 18, 17, 9]). While x usually specifies the
temporal history of the epidemic as regards the tim-
ing of transitions undergone by individuals, it may
additionally include details of infection trees (‘who-
infected-whom’). A topic of major current impor-
tance in epidemic modelling is the integration of phy-
logenetic information on pathogens with other epi-
demic data in this inferential framework (see, e.g.,
[49, 23, 34, 29]).

Data augmentation has been described as a ‘gold
standard’ [30] for parameter estimation for epidemic
models, and is feasible for analysis of large-scale epi-
demics involving many thousands of hosts. Effective
algorithms can also be designed using particle filter-
ing algorithms [25]. Others have applied Approximate
Bayesian Computation (ABC) to epidemic models [4,
30], replacing y by summary statistics T (y) and effec-
tively estimating π(θ |T (y)) through forward simula-
tion of the model. There are nevertheless benefits aris-
ing from the use of data augmentation when it comes to
model criticism—with several techniques in later sec-
tions exploiting its capacity to impute latent processes.

While availability of parameter estimation tools in-
creases the potential of stochastic modelling to in-
form the design of control measures for epidemics, it
also increases the demand for model assessment tools
to underpin the validity of any decisions taken using
stochastic models.

Assessing the fit of epidemic models is not straight-
forward. When observing real-world epidemics, there
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is often a lack of replication, with only a single realisa-
tion of an epidemic process observed. While some epi-
demics on extensive, spatially distributed populations,
may be considered as a ‘patchwork’ of replicates of a
single process, environmental heterogeneities may ren-
der the assumption that the same model applies to all
regions invalid [41]. In the Bayesian framework, this
lack of replication means that parameter posterior den-
sities may be highly nonnormal, complicating in turn
the use of model assessment methods such as the De-
viance Information Criterion (DIC, [43]) due to the di-
verse choice of point estimators for θ (see Section 3.4)
and the nonquadratic nature of the log-likelihood.

The partial nature of observations both motivates
and complicates the use of Bayesian techniques. Al-
though missing data are naturally accommodated us-
ing the approach, posterior distributions can be very
sensitive to the choice of prior distributions, even for
the simplest epidemic models. Suppose that each host
in a (large) population of size N is subjected to an
infectious challenge of size α/N starting from time
t = 0 when the population is fully susceptible, each in-
fected individual remaining so for a period drawn from
Exp(μ) until removal. Only removal events are ob-
served. The system follows an immigration-death pro-
cess with infections arising as a Poisson process with
rate α with subsequent removal rate μ. The removal
events can be shown to follow an inhomogeneous Pois-
son process with time-varying rate

R(t) = α
(
1 − e−μt ).

In [18] the problem of inferring μ given observations
y = (t1, t2, . . . , tn), the first n removal times, was con-
sidered. When α is assigned an Exp(γ ) prior, it was
shown that the marginal posterior density of μ col-
lapses to unit mass at 0 as as γ → 0, a phenomenon
which can be attributed to unbounded level curves for
the likelihood function. In contrast, the likelihood func-
tion when infections and removals are observed is very
well behaved. Similar problems exist when assigning
vague priors to parameters governing unobserved tran-
sitions for more realistic models such as the SIR and
SEIR. This sensitivity of the posterior to the prior ef-
fectively means that measures of model fit that depend
on the parameter posterior (such as the DIC or the use
of posterior predictive checks) may likewise be sensi-
tive to the choice of prior. Moreover, as discussed in
Section 3, even when the parameter posterior distribu-
tion for a given model is insensitive to the prior, some
measures used for model comparison such as Bayes

factors should nevertheless be expected to exhibit sen-
sitivity to the prior.

Given these complexities, it is understandable that
a wide range of approaches are taken to assess the fit
of epidemic models. We review some of these in Sec-
tion 3.

3. APPROACHES TO MODEL CHOICE AND
ASSESSMENT

Approaches to comparison and assessment for epi-
demic models draw on a range of statistical philoso-
phies in determining quantitative measures of model
fit. Methods range from the purely Bayesian, which
expresses all uncertainties in the form of probabil-
ity distributions updated in the light of data using
the laws of conditional probability, to frequentist ap-
proaches based on benchmarking aspects of observed
data against sampling properties of parameterised
models. On this spectrum, we may immediately lo-
cate Bayesian model choice and the use of Bayes fac-
tors [36, 26] at one extreme. On the other hand, as-
sessment of time-series models based on comparing
spectral properties of data with simulated spectra using
maximum-likelihood parameter estimates (see [35])
would lie towards the opposite (frequentist) extreme.
We may also distinguish approaches that compare one
model with specified alternatives (model comparison)
from those that test model adequacy in the absence
of any explicitly specified alternative. In practice, ap-
proaches used to assess epidemic models often blend
Bayesian and frequentist thinking and may represent
alternative models with various degrees of specifica-
tion.

3.1 Bayesian Model Choice and the Use of Bayes
Factors

Despite the widespread adoption of the Bayesian
approach for estimating parameters there have been
comparatively few attempts to pursue a fully Bayesian
approach to epidemic model comparison. Suppose
that we have a set of competing epidemic mod-
els M1, . . . ,Mk with parameter vectors θ1, . . . , θk ,
equipped with prior distributions πj (θj ), j = 1, . . . , k

and that these cover the range of models that could gov-
ern an observed epidemic. Following a purely Bayesian
approach [15], a prior probability pj is assigned to
each model and, given data y, the model posterior dis-
tribution can be defined as

Pr(Mj |y) ∝ pj Pr(y|Mj) = pj

∫
πj (y|θj )π(θj ) dθj .
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In theory, the model posterior distribution can be in-
vestigated using reversible-jump MCMC (RJMCMC)
techniques [20] to construct a Markov chain whose
state space is the union of the parameter spaces of the
competing models and whose stationary distribution is
the posterior distribution of the ‘parameter’ of this ex-
panded model. Posterior model probabilities are then
obtained from the chain’s relative long-term frequen-
cies of occupancy of the parameter spaces of the com-
peting models.

