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Abstract. We study some aspects of Schein’s theory of cosets for closed in-

verse subsemigroups of inverse semigroups. We establish an index formula for

chains of subsemigroups, and an analogue of M. Hall’s Theorem on the number
of cosets of a fixed finite index. We then investigate the relationships between

the following properties of a closed inverse submonoid of an inverse monoid:

having finite index; being a recognizable subset; being a rational subset; be-
ing finitely generated (as a closed inverse submonoid). A remarkable result of

Margolis and Meakin shows that these properties are equivalent for a closed
inverse submonoid of a free inverse monoid.

1. Introduction

A generalisation of the concept of coset, from groups to inverse semigroups, was
proposed by Schein in [17]. There are three essential ingredients to this generali-
sation: firstly, cosets are only to be defined for an inverse subsemigroup L of an
inverse semigroup S that is closed in the natural partial order on S; secondly, an el-
ement s ∈ S will only determine a coset if ss−1 ∈ L; and thirdly, the coset is finally
obtained by taking the closure (again with respect to the natural partial order on
S) of the subset Ls. The details of this construction are presented in Section 2. In
fact, Schein takes as his starting point a characterization of cosets in groups due to
Baer [3] (see also [5]): a subset C of a group G is a coset of some subgroup H of G
if and only if C is closed under the ternary operation (a, b, c) 7→ ab−1c on G.

A closed inverse subsemigroup L of an inverse semigroup S has finite index if
and only if there are only finitely many distinct cosets of L in S. In contrast to the
situation in group theory, finite index can arise because of the relative paucity of
possible coset representatives satisfying ss−1 ∈ L. For example, in the free inverse
monoid FIM (a, b), the inverse subsemigroup FIM (a) has finite index. This fact is
a consequence of a remarkable theorem of Margolis and Meakin, characterising the
closed inverse submonoids in a free inverse monoid FIM (X) with X finite:

Theorem 1.1. [10, Theorem 3.7] Let X be a finite set, and let L be a closed inverse
submonoid of the free inverse monoid FIM (X). Then the following conditions are
equivalent:

(a) L is recognised by a finite inverse automaton,
(b) L has finite index in FIM (X),
(c) L is a recognisable subset of FIM (X),
(d) L is a rational subset of FIM (X),
(e) L is finitely generated as a closed inverse submonoid of FIM (X).
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Condition (e) of Theorem 1.1 asserts the existence of a finite set Y ⊂ FIM (X)
such that L is equal to the closed inverse submonoid generated by Y . The original
statement of the theorem in [10] includes an extra condition related to immersions
of finite graphs, which we have omitted.

Our aims in the present paper are to present some basic facts about closed inverse
subsemigroups of finite index, and to study the relationships between the conditions
given in Theorem 1.1 when FIM (X) is replaced by an arbitrary inverse monoid.

In Section 2 we give an introduction to the concept of cosets in inverse semi-
groups, and the action of an inverse semigroup on a set of cosets, based closely on
the ideas of Schein [16, 17]. We establish an index formula, relating the indices
[S : K], [S : H] and [H : K] for closed inverse subsemigroups H,K of an inverse
semigroup S with E(S) ⊆ K ⊆ H in Theorem 2.8, and an analogue of M. Hall’s
Theorem for groups, that in a free group of finite rank, there are only finitely many
subgroups of a fixed finite index, in Theorem 2.14.

Our work based on Theorem 1.1 occupies section 3, and is summarised in The-
orem 4.1. We show that, in an arbitrary finitely generated inverse monoid M , a
closed inverse submonoid has finite index if and only if it is recognisable, in which
case it is rational and finitely generated as a closed inverse submonoid, but that
finite generation (as a closed inverse submonoid) is a strictly weaker property. This
is not a surprise, since any inverse semigroup with a zero is finitely generated in
the closed sense.

The authors thank Mark Lawson and Rick Thomas for very helpful comments,
and in particular for their shrewd scrutiny of Lemma 3.10.

2. Cosets of closed inverse subsemigroups

Let S be an inverse semigroup with semilattice of idempotents E(S). Recall that
the natural partial order on S is defined by

s 6 t⇐⇒ there exists e ∈ E(S) such that s = et .

A subset A ⊆ S is closed if, whenever a ∈ A and a 6 s, then s ∈ A. The closure
B↑ of a subset B ⊆ S is defined as

B↑ = {s ∈ S : s > b for some b ∈ B} .

A subset L of S is full if E(S) ⊆ L.
An atlas in S is a subset A ⊆ S such that AA−1A ⊆ A: that is, A is closed

under the heap ternary operation 〈a, b, c〉 = ab−1c (see [3]). Since, for all a ∈ A we
have 〈a, a, a〉 = a, we see that A is an atlas if and only if AA−1A = A. A coset C
in S is a closed atlas: that is, C is both upwards closed in the natural partial order
on S and is closed under the heap operation 〈· · ·〉.

Let X be a set and I (X) its symmetric inverse monoid. Let ρ : S → I (X) be
a faithful representation of S on X, and write x(sρ) as xC s.

The principal characterisations of cosets that we need are due to Schein:

Theorem 2.1. [17, Theorem 3.] Let C be a non-empty subset of an inverse semi-
group S. Then the following are equivalent:

(a) C is a coset,
(b) there exists a closed inverse subsemigroup L of S such that, for all s ∈ C,

we have ss−1 ∈ L and C = (Ls)↑.
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(c) there exists a closed inverse subsemigroup K of S such that, for all s ∈ C,
we have s−1s ∈ K and C = (sK)↑.

