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Abstract. Volume diffusion (or bi-velocity) continuum model offers an alternative modification to the standard Navier-

Stokes-Fourier for simulating rarefied gas flows. According to this continuum model, at higher Knudsen numbers the 

contribution of molecular spatial stochasticity increases. In this paper, we study a micro-cavity heat transfer problem as it 

provides an excellent test for new continuum flow equations. Simulations are carried out for Knudsen numbers within the 

slip and higher transition flow regimes where non-local-equilibrium and rarefaction effects dominate. We contrast 

predictions by a Navier-Stokes-Fourier model corrected by volume diffusion flux in its constitutive equations to that of 

the Direct Simulation Monte Carlo method and the standard Navier-Stokes-Fourier model. The results show 

improvement in the Navier-Stokes-Fourier prediction for the high Knudsen numbers. The new model exhibits proper 

Knudsen boundary layers in the temperature and velocity fields.  

INTRODUCTION 

The use of micro- and nano- electromechanical systems (MEMS/NEMS) has faced rapid increase as it has generated 

extensive research in fluid flows in ultra-small devices. Gas flows at micro- and nano-scale involve complex 

processes due to rarefaction, important gas-surface interactions, and inter-molecular collisions
1
. Classical continuum 

fluid equation models like the standard Navier-Stokes-Fourier (NSF) fail to describe flows under these conditions
1
. 

The degree of gas rarefaction can be determined by the Knudsen number (Kn), Kn = λ/L, which can be defined as 

the ratio of the gas molecular mean free path (λ) to the characteristic length scale of the flow system (L)
2
.  

In order to describe micro- and nano-scale flows, the Boltzmann kinetic equation for dilute gases is often adopted
3
. 

Due to the complexity of the collision term in the Boltzmann equation, approximation methods are often used. 

Among the molecular based methods is the Direct Simulation Monte Carlo method (DSMC). It mimics the 

Boltzmann equation and is currently the dominant numerical technique for simulating gas flows in transition 

regime
4
. DSMC has been widely employed for modeling gas flow under non-equilibrium conditions from 

hypersonic and re-entry vehicle flows to low speed nano-channel flows, and recently to porous media
5-7

. In this 

method each simulated particle represents a number of real molecules. It is currently the common method for 

modeling gas flows in the upper rarefaction regime. To obtain accurate results using DSMC there are three 

constraints regarding time step, cell size and number of particles per cell, which can make the computation 

expensive.   

Several extended hydrodynamic models are developed based on the Boltzmann kinetic equation to simulate rarefied 

gas flows in the slip and transition regimes
8
. Burnett set of equations are examples of higher order hydrodynamic 

model
9
. However, these equations suffer from instability problems and they become unstable for small wavelengths 

and cannot be used for numerical simulations
8,10

. The inappropriateness of the standard NSF model in describing 

temperature field in a stationary gas in the continuum limit has long been shown by Sone et al
11

. Therefore, these 

authors proved that corrections to the standard constitutive equations involving Korteweg diffuse interface type 

stress tensor are required to acquire appropriate description of heat transfer processes even in the continuum limit
12

.     

Brenner first initiated bi-velocity hydrodynamic theory
13

. This consisted of an ad-hoc modification to the Navier-

Stokes-Fourier (NSF) constitutive equations. Greenshields and Reese evaluated implications of this modification for 

the prediction of shock waves thickness and showed that they are better than NSF
14

. The modification was tested for 

the prediction of mass flow rate in microchannel and it was found to accord well with experimental data
15

. Bi-
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velocity hydrodynamic model, which allows as opposed to NSF a form of diffusive mass from the fluid molecular 

level was later proved to constitute a full thermo-mechanically consistent Burnett regime continuum flow 

equations
16

. Walls and Abedian used a bi-velocity model to predict the characteristics of a monoatomic Maxwellian 

gas flow in a micro-channel. Their results indicate that the numerical predictions for the density, temperature, and 

velocity distributions are different from those previously obtained using original Burnett equations
17

. 