However, even when the likelihood functions
πj (y|θj ) are tractable, implementation of RJMCMC
for model comparison may be difficult. As described
in Section 2, it is often necessary to use RJMCMC
when fitting a single model j to partial data. In the
model-comparison setting, each model parameter vec-
tor θj may have to be augmented with hidden data
components appropriate to that model, xj , and the
space of the augmented parameter θ∗

j = (θj , xj ) for
any single model may already be a union of compo-
nents of differing dimension. Competing models may
not share the same compartmental structure, for ex-
ample, when comparing an SEIR formulation with the
simpler SIR formulation with observed removal times
only [18]. The former model implies unobserved tran-
sitions S → E and E → I while the latter implies
unobserved transitions from S → I only. This means
that the nature of xj may vary over models. Neverthe-
less, some epidemic modellers have taken on the com-
putational challenges of Bayesian model choice and
demonstrated its feasibility in certain scenarios.

In [36], Bayes factors and posterior model probabil-
ities for models of the 1861 Hagelloch Measles epi-
demic are computed. This is a rich data set, including
inter alia for each case the time of appearance of dif-
ferent symptoms, but neither the infection time nor the
removal time. In the most complex model, the force of
infection presented by an infective i to a susceptible j

was modelled as

αij = βHδH(i)H(j) + βCδC(i)C(j) + βG exp(−θdij ),

where δ denotes the Kronecker delta symbol, H(i)

and C(i) respectively indicate the household and class-
room of individual i and dij denotes the geographical
distance between i and j , with θ governing the de-
pendence of the transmission rate on distance. Also,
βH ,βC denote within-household and within-classroom
contact rates, respectively, while βG gives the global
contact rate. In [36], the importance of these effects
was assessed by comparing the full model with three

variants obtained by excluding one of the above ef-
fects (distance, household and classroom) using RJM-
CMC. For all models in the comparison, the nature of
the missing data—infection and removal times—is the
same. Therefore, the RJMCMC only requires to formu-
late dimension-changing moves related to the model
parameters θj as opposed to the augmenting variables
xj , easing its implementation. Runs with simulated
datasets found that, even though in general the correct
model was selected, model ranking was affected by
the choice of the priors π(θj ), with more informative
priors yielding more posterior support for the the full
model in some datasets. For epidemics generated from
models with no household effect, there was difficulty
in identifying the correct model, due to an element of
confounding of the household and spatial effects βG.
Prior specification had influence over model ranking
in this latter situation. Models with alternative spatial
kernel functions were considered but not in a Bayesian
comparison; it was merely noted that the ranking of the
four model variants (via posterior model probabilities)
was relatively robust to the choice of spatial kernel and
also to the replacement of imputed infection times with
fixed estimates.

Bayesian model comparison is also carried out in
[26] for final outcome data for epidemics in metapop-
ulations of households, where the data record the num-
bers of susceptible and removed individuals in each
household at the conclusion of the epidemic. Again
the focus of this study is the force of infection and the
contribution from local and global contacts. In [26], it
is assumed that an individual makes global infectious
contacts with the population according to a Poisson
process with rate λG and additionally with members of
its household according to an additional independent
Poisson process with rate nλL where n is household
size. For both local and global contacts, the infectee is
selected uniformly from the relevant population. Mod-
els are compared using simulated data and data from
the Tecumseh study of influenza [33].

The paper compares three model variants:

• M1: with two parameters λG and λL;
• M2: λG = λL = λ;
• M3: λL = 0.

As in [36], RJMCMC is used as the main approach to
model comparison. However, in [26] the augmenting
data, xj , consist of information on the number of global
and local infectious contacts and the corresponding
recipients of the contacts; given these data posterior
distributions of the Poisson rates become tractable.
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Moves between models in the algorithm involve only
θ = (λG,λL) rather than components of the augment-
ing data. Models are compared in a pairwise fashion
and the methods are used to estimate the Bayes’ fac-
tors associated with each comparison.

The results of [26] highlight the sensitivity of the
Bayes factor to the choice of prior. As the priors on
the rates λG and λL become increasingly vague, when
there is even a single individual who escapes infection,
the Bayes’ factor will increasingly favour the simpler
model. In this case, the Bayes’ factor is very sensitive
to the data, changing dramatically if data describing a
completely infected population is modified to include
a single susceptible at the end of the epidemic.

In summary, studies that have applied Bayesian
model comparison to epidemic models have found
that the computational challenges can be overcome to
some extent. Reversible-jump methods can be applied
given sufficient ingenuity in designing the moves, al-
though this may nevertheless be challenging if com-
peting models do not share a common latent process
x that can augment each model parameter vector θj .
Although not discussed in detail here, we note that al-
ternative approaches for computing Bayes’ factors can
be considered. For example, path-sampling is also ap-
plied in [26], rejection sampling in [10] and there has
been recent progress in using the method of power pos-
teriors [1] to compute marginal likelihoods.

However, even when the computational difficul-
ties can be overcome, the fundamental sensitivities
of the conclusions of Bayesian model choice to the
prior distributions of the competing models remain.
When informative priors for model parameters can be
used—for example, if an emerging epidemic is be-
lieved to be governed by one of several, well under-
stood processes—the approach might be feasible. In
settings where little prior information is available, then
conclusions of Bayesian model comparisons should be
qualified in the light of the approach’s tendency to pe-
nalise both the complexity of model j , as measured by
the dimension of θj , and ignorance regarding θj .