Proof. (a) =⇒ (b): Let Q = CC−1 = {ab−1 : a, b ∈ C}. Then Q is an inverse
subsemigroup of S, since, for all a, b, c, d ∈ C we have

• (ab−1)(cd−1) = (ab−1c)d−1 = 〈a, b, c〉d−1 ∈ Q,
• (ab−1)−1 = ba−1 ∈ Q.

Set L = Q↑: then L is a closed inverse subsemigroup of S. Let s ∈ C. Obviously
ss−1 ∈ Q ⊆ L. Moreover, given any c ∈ C we have c > c(s−1s) = (cs−1)s ∈ Qs ⊆
Ls, so that C ⊆ (Ls)↑. Conversely, if x ∈ (Ls)↑, we have x > us for some u ∈ L,
with u > ab−1 for some a, b ∈ C. Hence x > us > ab−1c = 〈a, b, c〉 ∈ C. Since C is
closed, x ∈ C and therefore (Ls)↑ ⊆ C.

(b) =⇒ (a): The subset (Ls)↑ is a coset, since it is closed by definition, and
if hi ∈ (Ls)↑ we have hi > tis for some ti ∈ L. Then 〈h1, h2, h3〉 = h1h

−1
2 h3 >

t1ss
−1t−12 t3s ∈ Ls since ss−1 ∈ L. It follows that (Ls)↑ is closed under the heap

operation 〈· · ·〉.
For (a) ⇐⇒ (c): we proceed in the same way, with K = (C−1C)↑. �

For the rest of this paper, all cosets will be right cosets, of the form (Ls)↑.

Proposition 2.2. [17, Proposition 5.] A coset C that contains an idempotent
e ∈ E(S) is an inverse subsemigroup of S, and in this case C = (CC−1)↑.

Proof. If a, b ∈ C then ab > aeb = 〈a, e, b〉 ∈ C and since C is closed, we have
ab ∈ C. Furthermore, a−1 > ea−1e = 〈e, a, e〉 ∈ C and so a−1 ∈ C. Hence C is an
inverse subsemigroup.

Now ab−1 ∈ CC−1 and ab−1 > ab−1e = 〈a, b, e〉 ∈ C. Since C is closed we have
(CC−1)↑ ⊆ C. But if x ∈ C then x > xe ∈ CC−1 and so x ∈ (CC−1)↑. Therefore
C = (CC−1)↑. �

Now if L is a closed inverse subsemigroup of S, a coset of L is a subset of the
form (Ls)↑ where ss−1 ∈ L. Suppose that C is such a coset: then Theorem 2.1
associates to C the closed inverse subsemigroup (CC−1)↑.

Proposition 2.3. [17, Proposition 6.] Let L be a closed inverse subsemigroup of
S.

(a) Suppose that C is a coset of L. Then (CC−1)↑ = L.
(b) If t ∈ C then tt−1 ∈ L and C = (Lt)↑. Hence two cosets of L are either

disjoint or they coincide.
(c) Two elements a, b ∈ S belong to the same coset C of L if and only if

ab−1 ∈ L.

Proof. (a) If ci ∈ C (i = 1, 2) then there exists li ∈ L such that ci > lis. Hence
c1c
−1
2 > l1ss−1l

−1
2 ∈ L, and so CC−1 ⊆ L. Since L is closed, (CC−1)↑ ⊆ L. On the

other hand, for any l ∈ L we have l = ll−1l > lss−1l−1l = (ls)(l−1ls)−1 ∈ CC−1
and so L ⊆ (CC−1)↑.

(b) If C = (Ls)↑ and t ∈ C then, for some l ∈ L we have t > ls. Then
tt−1 > lss−1l−1 ∈ L, and since L is closed, tt−1 ∈ L. Moreover, if u ∈ (Lt)↑ then
for some k ∈ L we have u > kt > kls and so u ∈ (Ls)↑. Hence if t ∈ (Ls)↑ then
(Lt)↑ ⊆ (Ls)↑. Now ls = (ls)(ls)−1t = lss−1l−1t and so l−1ls = l−1lss−1l−1t =
ss−1l−1t ∈ Lt. Since s > l−1ls, we deduce that s ∈ (Lt)↑. Hence (Ls)↑ ⊆ (Lt)↑.
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(c) Suppose that a, b ∈ (Ls)↑. Then for some k, l ∈ L we have a > ks and b > ls:
hence ab−1 > kss−1l−1 ∈ L and so ab−1 ∈ L. On the other hand, suppose that
ab−1 ∈ L. Then aa−1 > a(b−1b)a−1 = (ab−1)(ab−1)−1 ∈ L, and similarly bb−1 ∈ L.
We note that a = (aa−1)a ∈ La and similarly b ∈ Lb. Then a > a(b−1b) = (ab−1)b
and so a ∈ (Lb)↑. As in part (b) we deduce that (La)↑ ⊂ (Lb)↑. By symmetry
(La)↑ = (Lb)↑ and this coset contains a and b. �

Example 2.4. Let E be the semilattice of idempotents of S. The property that
E is closed is exactly the property that S is E–unitary. In this case, for any s ∈ S,
we have

(Es)↑ = {t ∈ S : t > es for some e ∈ E}
= {t ∈ S : t > u 6 s for some u ∈ S}
= {t ∈ S : s, t have a lower bound in S}.