The lid-driven cavity problem is a fundamental configuration involving a simple geometry. It is often used for 

validation, benchmarking and testing new methods. Some previous studies showed the complexity involved in a lid-

driven cavity flow in rarefied gases under non-equilibrium effects
18

. In the absence of experimental data, results 

obtained using DSMC are used to compare with extended hydrodynamic equations. Here we used the lid-driven 

cavity problem to demonstrate how a volume diffusion continuum model can capture non-local-equilibrium 

phenomena in high Knudsen number heat transfer problems. 

VOLUME DIFFUSION MODEL 

We consider the following continuum fluid model set of equations that allow for volume diffusion terms in 

constitutive equations
19

.  

 

Conservation of mass  

 

 𝜕𝜌

𝜕𝑡
+ ∇ ∙ [𝜌𝑼] = 0 

 

(2.1a) 

 

Conservation of momentum 

 

 𝜕𝜌𝑼

𝜕𝑡
+ ∇ ∙ [𝜌𝑼𝑼] + ∇ ∙ [𝑝𝑰 + 𝜫] =  0 

 

(2.1b) 

 

Conservation of total energy 

 

 𝜕

𝜕𝑡
[
1

2
𝜌𝑼𝟐 + 𝜌𝑒𝑖𝑛] + ∇ ∙ [

1

2
𝜌𝑼𝟐𝑼 + 𝜌𝑒𝑖𝑛𝑼] + ∇ ∙ [(𝑝𝑰 + 𝜫) ∙ 𝑼] + ∇ ∙ 𝑱𝒖 = 0 

 

(2.1c) 

 

where the shear stress term 𝜫 is given by,  

 

 𝜫 =  𝜫𝒗 − 𝜌𝑱𝒄𝑱𝒄 

 

(2.2) 

and 

 
𝜫𝒗 =  −2𝜇 ∇[𝑼 − 𝑱𝒄]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

°

 

 

(2.3) 

The specific internal energy of the fluid is 𝑒𝑖𝑛 = (3/2) 𝑅𝑇 and p is the pressure. In the above equations the flux 𝑱𝒄 is 

a new molecular level diffusive flux associated with the gas molecule concentration, ρ is the mass density. In other 

words −𝑱𝒄 is the gas volume diffusive flux. It characterizes macroscopically, the difference between the fluid 

volume velocity 𝑼𝒗 and the fluid mass velocity 𝑼 
20

:  

 

 𝑱𝒄 =  −𝑼𝒗 + 𝑼= −
𝑘𝑚

𝜌
∇𝜌 (2.4) 

where 𝑘𝑚 is the molecular (or volume) diffusivity coefficient. This coefficient may be related to dynamic viscosity, 

𝜇, as: 

 
𝑘𝑚 ≡ 𝐶𝑣𝑣

𝜇
𝜌

 
(2.5) 



For our solver it was found convenient to set the dimensionless coefficient as, 𝐶𝑣𝑣 =  
𝑃𝑟

3
, where Pr  is the Prandtl 

number. The energetic heat flux,  𝑱𝒖, is given by,  

  
𝑱𝒖 =  𝒒𝒗𝒆 + 𝑝𝑱𝒄 

 

(2.6) 

where 𝒒𝒗𝒆 is the entropic heat flux given by the Fourier’s law:   

 

 𝒒𝒗𝒆 =  −𝑘∇𝑇 (2.7) 

 

In classical NSF theory 𝑱𝒖 and 𝒒𝒗𝒆 are equivalent. Distinction between the energetic heat flux (energy equation) and 

the entropic heat flux (entropy equation) is a fundamental new aspect of the volume diffusion continuum model. The 

new energetic heat flux has a component not driven by temperature gradient
21

. The set (2.1) - (2.7) may be viewed 

as a compressible Korteweg fluid-like set of equations
22

. These equations can be derived by considering a general 

expression of the fluid local total energy density or entropy using a continuum thermodynamics approach
23

.    