3.2 Posterior Predictive P-Values and Checks

Box [6] advocates that parameter estimation should
be seen as a process which is best pursued within a
Bayesian framework while model criticism requires
consideration of sampling properties of models. It is
therefore appealing to consider assessment methods
that combine Bayesian and frequentist ideas in the way
that the posterior predictive P-value (PPP-value) [31]
does.

The posterior predictive P-value is calculated as fol-
lows. Given data y and a model specified by π(y|θ),
with prior π(θ), we consider the posterior predictive
distribution of the data in a replicate experiment, yrep,
or more usually some function of the observations,
T (yrep), and we compute, a PPP-value as

p(y) = Pr
(
T

(
yrep)

> T (y)|y)

=
∫

Pr
(
T

(
yrep)

> T (y)|θ)
π(θ |y)dθ.

The quantity p(y) can be interpreted as the posterior
probability of a more extreme value of T in the next
replicate experiment. Small (or large) values of p(y)

therefore indicate that the observed data are extreme
and provide evidence against the modelling assump-
tions. The use of PPP-values is conservative since the
prior predictive distribution of p(y) is stochastically
less variable than a U(0,1), as demonstrated in [31].
In effect, this implies the existence of α0 such that the
quantile (with respect to this prior predictive distribu-
tion) of any observed p(y) < α0 is strictly less than
p(y). Since the calculation of PPP-values is based on
the posterior distribution π(θ |y), then the results are
only sensitive to the prior distribution π(θ) to the ex-
tent that the posterior π(θ |y) is sensitive to the prior.

Many researchers have used the general notion of
posterior predictive checking, whereby one or more
test statistics T (y) is examined for departures from
its posterior predictive distribution. Because of the
complexity of epidemic data sets, particularly spatio-
temporal ones, it is often necessary to use a range of
test statistics to capture spatial and temporal charac-
teristics. Commonly chosen summary statistics include
disease progress curves where

T (y) = (
I (t1), I (t2), . . . , I (tk)

)
summarises the number of infected individuals in the
population at observation times (t1, . . . , tk). Compar-
ison of the observed T (y) with its predictive distri-
bution is then done by benchmarking T (y) against
an envelope of progress curves drawn from the pre-
dictive distribution. An example of posterior predic-
tive checking using disease progress curves is found
in [41] where a range of spatio-temporal models for
the spread of Huanglongbing (HLB) virus in citrus or-
chards are fitted to an extensive spatio-temporal data
set. A range of models are compared on the basis of
posterior predictive distributions of disease progress
curves and also, reflecting the explicit spatio-temporal
nature of the data set, measures of spatial correlations
in infected sets—in this case a modified Moran index
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for presence/absence with a ring weighting function.
By evaluating the index for a range of choices of radii
in the weighting function, a correlation function C(d)

can be generated; see [41] for details.
A related approach is taken in [37] which analysed

epidemics of citrus canker in an urban landscape, test-
ing models using the predictive distribution of disease
progress curves and measures of spatial autocorrela-
tion. In particular, [37] makes use of a spatial autocor-
relation function defined as

CT (d) = ρII(d, T ) − ρI (T )

ρI (T )(1 − ρI (t))

where ρII(d, T ) denotes the proportion of pairs of hosts
at distance d apart who are both infected at time T

and ρI (T ) denotes the proportion of hosts infected at
time T . This function is estimated from data in [37] us-
ing the nonparametric spine correlogram [3] and pro-
vides a richer description of spatial structure than any
spatial correlation index.

The use of disease progress curves for posterior pre-
dictive checking is only possible when available data
allow the infected set to be specified at certain ob-
servation times, as would be the case with ‘snapshot’
data. It would however not be appropriate in scenar-
ios where data record only removal times, for exam-
ple. For such situations, suitable statistics include that
of [7] where an SIR model with change-points in pa-
rameters is fitted to removal-time data on a smallpox
epidemic in a village, originally considered in [2], and
a richer data set on an outbreak of a respiratory disease.
Posterior predictive checking was done using the time
of the kth removal for various values of k. This choice
of test statistic is natural given that the study aimed to
elicit evidence of temporal heterogeneity in model pa-
rameters. Alternatively, test statistics based on cumula-
tive numbers of removals at specified observation times
T (y) = (R(t1), . . . ,R(tn)) could be defined when only
removal data are available.

Posterior predictive checking presents one instance
where Box’s advice—to worry selectively about mis-
specification—can be applied in selecting appropriate
test statistics. If a model is to be used to predict future
incidence of a disease, then its ability to capture a dis-
ease progress curve would be a meaningful indicator of
utility. On the other hand, if a model is to be used to tar-
get control measures at individual hosts, then its abil-
ity to predict a disease progress curve may be of little
value if it has little power to predict the status of indi-
vidual hosts correctly. One approach that stresses pre-
diction of individual status is the suite of accuracy mea-
sures used to assess spatio-temporal models from [24]

for the 2001 FMD epidemic in [47]. Here, a point esti-
mate for the model parameter vector, obtained from the
entire epidemic, is used to generate epidemics on spa-
tially distributed host populations comprising UK farm
locations, taking as their initial conditions the status of
farms at an early point t0 in that epidemic. Measures of
model accuracy are then derived from the distribution
of the proportion of farms whose state is predicted cor-
rectly at some future time t1, where the measure can
be chosen to be specific to a particular state, or subset
of the host population partitioned according to region.
These distributions are benchmarked against the distri-
bution of the corresponding proportion when the real
data are replaced by an independent simulation from
the model, which captures the inherent repeatability of
the model. Although in [47] the parameter estimation
framework is not Bayesian, the methods readily extend
to a Bayesian analysis on replacing point estimates of
parameters with draws from π(θ |y) in the simulation
of measures. Through the suitable choice of t0 and t1,
long-term or short-term predictive accuracy can be as-
sessed depending, for example, to the particular time-
scales on which control measures could be deployed.

