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Abstract—Ultrasonography uses multiple piezo-electric element probes
to image tissues. Current time-domain beamforming techniques require
the signal at each transducer-element to be sampled at a rate higher
than the Nyquist criterion, resulting in an extensive amount of data to
be received, stored and processed. In this work, we propose to exploit
sparsity of the signal received at each transducer-element. The proposed
approach uses multiple compressive multiplexers for signal encoding
and solves an `1-minimization in the decoding step, resulting in the
reduction of 75 % of the amount of data, the number of cables and the
number of analog-to-digital converters required to perform high quality
reconstruction.

Medical ultrasonography is a widely used modality nowadays
due to its non-invasiveness and real-time capability. In many ul-
trasound (US) systems, an array of transducer-elements is used to
transmit acoustic pulses, which, when reflected back by the medium
inhomogeneities, are sensed by the same array. According to the
Shannon-Nyquist theorem, the sampling rate at each element must be
at least twice the bandwidth of the received signal. In practice, time-
domain beamforming techniques require sampling rates between 3
and 10 times the center frequency to minimize the delay-quantization
errors [1]. The large number of transducer-elements and the high
central frequency required in medical ultrasonography motivate the
research towards sampling rate reduction.

Let us consider an US probe made of Nel transducer-elements and
call ri (t) with i ∈ {1, ..., Nel} the corresponding echo signals re-
ceived by each transducer-element at time t. If we consider a medium
made of K inhomogeneities, then ri (t) =

∑K
k=1 aikψ (t− tk),

with (aik, tk) amplitudes and times-of-arrival of the K echo-
pulses to the ith transducer-element and ψ (t) the elementary
waveform. Assuming a linear propagation, we can state that
ψ (t) = (e ∗ hTx ∗ hRx) (t) where e (t) denotes the excita-
tion and hTx (t) and hRx (t) are the transmit and receive im-
pulse responses of the transducer-elements, respectively. Given
the model described above, it can be stated that the vector
ri = [ri (t1) , ..., ri (tNt)]

T ∈ RNt , where Nt denotes the
number of time samples, obeys a K-sparse synthesis model in an
overcomplete dictionary Ψ ∈ RNt×Nt made of all the shifted replicas
of the pulse [2]. Thus, ri = Ψai with ||ai||0 = K, which can
be exploited under the compressed sensing (CS) framework. Many
efforts have been made in order to provide sub-Nyquist acquisition
systems which result in different CS architectures such as the Random
Demodulator [3] and the Random-Modulator Pre-Integrator [4] for
single-channel signals, and the compressive multiplexer for multi-
channel signals [5], [6]. In US imaging, Chernyakova et al. have
recently proposed a hardware architecture based on finite rate of
innovation and Xampling ideas [7].

In this work, we propose a proof of concept for a compressive
multiplexer (CMUX) applied to US imaging. The architecture, de-
noted as US-CMUX is derived from the work of Kim et al. [6]. The
idea is to split the Nel channels of the US probe into L groups of M
channels and to mix each group according to the CMUX framework.

In the decoding step, a convex problem is solved.
The CMUX, described on Figure 1, is based on modulating each

channel ri (t) of a given group by a chipping sequence pi (t) sampled
from a Rademacher distribution. The modulated channels are then
summed to y (t) =

∑M
i=1 pi (t) ri (t) and sampled at fs.

The US-CMUX, described on Figure 2, uses L CMUX sharing the
same chipping sequences to perform the signal encoding, giving rise
to the matrix Y = [y1, ...,yL] ∈ RNt×L. In the decoding step, the
following convex problem is solved:

min
Ā∈RMNt×L

||Ā||11 subject to ‖Y −ΨPĀ‖F ≤ ε, (1)

where ||.||11 accounts for the `11-norm, ||.||F is the Frobe-
nius norm, ΨP = [Ψp1, ...,ΨpM] ∈ RNt×MNt in which
Ψpi = [pi ⊗Ψ1, ...,pi ⊗ΨNt ] ∈ RNt×Nt , where ⊗ denotes the
Hadamard product, and

A =

 a1 aM+1 · · · aNel−M+1

...
...

...
aM a2M · · · aNel

 ∈ RMNt×L,

with ai ∈ RNt the representation coefficients of ri.
Problem (1) is solved using the primal-dual forward backward

algorithm [8] and each channel ri is recovered from A as: ri = Ψai.
In order to validate the proposed method, we present numerical

results on an in-vitro hyperechoic inclusion phantom (Model 54GS,
Computerized Imaging Reference Systems Inc., Norfolk, USA) and
an in-vivo carotid acquired with a Verasonics research scanner (V1-
128, Verasonics Inc., Redmond, WA). The US probe used for the
different experiments is a L12-5 50 mm probe, with 128 active
transducer-elements, working at 5 MHz with 100% bandwidth. The
sampling frequency is 31.2 MHz, corresponding to 4 times the
bandwidth. The architecture is simulated on MATLAB thus the
experiments are carried out on a digital setting. The hardware
implementation of the proposed scheme will be investigated in future
work. The architecture is tested for L = 2, 4 which means a
reduction of 50 % and 75 % of the sampling rate, respectively. In
the decoding process, ε is set to 10−6 ||Y||F and 1500 iterations of
the algorithm are run. Radio-frequency images are computed with a
classical delay-and-sum (DAS) algorithm, with a linear interpolation
for the delay calculation and without apodization, and the B-mode
image is obtained by Hilbert demodulation, normalization and log-
compression with a dynamic range of 40 dB.

The performance of the proposed method is quantified by the
signal-to-noise ratio (SNR) and the structural similarity index (SSIM)
against the computed image using 100 % of the data, calculated on
the B-mode image without log-compression.

The results, displayed on Table I, as well as a visual evaluation on
Figure 3 and Figure 4 show that the proposed architecture leads to
high quality reconstruction with 25 % of data only since anechoic,
hyperechoic and speckle regions are preserved.
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Figure 1 Compressive multiplexer (CMUX) architecture for M

transducer-elements.
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Figure 2 Ultrasound compressive multiplexer architecture using L

CMUX.

Hyperechoic inclusion In-vivo carotid
SNR - L = 2 39 36
SSIM - L = 2 0.94 0.87
SNR - L = 4 32 29
SSIM - L = 4 0.81 0.72

Table I Average values of the SNR (dB) and SSIM over 10 draws for
the different images, for L = 2 and L = 4.
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(b) CS reconstruction

Figure 3 B-mode image of the hyperechoic inclusion reconstructed with
(a) 100 % of the data and (b) 25 % of the data acquired with the US-
CMUX architecture.
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(b) CS reconstruction

Figure 4 B-mode image of the carotid reconstructed with (a) 100 % of the
data and (b) 25 % of the data acquired with the US-CMUX architecture.
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