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Abstract

We present a methodology for assessing the economic impact of
power storage technologies. The methodology is founded on classi-
cal approaches to the optimal stopping of stochastic processes but
involves an innovation that circumvents the need to, ex ante, identify
the form of a driving process and works directly on observed data,
avoiding model risks. Power storage is regarded as a complement to
the intermittent output of renewable energy generators and is there-
fore important in contributing to the reduction of carbon intensive
power generation. Our aim is to present a methodology suitable for
use by policy makers that is simple to maintain, adaptable to dif-
ferent technologies and is easy to interpret. The methodology has
benefits over current techniques and is able to value, by identifying a
viable optimal operational strategy, a conceived storage facility based
on compressed air technology operating in the UK.

1 Introduction

Many renewable power sources (wind, solar, tidal) are naturally controlled,
sometimes described as being intermittent or variable, and it is often diffi-
cult to predict their output. This means that in areas where there is a high
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proportion of generation capacity provided by renewable sources there are
new problems for those tasked with balancing supply and demand. A solu-
tion, suggested in ([1], [2]), is to use power storage as a ‘liquidity reserve’
that holds excess power generated at one time that can then be released at
a subsequent time of power scarcity. This immediately raises the question of
how to optimally control a power storage facility so as to maximise its value
and suggests the problem is one of optimal stopping.

It is profitable for technology operators to invest in developing detailed,
complex, representational models of the specific plant they manage to ad-
dress the specific issue of optimally managing a single implementation of a
power storage technology. Policy makers and regulators1, on the other hand,
must address the broader question of what portfolio of generation/storage
technologies will deliver a low cost, resilient power system that meets policy
objectives, such as the reduction of carbon emissions. The choices facing pol-
icy makers, as distinct from technology operators, are characterised by: long
time horizons with radical uncertainty, meaning that statistical inference is
often inappropriate; political considerations, so that some factors are impos-
sible to quantify; conflicting objectives with a strong normative dimension
(profit/safety); and options involving high upfront investments and so require
robust justification. In general, the future state of the world is ambiguous
for policy makers and so models need to be signifiers of the policy options,
rather than accurate representations of the system [3, 4].

Energy policy can be delivered via market mechanisms such as feed in
tariffs and capacity payments and these will need to be tested by multiple
runs on different model scenarios. The consequence is that policy makers
need to employ models that are adaptable to different realisations of what
might occur, are relatively easy to maintain and are straightforward to in-
terpret at the expense of being accurate representations. The methodology
developed here is aimed specifically at supporting these types of decisions and
goes some way to addressing a requirement for the development of models to
assist policy-makers [5, 5.2.2].

The methodology presented identifies the residual power load (demand
net of renewable generation) at which an optimally operated storage facility
would be charged (filled) and discharged (emptied), indicating how the tech-

1Here we use the term ‘regulator’ to cover all parties that can influence the behaviour
of the power market. In the UK this would include the regulator (Ofgem and GEMA).
Policy makers are the parts of government that set the aims of the regulators, in the UK
this is the Department of Energy and Climate Control (DECC).
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nology would impact the existing power system. In doing this it values an
implementation of the technology on the implicit assumption that a storage
facility has a negligible impact on the overall system. The methodology is
novel in that it offers a solution to the optimal stopping problem rooted in
the classical theory of optimal stopping but does not require the ex ante iden-
tification of the Itō process driving the system. Rather the analysis is based
directly on the observed data. This reduces the problem of ‘model risk’ re-
sulting from basing decisions on a theoretical, canonical processes that have
no relation to the phenomenon of interest. While developed in relation to the
power markets, this innovative methodology has the potential to be applied
to a range of real-world problems.