It is clear that posterior predictive checking has
proved useful as a means of excluding models on the
basis of their inability to reproduce key aspects of ob-
served epidemics. Although a PPP-value carries evi-
dence against a model without specifying an alternative
model, the choice of summary statistics can be moti-
vated by some prior hypotheses regarding the model
deficiencies or by the importance of certain deficien-
cies for the purpose of the modelling. Spatial corre-
lation measures are natural candidates to test spatio-
temporal models where the concern may lie with the
validity of the choice of spatial kernel function, while
measures of accuracy of prediction of host state [47]
are clearly relevant if the model is to inform targeted
control strategies.

On the other hand, the reliance on low-dimensional
summary statistics for complex data sets may reduce
the power of posterior predictive checking to detect
lack of fit, much as the use of summary statistics in Ap-
proximate Bayesian Computation [30, 4] inflates the
variance of parameter posterior distributions. In the fol-
lowing section, we consider developments of posterior
predictive checking that potentially may provide more
sensitive tests of inadequacy.

3.3 Latent Residual Tests and Noncentred
Parameterisations

An extension of the notion of PPP-values has been
used by some authors to tailor tests of model adequacy
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to particular forms of misspecification. Regarding PPP-
values, we note the following:

1. Following [31], we can replace the statistic T (y)

with a function T (y, θ), known as a discrepancy vari-
able, and define the PPP-value as

p(y) = Pr
(
T

(
yrep, θ

)
> T (y, θ)|y)

=
∫

Pr
(
T

(
yrep, θ

)
> T (y, θ)|θ)

π(θ |y)dθ.

For example, when y is a random sample of size n from
N(μ,σ 2) then a natural choice of discrepancy variable

is (ȳ−μ)2√
σ 2/n

.

2. When defining discrepancy variables or test
statistics, we could consider T as being dependent on
an unobserved latent process x imputed in a Bayesian
analysis, rather than on y only, formulating a more gen-
eral PPP-value as

p(y) = Pr
(
T

(
xrep, θ

)
> T (x, θ)|y)

=
∫

Pr
(
T

(
xrep, θ

)
> T (x, θ)|θ)

π(θ, x|y)dθ.

We note that p(y) is the posterior expectation of the
quantity

Pr
(
T

(
xrep, θ

)
> T (x, θ)|θ) = p(x,T , θ),

which has a frequentist interpretation as a classical P-
value. Since the posterior distribution of this classical
P-value gives a more complete summary of evidence
against the assumed model than does its expectation,
we prefer to focus on π(p(x,T , θ)|y) as the object of
interest in what follows. Of course, results may be re-
ported in terms of summaries of this distribution such
as its expectation or π(p(x,T , θ) < α|y).

This distribution π(p(x,T , θ)|y) can be interpreted
as the the posterior belief of Bayesian (B) regarding
the P-value calculated by a classical observer (C) who
observes y and x and tests a simple null hypothe-
sis under which the system obeys the assumed model
parameterised by θ . The identification of these sep-
arate entities B and C resonates with ideas in [19]
where the metaphor of Freud’s theory of personality
is used to characterise hybrid statistical logic. In our
particular adoption of this metaphor, we consider the
id to represent our instinctive appetite for represent-
ing complex processes using parsimonious but effec-
tive models. The ego (B, above) uses Bayesian reason-
ing to transform the simplified model and beliefs into a
framework for inference and prediction. The superego
(C above) plays the role of the conscience, using classi-
cal reasoning to benchmark observed quantities against

their sampling distributions to assess the validity of B’s
assumptions. In this framework, it is C who specifies
the test whose result B should impute, using their sus-
picions regarding model misspecification to specify x

and T , prior to B observing y.
An important principle in this kind of hybrid rea-

soning is the following. Suppose that πj (y, xj |θ), j =
1, . . . , k represent models for the joint distribution of
(y, xj ) all of which specify the same marginal model
π(y|θ) and share a common prior distribution π(θ).
Then observation of y alone carries no information
on the relative validity of these models. Put another
way, y carries exactly the same evidence against every
model with marginal π(y|θ). We therefore have com-
plete freedom in the choice of the latent process x.

We can design tests for epidemic models using this
approach using the idea of functional-model [12] rep-
resentations (cf. noncentred parameterisations [40]).
We design a functional-model representation of a
stochastic model π(x|θ) by identifying a stochastic
process r with known distribution independent of θ ,
and a function hθ( ) such that x = hθ(r) ∼ π(x|θ).
A simple example of a functional model is the gener-
ation of a continuous random variable via inversion of
the distribution function, where r ∼ U(0,1) represents
the quantile of the generated value x = F−1

θ (r).
In the epidemic context, we can construct a func-

tional model for the complete epidemic data x (times
and nature of all events). Then, given data y, and the
functional model x = hθ(r), we investigate the poste-
rior distribution π(θ, r|y) and impute the result of a
classical test carried out on r , to test its compliance
with its known sampling distribution. This approach
was adopted in [17] to test spatio-temporal SI mod-
els for the spread of R solani in populations of radish,
where r was chosen to be the set of Sellke thresh-
olds [42] of individual hosts, where the Sellke thresh-
old of individual j , rj , represents a notional thresh-
old through which the infection time of individual j is
specified as the instant at which the integrated rate of
infection undergone by j reaches rj . The Markovian
infection process is obtained on choosing the rj to be
i.i.d. Exp(1). Given ‘snapshots’ of the infected set at
discrete times the authors of [17] imputed the results of
a Kolmogorov–Smirnov test of compliance r with the
Exp(1), eliciting evidence of lack of fit from the pos-
terior distributions of the imputed P-values, which was
attributed to heterogeneity over replicate experiments.