LID DRIVEN CAVITY PROBLEM 

The lid-driven cavity problem considered is shown in Figure 1 and investigated at different Knudsen numbers. The 

top driven lid (B-C) moves in the x direction with a fixed velocity 𝐔𝐰= 100 m/s while all other walls are stationary. 

All wall temperatures are set to a uniform value of 𝑇𝑤= 273K in all cases. The cavity is of length 𝑊 = 10−7𝑚. A 

monoatomic argon gas is used. Three different cases are tested with NSF and DSMC
24

.  

We implemented the set of equations (2.1)-(2.7) with accompanying boundary conditions in the open source 

package OpenFOAM. In order to find the appropriate number of cells, a grid dependency test was run for 80 x 80, 

100 x 100, 160 x 160 and 240 x 240 cells. The mesh containing 160 cells in each direction was selected after the 

results for 𝜌 and 𝛵 converged on the mesh of 100 cells. The courant number, 𝐶𝑟 was set to 0.5 for all cases as for the 

continuum methods. For the DSMC method the same cell dependency test was performed for 100 x 100, 200 x 200, 

400 x 400. The grid containing 200 x 200 cells is selected for the reported results. The variable hard sphere (VHS) 

model is used for the DSMC and the collision pairs are chosen based on the no time counter (NTC) method. Fifty 

particles per cell were initially set for all the cases in order to minimize the statistical noise. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

FIG. 1. Configuration of the micro cavity flow problem 

 
Classical NSF is well-known to be unable to capture flow features in transition regime (Kn > 0.1) even when 

corrected with slip-jump boundary conditions. A lid-driven cavity problem was investigated and compared between 

DSMC and regularized 13 moments equations (R13)
25

. It was shown that R13 equations describe temperature and 

heat flux compared to DSMC up to Knudsen number 0.1. The unconventional cold-to-hot heat transfer was observed 

for Kn > 0.05. Here we run our new solver for three different cases: Kn = 10, Kn = 1 and Kn = 0.1. These are high 

Knudsen numbers compared with the previous studies
26

.  
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Boundary Conditions 

For the two continuum methods, NSF and volume diffusion, a temperature jump boundary conditions were 

imposed
27

: 

 
 

T − Tw = −
2 − σΤ

σΤ

2γ

(γ + 1)Pr
λ∇𝐧T 

(3.1) 

 
∇𝐧≡ 𝐧 ∙ ∇ is the component of the gradient normal to the boundary surface and n is the unit normal vector defined as 

positive in the direction of the flow domain. Tw is the wall temperature; γ is the specific heat ratio and σΤ  the thermal 

accommodation coefficient. For all of our simulations the perfect energy accommodation, σΤ=1, was considered.  

Maxwell slip boundary condition was used for NSF on the velocity
28

:  

 
 

𝑼 − 𝑼𝒘 = − (
2 − σu

σu
)

λ

μ
𝝉 −

3

4

Pr (𝛾 − 1)

𝛾p
𝐪 

(3.2) 

 
where 𝐔𝐰 is the wall velocity,  σu is the tangential momentum accommodation coefficient and  𝝉 is the tangential 

shear stress, 𝝉 = 𝐒 ∙ (𝐧 ∙  𝚷𝐍𝐒𝐅), where the tensor 𝐒 = 𝐈 − 𝐧𝐧 and 𝚷𝐍𝐒𝐅 = 𝜇∇𝑼 + 𝜇(∇𝑼)𝛵 − 
2

3
𝚰tr(∇𝑼) and 𝐪 =

−𝑘∇𝑇 ∙ 𝐒  

 

For the volume diffusion continuum model a Maxwell type slip boundary condition is also used but based on the 

new shear stress tensor and heat flux:  

 
 

𝑼 − 𝑼𝒘 = − (
2 − σu

σu
)

λ

μ
𝝉𝒗 −

3

4

Pr (𝛾 − 1)

𝛾p
𝐣𝐮

 
(3.3) 

 
where  𝝉𝒗 is the new tangential shear stress,  𝝉𝒗 =  𝐒 ∙ (𝐧 ∙  𝜫𝒗) and 𝐣𝐮 = 𝐉𝐮 ∙ 𝐒. Equation (3.3) implements a new 

formulation of wall effects within the volume diffusion model. A fully diffuse reflection is adopted for the DSMC 

simulations.    