We see that (Es)↑ is precisely the σ–class of s, where σ is the minimum group
congruence on S, see [9, Section 2.4]. Hence every element t ∈ S lies in a coset of
E, and the set of cosets is in one-to-one correspondence with the maximum group

image Ŝ of S.

Remark 2.5. Let L be a closed inverse subsemigroup of an inverse semigroup S.
Then the union U , of all the cosets of L is a subset of S but need not be all of S,
and is not always a subsemigroup of S.

We illustrate this remark in the following example.

Example 2.6. Fix a set X and recall that the Brandt semigroup BX is defined as
follows. As a set, we have

BX = {(x, y) : x, y ∈ X} ∪ {0}
with

(u, v)(x, y) =

{
(u, y) if v = x

0 if v 6= x

and 0(x, y) = 0 = (x, y)0. The idempotents of BX are the elements (x, x) for
x ∈ X and 0. Hence 0 6 (x, y) for all x, y ∈ X and (u, v) 6 (x, y) if and only if
(u, v) = (x, y). If a closed inverse semigroup L of BX contains (x, y) with x 6= y
then (x, y)(x, y) = 0 ∈ L and so L = BX . Therefore the only proper closed
inverse subsemigroups are the subsemigroups Ex = {(x, x)} for x ∈ X. An element
(x, y) ∈ BX then determines the coset

(Ex(x, y))↑ = {(x, y)} .
Hence there are |X| distinct cosets of Ex and their union is

U = {(x, y) : y ∈ X} .

Proposition 2.7.

(a) Let L be a closed inverse subsemigroup of an inverse semigroup S and let
U be the union of all the cosets of L in S. Then U =

{
s ∈ S : ss−1 ∈ L

}
and therefore U = S if and only if L is full.

(b) U is a closed inverse subsemigroup of S if and only if whenever e ∈ E(L)
and s ∈ U then ses−1 ∈ U and if, whenever s ∈ S with ss−1 ∈ L, then
s−1s ∈ L .
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Proof. (a) The coset (Lu)↑ containing u ∈ S exists if and only if uu−1 ∈ L.
(b) Suppose that L satisfies the given conditions. If s, t ∈ U then ss−1, tt−1 ∈ L

and
(st)(st)−1 = s(tt−1)s−1 ∈ U

which implies that st ∈ U , and s−1s ∈ L which implies that s−1 ∈ U . Hence U is
an inverse subsemigroup. Conversely, if U is an inverse subsemigroup and s ∈ U ,
then s−1 ∈ U which implies that s−1s ∈ L, and if s ∈ U and e ∈ E(L) then e ∈ U
and so se ∈ U which implies that (se)(se)−1 = ses−1 ∈ U . �

2.1. The index formula. The index of the closed inverse subsemigroup L in an
inverse semigroup S is the cardinality of the set of right cosets of L, and is written
[S : L]. Note that the mapping (Ls)↑ → (s−1L)↑ is a bijection from the set of right
cosets to the set of left cosets. A transversal to L in S is a choice of one element
from each right coset of L. For a transversal T , we have the union

U =
⋃
t∈T

(Lt)↑,

as in Proposition 2.7, and each element u ∈ U satisfies u > ht for some h ∈ L, t ∈ T .

Theorem 2.8. Let S be an inverse semigroup and let H and K be two closed
inverse subsemigroups of S with K ⊆ H and K full in S. Suppose that K has finite
index in H and H has finite index in S. Then K has finite index in S and

[S : K] = [S : H][H : K].

Proof. Since K is full in S, then so is H and for transversals T ,U we have

S =
⋃
t∈T

(Ht)↑ and H =
⋃
u∈U

(Ku)↑.

Therefore
S = {s ∈ S : s > ht for some t ∈ T , h ∈ H},

and
H = {s ∈ S : s > ku for some u ∈ U , k ∈ K}.

Now if s > ht and h > ku then s > kut. Then s ∈ (Kut)↑ and (Kut)↑ is a coset of
K in S, since K is full in S and therefore (ut) (ut)−1 ∈ K.
Hence

S =
⋃
u∈U
t∈T

(Kut)↑ .

It remains to show that all the cosets (Kut)↑ are distinct. If (Ku′t′)↑ = (Kut)↑

then by part (c) of Proposition 2.3, u′t′t−1u−1 ∈ K and so u′t′t−1u−1 ∈ H. Now
t′t−1 > (u′)−1u′t′t−1u−1u ∈ H since u, u′ ∈ H, and so t′t−1 ∈ H since H is closed.
This implies that (Ht′)↑ = (Ht)↑ and it follows that t′ = t.

Now u′t′t−1u−1 ∈ K. Since t′ = t, then t′t−1 ∈ E(S) and so u′u−1 > u′t′t−1u−1.
But K is closed, so u′u−1 ∈ K and (Ku′)↑ = (Ku)↑. Hence u′ = u. Consequently,
all the cosets (Kut)↑ are distinct. �

Recall from Example 2.4 that the property that E(S) is closed is expressed by
saying that S is E–unitary and that in this case, the set of cosets of E(S) is in

one-to-one correspondence with the maximum group image Ŝ of S.