A related approach was taken in [22] to assess mod-
els for the 2001 FMD epidemic. These authors im-
puted infectious periods for farms [assumed in the
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model to be Gamma(4, β)] and compared the distribu-
tion of the imputed infectious period, scaled by β , to a
Gamma(4,1) distribution. They did not formally com-
pute the posterior distribution of a P-value but, rather,
considered an ensemble of simulated values generated
during the course of an MCMC analysis, which they
compared to the Gamma(4,1), finding no evidence
against the assumed model.

In spatio-temporal epidemic modelling, the form
of the kernel function K(d, θ) is more often of in-
terest given its importance for designing ring-culling
strategies. In [28], a functional-model for a general
spatio-temporal SEIR model is considered in which
the process r is composed of four independent i.i.d.
U(0,1) processes, r1, r2, r3, r4. Under the mapping
x = hθ(r1, r2, r3, r4), the time of each subsequent in-
fection event is determined from the process r1, with
− log r1 defining a sequence of ‘population-level’ Sel-
lke thresholds. Processes r3 and r4 specify the quantiles
of the sojourn periods in the E and I class, respectively,
for each infection as it occurs, while r2 determines the
particular I-S pair responsible for each infection event.
The key device in designing a test sensitive to misspec-
ification of spatial kernel is the manner of selecting the
particular I-S pair to determine each new infection. In
[28], given the time of the j th infection, tj , the link
is selected by first assigning every I-S link a weight
equal to rate of infection across the link. Links are then
ordered according to decreasing weight. The particu-
lar link is selected by considering the cumulative sum
of the ordered links and identifying the particular link
responsible for this cumulative sum reaching the value
r2jW where W denotes the sum of the weights. The
joint posterior π(θ, r1, r2, r3, r4|y) is explored. If the
kernel function K has been misspecified (e.g., by un-
derestimating the propensity for long-range transmis-
sion by assuming an exponentially bounded form when
a power-law relation is more appropriate), then when
the process r2 is imputed, some systematic deviation
from a U(0,1) should be anticipated. In [28] the P-
values were imputed for an Anderson–Darling test ap-
plied to r2 to demonstrate that the approach can detect
kernel misspecification in simulated data sets. The ap-
proach was applied to compare alternative spatial ker-
nels for the spread of giant hogweed throughout the
UK, using ‘snapshot’ data on the distribution of the
species at three time points. Significant evidence was
found against models with long range spatial interac-
tions and which omitted the effect of habitat suitabil-
ity. Tests can readily be designed using the approach
for other forms of misspecification, for example, the

erroneous assumption of an isotropic kernel, using al-
ternative orderings of I-S links in the definition of the
functional model. Viewed in this framework, the model
assessment methods of [22] effectively apply tests to
the imputed process r3, to detect misspecification of
the latent period.

It should be expected that the evidence against the
model elicited using a latent-residual test will be sensi-
tive to the particular choice of functional model and the
latent processes imputed. For example, infection-link
residuals could be defined via functional models that
use alternative orderings of the infection links to that of
[28], where links were ordered from largest to smallest,
but the resulting tests might not exhibit the same sensi-
tivity to misspecification of the tail properties of the in-
fection kernel. We emphasise the importance of taking
account, where possible, of the anticipated modes of
misspecification in the design of latent-residual tests.

The extension of posterior predictive checking to la-
tent processes offers a number of advantages. By ex-
ploiting the fact that the augmenting data can be speci-
fied in any way we wish, so long as the marginal model
π(y|θ) is preserved, it offers a way of tailoring the im-
puted tests to detect suspected ‘axes’ of misspecifica-
tion, without the need to formulate fully an alternative
model structure. However, there are potential disadvan-
tages. Since imputation of the latent process conditions
on the model, the assumptions of the latter are reflected
in the imputed data. If these are not sufficiently con-
strained by the observations y, then the approach can-
not detect misspecification. Reducing to the absurd, we
see that if the test were applied to a latent process r , in-
dependent of y given θ , then the posterior (and prior)
distribution of the imputed P-value (assuming a contin-
uous test statistic) would be U(0,1). While the use of
a summary statistic T (y) to calculate a PPP-value may
lose power due to discarding information, then imput-
ing a latent process to test may lose power due to rein-
forcement of the model being tested.

3.4 Latent Likelihood-Ratio Tests

The desire to compare specific model alternatives
while avoiding difficulties of Bayesian model com-
parison (e.g., prior selection within models, Lindley–
Bartlett paradoxes, chain mixing) has also motivated
the development of latent likelihood-ratio (LLR) tests
for comparing a given, assumed model with a speci-
fied alternative within an otherwise Bayesian frame-
work (e.g., [44, 45]). Let the assumed model be M1,
with parameter vector θ1 whose prior is π1(θ1), and
suppose that the hypothesised alternative is M2 with
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unknown parameter θ2. We simulate the posterior dis-
tribution of a likelihood ratio statistic, and associated
P-value, calculated from an imputed latent process x

for which π1(x|θ1) and π2(x|θ2) are tractable, where
π1 and π2 denote distributions of x under M1 and M2,
respectively. Specifically, we fit M1 using data aug-
mentation to sample from π(θ1, x|y) and impute the
values of

�(x, θ1) = π1(x|θ1)

π2(x|θ̂2(x))
,

where θ̂2(x) denotes a point estimate (e.g., the MLE)
of θ2 calculated from the imputed x. Only M1 is fit-
ted using Bayesian methods, avoiding the difficulties
associated with the fully Bayesian approach. There-
fore, when M2 is the more complex model, it is not
required to fit it in the Bayesian framework, as would
be the case when using the Deviance Information Cri-
terion (discussed in the next section). Repeated simu-
lation of x under M1 parameterised by the imputed θ1,
or asymptotic approximations based on the χ2 distri-
bution when the models are nested, can then provide
the empirical sampling distribution of �(x, θ

(k)
1 ) un-

der M1 and consequently a posterior tail probability
for the latent likelihood-ratio statistic, Pr(�(x, θ

(k)
1 ) ≤

�(x(k), θ
(k)
1 )|θ(k)

1 ), where k denotes the MCMC itera-
tion, to evaluate evidence against model M1 when com-
pared to M2.