RESULTS AND DISCUSSION 

Numerical results are presented below in the slip and transition flow regimes. For each Knudsen number entropic 

heat flux and energetic heat flux are depicted and compared with DSMC heat flux. 

 

 
                             (a)                                                   (b)                                                         (c) 

 
FIG. 2. Energetic heat flux (a) and entropic heat flux (b) lines overlaid on the temperature contour for Kn = 10 in comparison 

with DSMC heat flux (c) 

 

Figure 2 compares heat flux lines overlaid the temperature contours. First we observe that the entropic heat flux 

from the volume diffusion model displays a flow from the higher temperature corner to the lower temperature corner 

(Figure 2.b), which is in perfect agreement with the Second Law. The phenomenon of cold-to-hot heat transfer 



concerns the energetic heat flux (Figure 2.a). While the DSMC heat transfer also shows a heat flux from cold-to-hot, 

our new model predicts a more consistent energetic heat flux clearly from the left corner to right corner. The 

unconventional cold-to-hot heat transfer in the energetic heat flux is attributable to the additional term in the heat 

flux. The predicted temperature distribution is in general agreement with the DSMC. Equal minimum and maximum 

temperature was predicted from the two methods. The minimum temperature is decreased by four degrees from the 

initially set conditions, which shows strong non-equilibrium effects in the left corner. The expansion-cooling 

phenomenon occurring on the left wall shows that the gas temperature becomes lower than the wall temperature (Tg 

< Tw). Another phenomenon governed by viscous dissipation is captured by the volume diffusion model in the right 

corner (Figure 2.a). 

Figure 3 shows the temperature distribution near the top moving lid for the volume diffusion model, DSMC and 

NSF. Temperature obtained by NSF is constant. This means that NSF does not reveal any disequilibrium for that 

configuration. This model is therefore inadequate for such a high Knudsen number as expected. Volume diffusion 

model and DSMC show non-uniform temperature distribution as they capture the non-equilibrium imposed by the 

moving lid. Volume diffusion model predicts lower temperature near the left wall compared to DSMC. DSMC 

shows a “plato” in the middle of the cavity while volume diffusion model shows a gradually increasing temperature 

from left to right. The maximum difference between the two models occurs in the middle of the cavity and is 2.94%.  

In the mid-transition regime (Figure 4), for Kn = 1, entropic heat flux again follows the Second Law, i.e., a heat 

transfer from hot-to-cold. The energetic heat flux predicts cold-to-hot heat transfer in agreement with DSMC 

prediction.  

 

  
FIG. 3. Variation of gas temperature near the top lid (y/L = 0.9) of the cavity for DSMC, NSF and Volume Diffusion at Kn = 10 

 

The volume diffusion model appears to better predict the energetic cold-to-hot heat transfer phenomenon compared 

to DSMC. General agreement is observed for the temperature profiles for the two methods. The same maximum 

temperature is predicted. The similarity between DSMC heat flux and volume diffusion energetic heat flux can be 

understood. In DSMC, which is a particle based method, heat flux is defined via particle translational kinetic energy. 
 

 
             (a)                                                   (b)                                                       (c) 

 

FIG. 4. Energetic heat flux (a) and entropic heat flux (b) lines overlaid on the temperature contour for Kn = 1 in comparison with 

DSMC heat flux (c) 

 

At Kn = 1 (Figure 5), NSF is still inadequate in capturing the non-equilibrium imposed by the moving lid as it 

predicts a constant gas temperature. DSMC and volume diffusion again resolve the non-equilibrium structures with 



some minor differences in trend. The maximum relative difference between temperature values from the two 

methods is about 2.2%. In Figures 3 and 5 the temperature decreases toward the left wall and increases as we 

approach the right wall for both DSMC and volume diffusion in a Knudsen layer like profile. 