Proposition 2.9. Let S be an E–unitary inverse semigroup. Then:
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(a) E(S) has finite index if and only if the maximal group image Ŝ is finite,

and [S : E] = |Ŝ|,
(b) if E(S) has finite index in S then, for any closed, full, inverse subsemigroup

L of S we have

[S : L] = |Ŝ| / |L̂|

Proof. Part (a) follows from our previous discussion. For part (b) we have E(S) ⊆
L ⊆ S and so if the index [S : E] is finite then so are [S : L] and [L : E] with

[S : E] = [S : L][L : E]. But now [S : E] = |Ŝ| and [L : E] = |L̂|. �

The index formula in Theorem 2.8 can still be valid when K is not full in S as
we show in the following Example.

Example 2.10. We work in the symmetric inverse monoid I3 = I ({1, 2, 3}), and
take L = stab(1) = {σ ∈ I (X) : 1σ = 1}, which is a closed inverse subsemigroup
of I (X) with 7 elements. There are 3 cosets of L in I3, namely

C1 = {σ ∈ I3 : 1σ = 1} = L,

C2 = {σ ∈ I3 : 1σ = 2},
C3 = {σ ∈ I3 : 1σ = 3},

and so [I3 : L] = 3 .
Now take

K =

{(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)}
.

Then K is a closed inverse subsemigroup of L. The domain of each σ in K is
{1, 2, 3}. and so the only coset representatives for K in L are the permutations

id =

(
1 2 3
1 2 3

)
and σ =

(
1 2 3
1 3 2

)
.

But these are elements of K and so K↑ = (Kσ)↑ = K and there is just one coset.
Hence [L : K] = 1.

Now, we calculate the cosets of K in I3. Each permutation in I3 is a possible
coset representative for K and these produce three distinct cosets by Proposition
2.3(3). Hence [I3 : K] = 3 and in this example

[I3 : K] = [I3 : L][L : K] .

The index of a closed inverse subsemigroup L of an inverse semigroup S depends
on the availability of coset representatives to make cosets, and so on the idempotents
of S contained in L. In particular, we can have K ⊂ L but [S : K| < [S : L] as the
following Example illustrates.

Example 2.11. Consider the free inverse monoid FIM (x, y) and the closed inverse
submonoids K = 〈x2〉↑ and H = 〈x2, y2〉↑. As in [10, 11], we represent elements
of FIM (x, y) by Munn trees (P,w) in the Cayley graph Γ(F (x, y), {x, y}) where
F (x, y) is the free group on x, y.

Consider a cosetK(P,w)↑. For this to exist, the idempotent (P, 1) = (P,w)(P,w)−1

must be in K and so as a subtree of Γ, P can only involve vertices in F (x) and
edges between them. Since w ∈ P we must have w ∈ F (x). It is then easy to see
that there are only two cosets, K and (Kx)↑ and so [FIM (x, y) : K] = 2. Similarly,
[H : K] = 1.
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Now consider a coset H(P,w)↑. Now (P, 1) ∈ H and so P must be contained in
the subtree of Γ spanned by the vertices of the subgroup 〈x2, y2〉 ⊂ F (x, y), and
w ∈ P . If w ∈ 〈x2, y2〉 then (P,w) ∈ H and H(P,w)↑ = H. Otherwise, w = ux
or w = uy with u ∈ 〈x2, y2〉 and it follows that there are three cosets of H in
FIM (x, y), namely H, (Hx)↑ and (Hy)↑. Therefore

[FIM (x, y) : H] = 3 > [FIM (x, y) : K] = 2 .

These calculations also follow from results of Margolis and Meakin, see [10, Lemma
3.2].

We note that the index formula fails to hold. This does not contradict Theorem
2.8, since K is not full in FIM (x, y).

2.2. Marshall Hall’s Theorem for inverse semigroups. Our next aim is to
derive an analogue of Marshall Hall’s Theorem (see [7] and [2]) that, in a free group
of finite rank, there are only finitely many subgroups of a fixed finite index. We first
record some preliminary results on actions on cosets: these results are due to Schein
[16] and are presented in [8, Section 5.8]. Let L be a closed inverse subsemigroup
of S, and let s ∈ S with ss−1 ∈ L with C = (Ls)↑ Now suppose that u ∈ S and
that (Cuu−1)↑ = C. Then we define C C u = (Cu)↑.

Lemma 2.12. The condition (Cuu−1)↑ = C for C C u to be defined is equivalent
to the condition that suu−1s−1 ∈ L.

It follows from Lemma 2.12 that the condition suu−1s−1 ∈ L does not depend
on the choice of coset representative s. This is easy to see directly. If (Ls)↑ = (Lt)↑

then, by part (c) of Proposition 2.3 we have st−1 ∈ L. Then

tuu−1t−1 > ts−1suu−1s−1st−1 = (st−1)−1(suu−1s−1)(st−1) ∈ L

and since L is closed, tuu−1t−1 ∈ L.

Proposition 2.13. If u ∈ S and (Cuu−1)↑ = C then (Cu)↑ = (Lsu)↑ and the rule
C C u = (Cu)↑ defines a transitive action of S by partial bijections on the cosets of
L.

We can now prove our version of Marshall Hall’s Theorem.

Theorem 2.14. In a finitely generated inverse semigroup S there are at most
finitely many distinct closed inverse subsemigroups of a fixed finite index d.