We note the assumption that the latent process x

is common to both M1 and M2 so that latent likeli-
hood ratio tests are most readily implemented in set-
tings where M1 and M2 share the same compartmen-
tal structure and allowable transitions but differ in the
representation of the parametric processes governing
the transitions. We note that, when the compartmen-
tal structures differ, for example, when comparing SIR
and SEIR formulations, it may nevertheless be possible
(see, e.g., [18]) to construct a common latent process.

The method was used in [45] to compare SEIR mod-
els where the infection process under the Sellke con-
struction is modelled using either commonly employed
Exp(1) (M1) stochastic thresholds of tolerance to in-
fection, or a more general alternative with Weibull dis-
tributed thresholds (M2). Using simulated epidemic
outbreak data, it demonstrated the power of the LLR
test for selecting the correct model. The approach was
also used in [44] to impute results of an ANOVA test
applied to viraemia measures on sheep partitioned ac-
cording to depth in an imputed infection tree, in order
to elicit evidence of a ‘passage’ effect in 2 experimen-
tal epidemics of FMD. In this case, M1 was the null

model under which expected viraemic levels did not
vary with depth in the infection tree, with M2 allowing
variation with depth. The posterior distributions of P-
values obtained did not suggest any strong evidence of
the passage effect.

As with the methods of Section 3.3, the ability of the
approach to distinguish between models may be lim-
ited when a large volume of information, represented
by x above, is imputed using the assumed model. Nev-
ertheless, this approach offers an easily implementable
means of comparing specified alternative models with-
out the need to introduce additional complexity into a
Bayesian analysis.

Finally, we contrast the latent likelihood ratio test
with the Bayesian approach of using the Savage–
Dickey ratio and generalisations [48] to effect model
comparisons by estimating Bayes’ factors. Both ap-
proaches share the common feature of not having to
obtain the posterior density for both competing models.
The latter approach relies on using simulations from
the posterior distribution of the parameter vector of the
more complex model in a nested setting, in contrast
to the latent likelihood ratio approach which can be
implemented by Bayesian fitting of the less complex
model in any comparison and is not restricted to nested
settings.

3.5 Deviance Information Criterion

The deviance information criterion was introduced
in [43], as a measure of model fit that can be applied
in the Bayesian framework to assess the fit of a given
model. It has a close relationship to Akaike’s Infor-
mation Criterion (AIC) and approximates this in suf-
ficiently regular, large-sample settings when the log-
posterior is quadratic. In its original form, given obser-
vations y, the DIC is computed as

(3) DIC1 = −4Eθ

{
logπ(y|θ)|y} + 2 logπ(y|θ̃ ),

where θ̃ denotes an estimate of θ such as the posterior
mean or mode. It can be written as

DIC1 = −2Eθ

{
logπ(y|θ)|y} + PD,

where PD = −2Eθ {logπ(y|θ)|y} + 2 logπ(y|θ̃ ) mea-
sures the effective number of parameters in the model.
The DIC defined in (3) is an example of an observed
DIC as only the data that are actually observed enter
into its calculation. Competing models are assessed by
calculating and comparing their DICs, the model with
the smallest DIC being preferred.

So long as π(y|θ) is tractable, an observed DIC
can be calculated as a straightforward addendum to a
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Bayesian analysis using MCMC, and the DIC is often
seen as a Bayesian technique. Arguably, the use of the
DIC is not truly Bayesian in spirit. Model comparison
is made on the basis of the difference of the DIC be-
tween models, but this difference comprises terms each
of which requires conditioning on a different model for
the data. It is therefore hard to interpret differences in
any DIC from the perspective of any single Bayesian
observer, in the way that a PPP-value has an interpre-
tation for a Bayesian as a posterior probability. For this
reason, we see DIC as less Bayesian than the latter ap-
proach and have deferred its treatment to this point.

There are several instances of the DIC being used
to assess epidemic models. In [13], a range of variants
of the observed DIC, differing in the manner in which
PD is defined, are compared in a simulation study car-
ried out using a discrete-time spatio-temporal epidemic
model with latent susceptible classes. The study fo-
cusses on how effective the variants are in favouring
the true model and how this changes with the amount
of information available on the latent classes. They
find considerable variation in the ability of the DICs
to ‘select’ the correct model, with one particular vari-
ant (DIC3 from [8]) proving the most robust to lack of
information on latent classes.

In epidemiological settings, the intractability of
π(y|θ) means that DIC1 defined in (3) (and other ob-
served DICs) cannot be calculated. In [8], the authors
present a range of alternative, ‘missing-data’ formu-
lations that can be used in cases where π(y|θ) is in-
tractable but π(y, x|θ) is tractable, for some latent
process x. These are natural candidates for comparing
epidemic models fitted using data augmented MCMC.
However, as there exist an infinity of ways of extending
π(y|θ) to a ‘missing data’ model π(y, x|θ), there are
an infinite number of ‘missing data’ DICs. Moreover,
for any given choice of x, [8] offers several alternative
definitions of a DIC.

Particular versions from [8] that have been applied
in epidemic modelling include

(4)
DIC4 = −4Eθ,x

{
logπ(y, x|θ)|y}

+ 2Ex

{
logπ(y, x|Eθ(θ |y, x)|y}

.