  

 
 

FIG. 5. Variation of gas temperature near the top lid (y/L = 0.9) of the cavity for DSMC, NSF and Volume Diffusion at Kn = 1 

 

As the Knudsen number decreases, the energetic heat flux contour from the volume diffusion model become more 

similar to DSMC prediction (Figures 6.a vs 6.c). Furthermore, entropic heat flux in Figure 6.b is still consistent with 

the second law. Both methods predict a low temperature for the lower wall. Agreement is found for the minimum 

and maximum temperatures. 

Comparison of the temperature profile between the three models at Kn = 0.1 is shown in Figure 7. NSF starts to 

exhibit some non-equilibrium effects at walls. Volume diffusion now predict clear thermal boundary layers at both 

walls characteristic of Knudsen layers connected with a nearly uniform temperature profile in the middle of the 

cavity which is close to the NSF value. Overall, NSF prediction is still different from the predictions by DSMC and 

volume diffusion. 

 

   
 

                        (a)                                                 (b)                                                              (c) 

 
FIG. 6. Energetic heat flux (a) and entropic heat flux (b) lines overlaid on the temperature contour for Kn = 0.1 in comparison 

with DSMC heat flux (c) 

 
Agreement is found for the minimum and maximum temperature at the walls between DSMC and volume diffusion. 

Furthermore, the trends of the two methods are consistent and both methods show that left and right walls are in 

non-equilibrium state. The average relative difference between temperature values for the DSMC and the volume 

diffusion is about 2.4%. DSMC shows a temperature shoot near the right wall before converging to the wall 

temperature. Volume diffusion model has a rather more symmetrical profile.  

 



  
FIG. 7. Variation of gas temperature near the top lid (y/L = 0.9) of the cavity for DSMC, NSF and Volume Diffusion at Kn = 0.1 

CONCLUSION 

We presented an analysis of non-local-equilibrium heat transfer in rarefied gas flows in a lid-driven cavity using a 

volume diffusion continuum set of equations. We observed that this continuum model appears to account of non-

local equilibrium effects where Navier-Stokes-Fourier fails. Volume diffusion model predicts temperature 

distribution for the various Knudsen number in general agreement with DSMC for the heat transfer cavity case. 

While the unconventional cold-to-hot heat transfer is confirmed in high Knudsen numbers, it follows the second law 

of thermodynamics as the volume diffusion theory distinguishes between entropic heat flux and energetic heat flux. 

Knudsen layers are well predicted.  
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1. G. Karniadakis, A. Beşkök, and N. R. Aluru, Microflows and nanoflows : fundamentals and simulation (Springer, 

New York, NY, 2005). 

2. M. Knudsen, "Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren," 

Annalen der Physik 333, 75 (1909). 

3. C. Cercignani, Theory and application of the Boltzmann equation (Scottish Academic Press, 1975). 

4. G. A. Bird, Molecular gas dynamics and the direct simulation of gas flows (Oxford University Press, Oxford, 

1994). 

5. C. White, M. K. Borg, T. J. Scanlon, and J. M. Reese, "A DSMC investigation of gas flows in micro-channels 

with bends," Computers & Fluids 71, 261 (2013). 

6. N. T. P. Le, A. Shoja-Sani, and E. Roohi, "Rarefied gas flow simulations of NACA 0012 airfoil and sharp 25–55-

deg biconic subject to high order nonequilibrium boundary conditions in CFD," Aerospace Science and Technology 

41, 274 (2015). 

7. C. Christou, and S. K. Dadzie, "Direct-Simulation Monte Carlo Investigation of a Berea Porous Structure," SPE 

Journal (2015). 

8. L. S. García-Colín, R. M. Velasco, and F. J. Uribe, "Beyond the Navier–Stokes equations: Burnett 

hydrodynamics," Physics Reports 465, 149 (2008). 