Proof. Suppose that the inverse semigroup S is finitely generated and that the
closed inverse subsemigroup L of S has exactly d cosets. We aim to construct an
inverse semigroup homomorphism

φL : S −→ I (D),

where I (D) is the symmetric inverse monoid on D = {1, ..., d}.
Write the distinct cosets of L as (Lc1)↑, (Lc2)↑, ... , (Lcd)

↑, with c1, c2, ..., cd ∈ S,
and with (Lc1)↑ = L. Now take u ∈ S. If cj uu

−1 cj
−1 ∈ L, where j ∈ {1, ..., d},

then we can define an action of the element u ∈ S on the coset (Lcj)
↑ of L as

follows:

(Lcj)
↑ C u = (Lcju)↑.

By Proposition 2.13, (Lcju)↑ is indeed a coset of L, and so (Lcju)↑ = (Lck)↑, where
k ∈ {1, ..., d}. Then we can write (Lcj)

↑ C u = (Lck)↑, and this action of u induces
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an action j C u = k of u on D, and so we get a homomorphism

φL : S −→ I (D).

We now claim that different choices of L give us different homomorphisms φL, or
equivalently, that if φL = φK then L = K.

By Proposition 2.2, if x ∈ L then L = (Lxx−1)↑. By Lemma 2.12 L C x is
defined and is equal to (Lx)↑ = L. Now suppose that L C y is defined and that
(Ly)↑ is equal to L. By Lemma 2.12 we have (Lyy−1)↑ = L. Hence yy−1 ∈ L, and
y = yy−1y ∈ (Ly)↑ = L. It follows that stab(L) = L and in the induced action of S
on D we have stab(1) = L, so that L is determined by φL . Therefore, the number of
closed inverse subsemigroups of index d is at most the number of homomorphisms
φ : S −→ I (D), and since S is finitely generated, this number is finite. �

3. Finite generation and finite index

In this section, we shall look at the properties of closed inverse submonoids of
free inverse monoids considered in Theorem 1.1, and the relationships between these
properties when we replace a free inverse monoid by an arbitrary inverse monoid.
Throughout this section, M will be an inverse monoid generated by a finite subset
X. This means that the smallest inverse submonoid 〈X〉 of M that contains X is
M itself: equivalently, each element of M can be written as a product of elements
of X and inverses of elements of X, so if we set A = X ∪X−1 then each element
of M can be written as a product of elements in A. A closed inverse submonoid L
of M is said to be finitely generated as a closed inverse submonoid if there exists a
finite subset Y ⊆ L such that, for each ` ∈ L there exists a product w of elements
of Y and their inverses such that ` > w. Equivalently, the smallest closed inverse
submonoid of M that contains Y is L. We remark that in [10] the notation 〈X〉 is
used for the smallest closed inverse submonoid of M that contains X. We shall use
〈X〉↑ for this.

We will need to use some ideas from the theory of finite automata and for
background information on this topic we refer to [14, 18].

A deterministic finite state automaton A (or just an automaton in this section)
consists of

• a finite set S of states,
• a finite input alphabet A,
• an initial state s0 ∈ S,
• a partially defined transition function τ : S ×A→ S,
• a subset T ⊆ S of final states.

We shall write sCa for τ(s, a) if τ(s, a) is defined. Given a word w = a1a2 · · · am ∈
A∗ we write sCw for the state (. . . (sC a1)C a2)C · · · )C am, that is, for the state
obtained from s by computing the succesive outcomes, if all are defined, of the
transition function determined by the letters of w, with the empty word ε acting
by s C ε = s for all s ∈ S. We normally think of an automaton in terms of its
transition diagram, in which the states are the vertices of a directed graph and the
edge set is a subset of S ×A, with an edge (s, a) having source s and target sC a.

Let X be a finite set, X−1 a disjoint set of formal inverses of elements of X, and
A = X ∪X−1 An automaton A with input alphabet A is called a dual automaton
if, whenever s C a = t then t C a−1 = s. A dual automaton is called an inverse
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automaton if, for each a ∈ A the partial function τ(−, a) : S → S is injective. (See
[9, Section 2.1].)

A word w ∈ A∗ is accepted or recognized by A if s0Cw is defined and s0Cw ∈ T .
The set of all words recognized by A is the language of A:

L (A) = {w ∈ A∗ : s0 C w ∈ T} .

A language L is recognizable if it is the language recognized by some automaton.
The connection between automata and closed inverse subsemigroups of finite index
is made, as in [10], by the coset automaton.

Let M be a finitely generated inverse monoid, generated by X ⊆ M , and let
L be a closed inverse submonoid of M of finite index. Since M is generated by
X, there is a natural monoid homomorphism θ : A∗ → M . The coset automaton
C = C(M : L) is defined as follows:

• the set of states is the set of cosets of L in M ,
• the input alphabet is A = X ∪X−1,
• the initial state is the coset L,
• the transition function is defined by τ((Lt)↑, a) = (Lt(aθ))↑,
• the only final state is L.

By Lemma 2.12 and Proposition 2.13, (Lt)↑Ca is defined if and only if t(aθ)(aθ)−1t−1 ∈
L. The following Lemma occurs as [10, Lemma 3.2] for the case that M is the free
inverse monoid FIM (X).