A second variant used in epidemic modelling is

(5)
DIC6 = −4Eθ,x

{
logπ(y, x|θ)|y}

+ 2Ex

{
logπ

(
y, x|θ̂ (y)

)|y}
,

where θ̂ (y) is an estimate of θ derived from the poste-
rior π(θ |y). Also applied is

(6)
DIC8 = −4Eθ,x

{
logπ(y|x, θ)|y}

+ 2Ex

{
logπ(y|x, θ̂(y, x))|y}

,

where θ̂ (y, x) is now an estimate of θ derived from the
posterior π(θ |y, x).

DIC4 was used in [26] to compare models with mul-
tiple levels of mixing, as an alternative to Bayesian
model comparison. In particular, [26] suggested DIC4
generally gave a model ranking which was more stable
than that obtained using Bayes’ factors with respect to
increasing vagueness of the parameter priors, although
this was not the case for all the models considered.
In [28], DIC4 and DIC8 were used to compare spatio-
temporal models with differing spatial kernels and la-
tent period distributions using simulated and real epi-
demic data. It was found that the ranking of competing
models could vary with the choice of DIC.

Given this diversity of rankings, we should consider
how the choice of DIC may be motivated in any par-
ticular scenario. Central to this question is the notion
of ‘focus’ of the inference, discussed in [43] and [32],
which relates to those aspects of a model most rele-
vant to the purpose of the modelling study. Embedding
a marginal model π(y|θ) in a joint model π(y, x|θ)

and using the latter to compute a ‘missing-data’ DIC
may change the inferential focus from that intended, as
explained below. This contrasts with the use of data
augmentation as a tool to facilitate simulation from
π(θ |y), whose nature is invariant with respect to the
choice of x.

In Section 3.3, we motivated the design of infection-
link residuals from the perspective of a notional ob-
server of a latent process. We can view missing data
DICs in a similar manner by expressing particular
forms of the DIC as the posterior expectation of a mea-
sure calculated by a latent observer. The focus (and ap-
propriateness) of any particular DIC measure may then
be characterised from the perspective of this observer.
For example, DIC4 can be expressed as

DIC4 = Ex

[−4Eθ

{
logπ(y, x|θ)|y, x

}
+ 2 logπ(y, x|Eθ(θ |y, x)|y]

.

This corresponds to the posterior expectation of the
value of DIC1 computed by an observer of x in ad-
dition to y, making DIC4 a ‘natural’ generalisation of
DIC1. In contrast,

DIC6 = Ex

[−4Eθ

{
logπ(y, x|θ)|y, x

}
+ 2 logπ

(
y, x|θ̂ (y)

)|y]
.

This latent observer of (y, x) in this case appears less
rational than the first as their estimate θ(y) depends on
y only, and the additional information provided by x is
ignored.
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Displaying DIC8 in a similar manner we see that

DIC8 = Ex

[−4Eθ

{
logπ(y|x, θ)|y, x

}
+ 2 logπ

(
y|x, θ̂(y, x)

)|y]
.

Here, our latent observer of x estimates θ from x and
y but considers a partial likelihood π(y|x, θ), rather
than the full likelihood π(x|θ)π(y|x, θ), in their cal-
culations. The focus of this observer therefore lies with
the model for y conditional on x.

In epidemic modelling, DIC8 may sometimes be
straightforward to compute, for example, when
π(x, y|θ) combines a latent dynamical model for x

coupled with an observation model for y given x, so
that

π(x, y|θ) = π(x|θ1)π(y|x, θ2),

where θ1 and θ2 parameterise the dynamical and ob-
servational models, respectively. However, should the
intended focus lie with the correctness of π(x|θ1), it
may not be be the most appropriate choice.

In [28], DIC8 was computed for the case of a coloni-
sation process for the spread of Giant Hogweed in the
UK, governed by a spatio-temporal SI model, to com-
pare models with alternative spatial kernels, where x

represented precise (unobserved) colonisation times of
sites in a metapopulation and y represented detections
at distinct survey times. Here, θ2 is the probability that
a site is reported as colonised given that it is colonised
while θ1 comprises the parameters in the SI model. In
the light of the above discussion of DIC8 it could be
argued that this variant of the DIC was not the most
appropriate given that the focus of interest in [28] was
the choice of spatial kernel. Indeed, if our focus is on
the dynamics of x rather than the observational model,
we can motivate a further missing-data DIC defined by

DIC∗ = Ex

[−4Eθ1

{
logπ(x|θ1)|x}

+ 2 logπ(x|Eθ1(θ1|x))|y]
,

this being the posterior expectation of DIC4 as calcu-
lated by an observer whose focus lay with π(x|θ1).

While some variants of the DIC may be readily
computed for competing models fitted separately by
Bayesian data augmentation, avoiding the complexity
of full Bayesian model comparison, it remains unclear
how much weight to place on the rankings obtained.
The typically nonnormal nature of parameter posteriors
means there is no unique estimate of θ to use in a DIC
calculation, and due consideration should be given to
which missing-data formulations may be most appro-
priate in the light of the aims of the modelling exercise.

4. CONCLUSIONS

From our survey, we have found that model choice
for stochastic epidemic models is far from simple and
that no single approach fits all scenarios. The issues of
lack of replication, intractable likelihoods, partial ob-
servation, prior ignorance, coupled with the fact that
competing models may have very different, nonnested
structures contribute to the challenge. At the same
time, model choice is often of paramount importance in
epidemiological studies where predictions of the likely
efficacy of control strategies can be highly sensitive to
the model.