9. D. Burnett, "The distribution of velocities in a slightly non-uniform gas," Proceedings of the London 

Mathematical Society 2, 385 (1935). 

10. H. Struchtrup, and M. Torrilhon, "Regularization of Grad’s 13 moment equations: derivation and linear 

analysis," Physics of Fluids (1994-present) 15, 2668 (2003). 

11. Y. Sone, K. Aoki, S. Takata, H. Sugimoto, and A. Bobylev, "Inappropriateness of the heat‐ conduction equation 

for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis 

and numerical computation of the Boltzmann equation," Physics of Fluids (1994-present) 8, 628 (1996). 

12. Y. Sone, "Flows induced by temperature fields in a rarefied gas and their ghost effect on the behavior of a gas in 

the continuum limit," Annual review of fluid mechanics 32, 779 (2000). 

13. H. Brenner, "Kinematics of volume transport," Physica A: Statistical Mechanics and its Applications 349, 11 

(2005). 



14. C. J. Greenshields, and J. M. Reese, "The structure of shock waves as a test of Brenner's modifications to the 

Navier–Stokes equations," Journal of Fluid Mechanics 580, 407 (2007). 

15. S. K. Dadzie, and H. Brenner, "Predicting enhanced mass flow rates in gas microchannels using nonkinetic 

models," Physical Review E 86, 036318 (2012). 

16. S. K. Dadzie, "A thermo-mechanically consistent Burnett regime continuum flow equation without Chapman–

Enskog expansion," Journal of Fluid Mechanics 716, R6 (2013). 

17. P. L. Walls, and B. Abedian, "Bivelocity gas dynamics of micro-channel couette flow," International Journal of 

Engineering Science 79, 21 (2014). 

18. B. John, X.-J. Gu, and D. R. Emerson, "Effects of incomplete surface accommodation on non-equilibrium heat 

transfer in cavity flow: A parallel DSMC study," Computers & Fluids 45, 197 (2011). 

19. S. K. Dadzie, and J. M. Reese, "A volume-based hydrodynamic approach to sound wave propagation in a 

monatomic gas," Physics of Fluids (1994-present) 22, 016103 (2010). 

20. S. K. Dadzie, J. M. Reese, and C. R. McInnes, "A continuum model of gas flows with localized density 

variations," Physica A: Statistical Mechanics and its Applications 387, 6079 (2008). 

21. H. Brenner, "Beyond Navier–Stokes," International Journal of Engineering Science 54, 67 (2012). 

22. M. Heida, and J. Málek, "On compressible Korteweg fluid-like materials," International Journal of Engineering 

Science 48, 1313 (2010). 

23. D. M. Anderson, G. B. McFadden, and A. A. Wheeler, "Diffuse-interface methods in fluid mechanics," Annual 

review of fluid mechanics 30, 139 (1998). 

24. T. Scanlon, C. White, M. K. Borg, R. C. Palharini, E. Farbar, I. D. Boyd, J. Reese, and R. Brown, "Open souce 

DSMC chemistry modelling for hypersonic flows," AIAA Journal (2014). 

25. A. Mohammadzadeh, E. Roohi, H. Niazmand, S. Stefanov, and R. S. Myong, "Thermal and second-law analysis 

of a micro- or nanocavity using Direct-Simulation Monte Carlo," Physical review. E, Statistical, nonlinear, and soft 

matter physics 85, 056310 (2012). 

26. B. John, X.-J. Gu, and D. R. Emerson, "Investigation of Heat and Mass Transfer in a Lid-Driven Cavity Under 

Nonequilibrium Flow Conditions," Numerical Heat Transfer, Part B: Fundamentals 58, 287 (2010). 

27. M. Smoluchowski von Smolan, "Über wärmeleitung in verdünnten gasen," Annalen der Physik 300, 101 (1898). 

28. J. C. Maxwell, "On Stresses in Rarefied Gases Arising from Inequalities of Temperature," Proceedings of the 

Royal Society of London 27, 304 (1878). 

 