Lemma 3.1. The coset automaton of L in M is an inverse automaton. The
language L (C(M : L)) that it recognizes is

Lθ−1 = {w ∈ A∗ : wθ ∈ L}

and C(M : L) is the minimal automaton recognizing Lθ−1.

Proof. It follows from Proposition 2.13 that C(M : L) is inverse. Suppose that w is
recognized by C(M : L). Then (wθ)(wθ)−1 = (ww−1)θ ∈ L and L(wθ)↑ = L. From
Proposition 2.3, we deduce that wθ ∈ L. Conversely, suppose that w = ai1 . . . aim ∈
A∗ and that s = wθ ∈ L. For 1 6 k 6 m, write pk = ai1 . . . aik , qk = aik+1

. . . aim ,
so that w = pkqk, and take sk = pkθ, so that s1 = ai1θ. Then

s1s
−1
1 s = s1s

−1
1 s1(q2θ) = s1(q2θ) = wθ = s

and so s1s
−1
1 > ss−1 ∈ L. Therefore s1s

−1
1 ∈ L and L C ai1 = (Ls1)↑ is defined.

Now suppose that for some k we have that LCwk is defined and is equal to (Lsk)↑.
Then

sk+1 s
−1
k+1 s = sk+1 s

−1
k+1 sk+1(qk+1θ) = sk+1 (qk+1θ) = wθ = s

and so sk+1 s
−1
k+1 > ss

−1 ∈ L and therefore sk+1s
−1
k+1 ∈ L. But

sk+1 s
−1
k+1 = sk(aik+1

θ) (aik+1
θ)−1s−1k ∈ L ,

and so by Lemma 2.12, (Lsk)↑ C aik+1
is defined and is equal to (Lsk(aik+1

θ))↑ =

(Lsk+1)↑. It follows by induction that LCw is defined in C(M : L) and is equal to
(Ls)↑ = L, and so w ∈ L(C(M : X)). Now by a result of Reutenauer [15, Lemme
1], a connected inverse automaton with one initial and one final state is minimal.
�
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The set of rational subsets of M is the smallest collection that contains all the
finite subsets of M and is closed under finite union, product, and generation of a
submonoid. Equivalently, R ⊆ M is a rational subset of M if and only if there
exists a recognizable subset Z ⊆ A∗ with Zθ = R (see [14, section IV.1]).

We also recall the notion of star-height of a rational set (see [4, Chapter III]).
Let M be a monoid. Define a sequence of subsets Rath(M), with star-height h > 0,
recursively as follows:

Rat0(M) = {X ⊆M |X is finite },

and Rath+1(M) consists of the finite unions of sets of the form B1B2 · · ·Bm where
each Bi is either a singleton or Bi = C∗i , for some Ci ∈ Rath(M). It is well known
that Rat(M) =

⋃
h>0 Rath(M).

A subset S of M is recognizable if there exists a finite monoid N, a monoid
homomorphism φ : M → N , and a subset P ⊆ N such that S = Pφ−1. For free
monoids A∗, Kleene’s Theorem (see for example [14, Theorem 5.3.1]) tells us that
the rational and recognizable subsets coincide. For finitely generated monoids, we
have the following theorem due to McKnight.

Theorem 3.2. In a finitely generated monoid M , every recognizable subset is ra-
tional.

If M is generated (as an inverse monoid) by X, then as above we have a monoid
homomorphism θ : A∗ → M . We say that a subset S of M is recognized by an
automaton A if its full inverse image Sθ−1 in A∗ is recognized by A. We shall use
the Myhill-Nerode Theorem [12, 13] to characterize recognizable languages. Let
K ⊆ A∗ be a language. Two words u, v ∈ A∗ are indistinguishable by K if, for all
z ∈ A∗, uz ∈ K if and only if vz ∈ K. We write u 'K v in this case: it is easy to
check that 'K is an equivalence relation (indeed, a right congruence) on A∗. Then
we have:

Theorem 3.3 (The Myhill-Nerode Theorem). A language L is recognizable if and
only if the equivalence relation 'L has finitely many classes.

3.1. Finite index implies finite generation. In this section, we consider a closed
inverse submonoid L that has finite index in a finitely generated inverse monoid M .
We shall show that L is finitely generated as a closed inverse submonoid. Our proof
differs from that given in [10, Theorem 3.7] for the case M = FIM (X): instead
we generalize the approach taken for groups in [2, Theorem 3.1.4]. Recall that a
transversal to L in M is a choice of one representative element from each coset of L.
We always choose the element 1M from the coset L itself. For s ∈ S we write s for
the representative of the coset that contains s (if it exists), and note the following
observations:

Lemma 3.4. Let T be a transversal to L in M and define, for r ∈ T and s ∈M ,
δ(r, s) = rs (rs)

−1
. Then for all s, t ∈M , with ss−1, stt−1s−1 ∈ L,

(a) (Ls)↑ = (Ls)↑

(b) st = st
(c) s > δ(1M , s) s .