There is a wide range of approaches to model choice
and assessment for epidemic models and this diversity
presents a challenge in itself, as different approaches
may lead to different rankings of models in any com-
parison. All the approaches and measures we have out-
lined have advantages and disadvantages in terms of
inter alia their sensitivity to choices of prior, their ease
of interpretation and the ease of implementation in the
epidemiological context. All are potentially valuable
tools in model assessment. We attempt to summarise
some general principles that might guide the epidemic
modeller in their choice of approaches.

1. It is important to recognise that all models are
simplistic, imperfect representations of reality which
may nevertheless be potentially useful. It is therefore
important that the purpose of the modelling is made
clear at the outset. If the model is to be used as a ‘lens’,
for example, to determine whether a given infection
rate might be nonstationary over time, or a particular
effect should be included in the model, then using dif-
ferent models may yield the same qualitative conclu-
sions when fitted to data and differences in the quality
of fit as determined by measures described here may
not be of major importance. However, if a model is
to be used in predictive mode (often the case in epi-
demics) then quantitative differences in the predictive
distributions of key outcomes over competing models
assume major significance.

2. Following from (1), once the purpose of the mod-
elling is agreed, then, as advocated by Box [5], we rec-
ommend that modellers should be selective regarding
the particular misspecifications for which they aim to
test. For example, if the purpose is to design controls
for the spread of an epidemic in space and time us-
ing ring-culling, then the spatial kernel function is an
important aspect of the model, while the precise dis-
tributional form of the latent period (particularly if it
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is small with respect to the timescales over which in-
fections occur) may be of little importance. If a model
is used to assess the effectiveness of control based on
quarantining infected individuals, then it may be im-
portant that the distribution of the infectious period is
properly specified in the model.

3. Statistical measures of model fit, in the light of
(2), should be selected and tailored to be sensitive (and
specific) to important modes of misspecification. This
consideration should guide, for example, the particular
choice of missing-data DIC (Section 3.5), the partic-
ular latent residual process imputed (Section 3.3), the
model forms selected for comparison (Sections 3.1 and
3.4) or the summary statistics used for posterior predic-
tive checking (Section 3.2).

Following principles (1)–(3) can help ensure that mod-
els are ranked in any comparative exercise according
to their potential to inform practically important deci-
sions. The different approaches we have outlined all
have strengths and weaknesses with respect to this tar-
geted strategy.

In the case of the Bayesian model choice and the
use of Bayes factors, one can ensure that practically
important model alternatives are included in the space
of models. However, the experience of epidemic mod-
ellers with Bayesian model comparison (e.g., [26])
suggests that, even when the computational difficul-
ties of carrying out Bayesian model comparison can
be overcome, the sensitivity of the approach to within-
model priors would make this approach challenging
unless informative priors can be identified.

Turning to the use of PPP-values as a means of
model assessment, the challenge here is to identify
summary statistics and discrepancy measures that
are sensitive to important modes of misspecification.
While disease progress curves and measures of spatial
autocorrelation provide natural candidates, it is impor-
tant to note that the reduction of a complex dynamic to
a few summary statistics discards much information.
We argue that the extension of the posterior predictive
checks and classical tests to imputed processes (as in
Sections 3.3 and 3.4) has potential in epidemic mod-
elling, with constructions such as infection link resid-
uals being particularly valuable for testing for kernel
misspecification, but note the tendency of the imputa-
tion process to reinforce the modelling assumptions,
reducing the power of the approach to detect misspec-
ification.

The DIC, calculation of which can be easily embed-
ded in data-augmentation MCMC algorithms, offers

a convenient measure of model fit with demonstrable
power to detect the ‘true’ models in simulation studies.
However, with its numerous alternative forms, particu-
larly in the ‘missing-data’ setting, care must be taken
to preserve the ‘focus’ of the assessment on the most
practically important aspects of models.

Throughout we have focussed on continuous-time
models but the approaches considered can in princi-
ple be extended to discrete-time formulations (e.g.,
[13, 16, 35, 47]). Model selection methods including
posterior predictive checks and the DIC have already
been applied extensively in the discrete-time setting
[13]. The construction of latent likelihood ratio tests,
described in Section 3.4, should be readily achievable
for discrete-time models as there are no systematic bar-
riers to performing the inferences of latent processes
and the subsequent likelihood computations in the
discrete-time setting. However, we note that the con-
struction of functional-model representations to design
latent residual tests, such as those based on infection-
link residuals discussed in Section 3.3, requires some
thought for discrete-time models as the strict ordering
in the infection times, which simplifies the construction
of the residual processes r1, r2, r3, r4 in Section 3.3, is
lost when infections are constrained to occur at discrete
times ti , say, with the potential for multiple infections
to occur at the same time. The design of a parsimo-
nious residual process, analogous to r2, that controls
the selection of the subset of susceptible hosts that be-
come infected at ti , conditioned on the state of the sys-
tem at ti−1 appears to be a nontrivial challenge worthy
of investigation. We note further that some of the ap-
proaches discussed may prove challenging if Approxi-
mate Bayesian Computation (ABC) [4, 30] is the pre-
ferred means of model fitting since this approach ac-
tively eschews the use of imputed, latent processes in
favour of summaries of the observed data. While pos-
terior predictive checking should fit naturally with the
use of ABC we should not expect the methods dis-
cussed in Sections 3.3–3.5, many of which rely explic-
itly on imputed processes, to be immediately applica-
ble when ABC is used.

Our final conclusion is that no technique offers a
panacea for for model criticism in epidemic modelling
and that, arguably, the most effective approach is to
draw on different philosophies to tailor techniques to
the situation at hand. We find that, so long as the com-
plexity of the model being fitted is suitably constrained,
then the Bayesian approach appears best suited to the
estimation of parameters, while classical approaches
offer flexibility to explore model deficiencies in order
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to inform what should be seen as as continuous pro-
cess of model criticism and refinement as advocated
by Box [5].
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