Theorem 3.5. A closed inverse submonoid of finite index in a finitely generated
inverse monoid is finitely generated as a closed inverse submonoid.
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Proof. Let M be an inverse monoid generated by a set X. We set A = X ∪X−1:
then each s ∈ M can be expressed as a product s = a1a2 · · · an where ai ∈ A.
Suppose that L is a closed inverse subsemigroup of finite index in M. Let T be a
transversal to L in M . Given h ∈ L, we write h = x1x2 · · ·xn and consider the
prefix hi = x1x2 · · ·xi for 1 6 i 6 n. Since

hih
−1
i hh−1 = hih

−1
i hixi+1 · · ·xnh−1 = hixi+1 · · ·xnh−1 = hh−1,

we have hih
−1
i > hh

−1. But hh−1 ∈ L and L is closed, so that hih
−1
i ∈ L. Therefore

the coset (Lhi)
↑ exists, and so does the representative hi. Now

h = x1x2 · · ·xn > x1 · h1
−1
h1 · x2 · h2

−1
h2 · x3 · h3

−1 · · ·hn−1 · xn .

By part (b) of Lemma 3.4 we have hj = hj−1xj and so

h > x1 · x1−1x1 · x2 · (h1x2)−1 · h2 · x3 · (h2x3)−1 · · ·hn−1 · xn .

Now using the elements δ(r, s) from Lemma 3.4, and noting that 1M = x1x2 · · ·xn,
we have

h > δ(1M , x1)δ(x1, x2)δ(h2, x3) · · · δ(hn−1, xn) .

Finally, since (Lrs)↑ = (Lrs)↑ then it follows from Proposition 2.3(3) that δ(r, s) ∈
L. Hence L is generated as a closed inverse submonoid of M by the elements δ(r, x)
with r ∈ T and x ∈ A. �

3.2. Recognizable closed inverse submonoids.

Theorem 3.6. Let L be a closed inverse submonoid of a finitely generated inverse
monoid M . Then the following are equivalent:

(a) L is recognized by a finite inverse automaton,
(b) L has finite index in M ,
(c) L is a recognizable subset of M .

Proof. If L has finite index in M , then by Lemma 3.1, its coset automaton C(M : L)
is a finite inverse automaton that recognizes L. Conversely, suppose thatA is a finite
inverse automaton that recognizes L. Again by Lemma 3.1, the coset automaton C
is minimal, and so must be finite. Hence (a) and (b) are equivalent.

If (b) holds, then as in the proof of Theorem 2.14, we obtain a homomorphism
M → I (D) for which L is the inverse image of the stabilizer of 1. Therefore (b)
implies (c).

We have M generated by X, with A = X ∪X−1, and a monoid homomorphism
θ : A∗ → M . To prove that (c) implies (b), suppose that L is recognizable and
so the language L = {w ∈ A∗ : wθ ∈ L} is recognizable. By Theorem 3.3,
the equivalence relation 'L on A∗ has finitely many classes. We claim that if
u 'L v and if (L(uθ))↑ exists, then (L(vθ))↑ exists and (L(uθ))↑ = (L(vθ))↑. Now
(uθ) (uθ)−1 = (uu−1)θ ∈ L and hence uu−1 ∈ L . But by assumption u 'L v, and
so vu−1 ∈ L , which implies that (vθ)(uθ)−1 ∈ L. By part (c) of Proposition 2.3,
(L(vθ))↑ exists and (L(vθ))↑ = (L(uθ))↑. Since 'L has only finitely many classes,
there are only finitely many cosets of L in M . Hence (c) implies (b). �
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3.3. Rational Generation. In this section we give an automata-based proof of
part of [10, Theorem 3.7]. We adapt the approach used in [6, Theorem II] to the
proof of the following theorem of Anisimov and Seifert.

Theorem 3.7. [1, Theorem 3] A subgroup of a finitely generated group G is a
rational subset of G if and only if it is finitely generated.

Theorem 3.8. Let L be a closed inverse submonoid of a finitely generated inverse
monoid M . Then L is generated as a closed inverse submonoid by a rational subset
if and only if L is generated as a closed inverse submonoid by a finite subset.

Proof. Since finite sets are rational sets, one half of the theorem is trivial.
So suppose that L is generated (as a closed inverse submonoid) by some rational

subset Y of L. As above, if M is generated (as an inverse monoid) by X, we take
A = X ∪X−1, and let θ be the obvious map A∗ → M . Then Z = (Y ∪ Y −1)∗ is
rational and so there exists a rational language R in A∗ such that Rθ = Z. The
pumping lemma for R then tells us that there exists a constant C such that, if
w ∈ R with |w| > C, then w = uvz with |uv| 6 C, |v| > 1, and uviz ∈ R for all
i > 0. We set

U = {uvu−1 : u, v ∈ A∗, |uv| 6 C, (uvu−1)θ ∈ L}
and V = 〈Uθ〉↑. Clearly U is finite, and V ⊆ L. We claim that L = V , and so we
shall show that Rθ ⊆ V .

We first note that if w ∈ R and |w| 6 C then w ∈ U (take u = 1, v = w) and so
wθ ∈ V . Now suppose that |w| > C but that there exists n ∈ L \ V with n > wθ.
Choose |w| minimal. The pumping lemma gives w = uvz as above. Since |uz| < |w|
it follows that (uz)θ ∈ V .

Moreover,

(uvu−1)θ > (uvzz−1u−1)θ = (uvz)θ((uz)θ)−1 = (wθ) ((uz)θ)−1.

Now wθ ∈ L and (uz)θ ∈ V : since L is closed, (uvu−1)θ ∈ L and therefore
uvu−1 ∈ U . Now

n > wθ = (uvz)θ > (uvu−1uz)θ = (uvu−1)θ (uz)θ ∈ V.
Since V is closed, n ∈ V . But this is a contradiction. Hence L = V . �

Corollary 3.9. If a closed inverse submonoid L of a finitely generated inverse
monoid M is a rational subset of M then it is finitely generated as a closed inverse
submonoid.

Proof. If L is a rational subset of M then it is certainly generated by a rational set,
namely L itself. �

However, the converse of Corollary 3.9 is not true. We shall use the following
Lemma to validate a counterexample in Example 3.12.

Lemma 3.10. Let M be a semilattice of groups G1tG0 over the semilattice 1 > 0,
and suppose that T is a rational subset of M of star-height h. Then G1 ∩ T is a
rational subset of G1.

Proof. We proceed by induction on h. If h = 0 then T is finite, and G1 ∩ T is a
finite subset of G1 and so is a rational subset of G1, also of star-height h1 = 0.

If h > 0, then, as in section 3, T is a finite union T = S1 ∪ · · · ∪ Sk where each
Sj is a product Sj = R1R2 · · ·Rmj

and where each Ri is either a singleton subset
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of M or Ri = Q∗i for some rational subset Qi of M of star-height h − 1 (see [4,
Chapter III]). Hence

G1 ∩ T = (G1 ∩ S1) ∪ · · · ∪ (G1 ∩ Sk) .

Consider the subset G1 ∩ Sj = G1 ∩R1R2 · · ·Rmj . We claim that

(1) G1 ∩R1R2 · · ·Rmj = (G1 ∩R1)(G1 ∩R2) · · · (G1 ∩Rmj ) .

The inclusion ⊇ is clear, and so now we suppose that g ∈ G1 is a product g =
r1r2 · · · rmj with ri ∈ Ri. If any ri ∈ G0 then g ∈ G0: hence each ri ∈ G1 and so
g ∈ (G1 ∩R1)(G1 ∩R2) · · · (G1 ∩Rmj

) , confirming (1).
The factors on the right of (1) are either singleton subsets of G1, or are of the

form G1 ∩ Q∗i where Qi is a rational subset of M of star-height h − 1. However,
G1 ∩ Q∗i = (G1 ∩ Qi)∗: the inclusion G1 ∩ Q∗i ⊇ (G1 ∩ Qi)∗ is again obvious, and
G1 ∩Q∗i ⊆ (G1 ∩Qi)∗ since if w = x1 . . . xm ∈ Q∗i and some xj ∈ G0 then w ∈ G0.
It follows that if w ∈ G1 ∩Q∗i then xj ∈ G1 for all j.

Hence G1∩T is a union of subsets, each of which is a product of singleton subsets
of G1 and subsets of the form (G1 ∩Qi)∗ where, by induction G1 ∩Qi is a rational
subset of G1 of star-height h2 6 h− 1. Therefore G1 ∩T is a rational subset of G1.
�

Corollary 3.11. Let L = L1 ∪L0, where Lj ⊆ Gj, be an inverse submonoid of M
that is also a rational subset of M . Then L1 is a rational subset of G1.

Proof. Take T = L: then G1 ∩ L = L1 is a rational subset of G1. �

Now, we show that the converse of Corollary 3.9 is not true.

Example 3.12. Let F2 be a free group of rank 2 and consider the semilattice of
groups M = F2 t F ab2 determined by the abelianisation map α : F2 → F ab2 . The
kernel of α is the commutator subgroup F ′2 of F2 and we let K be the closed inverse
submonoid F ′2 t {0}.

F ′2

��

// F2

α

��
{0} // F ab2

Now K is generated (as a closed inverse submonoid) by {0} and so is finitely
generated. But F ′2 is not finitely generated as a group (see [2, Example III.4(4)])
and so is not a rational subset of F2 by Theorem 3.7. Therefore, by Corollary 3.11,
K is not a rational subset of M .

This example also gives us a counterexample to the converse of Theorem 3.5: K
is finitely generated as a closed inverse submonoid, but has infinite index in M .

4. Conclusion

We summarize our findings about the conditions considered by Margolis and
Meakin in [10, Theorem 3.5].

Theorem 4.1. Let L be a closed inverse submonoid of the finitely generated inverse
monoid M and consider the following properties that L might possess:

(a) L is recognized by a finite inverse automaton,
(b) L has finite index in M ,
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(c) L is a recognizable subset of M ,
(d) L is a rational subset of M ,
(e) L is finitely generated as a closed inverse submonoid of M .

Then properties (a), (b) and (c) are equivalent: each of them implies (d), and (d)
implies (e). The latter two implications are not reversible.

Proof. The equivalence of (a), (b) and (c) was established in Theorem 3.6, and that
(d) implies (e) in Corollary 3.9. The implication that (c) implies (d) is McKnight’s
Theorem 3.2.

Counterexamples for (e) implies (d) and (e) implies (b) are given in Example
3.12 �

Remark 4.2. In Theorem 4.1, if M is a group and L a subgroup of M , then
by the result [1, Theorem 3] of Anisimov and Seifert (stated here as Theorem
3.7), properties (d) and (e) are equivalent, and each is implied by the equivalent
properties (a), (b),(c). This implication remains irreversible, since (for example)
finitely generated subgroups of finitely generated groups need not have finite index.
We are very grateful to the referee for suggesting this coda to our paper.
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