Despite a proliferation in papers describing representational models to
address the optimal operation of power storage facilities in the engineering
literature, summaries can be found in [5] or [6], there has been relatively
little interest in the contemporary economics literature. There is a larger
body of economic and financial research investigating gas storage, such as
[7], [8], [9], [10], [11] and [12]. An explanation for the imbalance in research
into gas storage and electricity storage could lie in the fact that electricity
prices, unlike gas prices, are typically regarded as exhibiting jumps [13] and
the mathematical theory of the control of jump diffusions is still immature.
Jumps in the electricity price can be explained as occurring when the load
crosses one of the discontinuities in the, so called, merit order curve. The
‘merit order curve’ (MOC), or ‘stack’, is a mapping of load to price. It is
constructed by ranking different power generators based on the ascending
order of the price the generators bid to deliver a specific quantity of power;
it is a monotone increasing non-continuous (‘staircase’) function (see Figure
1).

The relationship between the actual price paid for power and the merit
order curve is not straightforward, however it provides a useful mechanism for
converting load, which can be modelled as a continuous process, into an esti-
mate of the average price paid to power suppliers for a given power load; this
is an approach taken in [14]. The pay-off of charging/discharing a storage fa-
cility will be based on the time integral of the product of the charge/discharge
rate and the instantaneous price of power until it is full/empty. This will
not deliver smooth (C2) pay-off functions because of the discontinuties in
the MOC. However, the theory developed [15] and [16] and applied in [17]
is able to accommodate non-smooth pay-offs and this theory was employed
in [18] where the pay-offs were defined by passing an Itō diffusion through
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the MOC. This approach did not deliver useful results because the load data
could not be modelled using a canonical Itō diffusion. This failure prompted
the innovative approach taken in this paper: rather than identifying a canon-
ical process representing the demand, and then calibrating the data, solve
the problem directly from the data. This empirical approach involved cal-
culating the pay-offs based on data and then fitting these observations to
a polynomial, this delivered smooth pay-offs and so the approach taken in
[15, 16, 17] was not needed but these papers provided the theoretical basis
of the innovative empirical approach used here.

2 Theoretical basis

We assume that the demand is driven by a one-dimensional, time homoge-
neous Itō diffusion given by the stochastic differential equation

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x ∈ I. (1)

Here, I is a given open interval with left endpoint−∞ ≤ α and right endpoint
β ≤ ∞. The functions b, σ : I → R satisfy Assumptions 1–3 in [15] such
that there is a weak solution to (1), the diffusion is non-explosive and that
the boundaries α and β are inaccessible. Since we are concerned with an
economic question, all future pay-offs are discounted by a state-dependent
factor defined by

Λt =

∫ t

0

r(Xs) ds.

We require that r : I→ ]0,∞[ is B(I)-measurable, it is locally bounded and
there exists r0 > 0 such that r(x) ≥ r0, for all x ∈ I.

On this basis, denote by τy the first hitting time of the point y ∈ I by the
process, Xt

τy := inf{t ≥ 0 |Xt = y}.
With regard to [15, Eqns (6)–(10)] and [19, 11.10], given any points y < z in
I we can define the function ψ by

ψ(y) = ψ(z)Ey
[
e−Λτz

]
, (2)

and the function, φ, by

φ(z) = φ(y)Ez
[
e−Λτy

]
. (3)
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These functions have absolutely continuous first derivatives, are unique, mod-
ulo multiplicative constants,

0 < φ(x) and φ′(x) < 0, for all x ∈ I, (4)

0 < ψ(x) and ψ′(x) > 0, for all x ∈ I, (5)

and

lim
x↓α

φ(x) = lim
x↑β

ψ(x) =∞. (6)

The stochastic system that we consider is switched between two modes,
‘charged’ (full) or ‘discharged’ (empty). As in [15] we use a controlled finite
variation process Z that takes values in {0, 1} to keep track of the system’s
operating mode over time. If Zt = 1 (resp., Zt = 0), then the system is in its
charged (resp., discharged) operating mode at time t. The jumps of Z occur
at the sequence of stopping-times (Tn), with respect to the weak solution
of (1), when system is switched between its two operating modes. Assum-
ing that the system is initially in operating mode z ∈ {0, 1}, the decision
maker’s objective is to select a switching strategy, Zz,x, that maximises the
performance criterion (compare with [15, Eqn (5)])

J(Zz,x) := lim
n→∞

Ex

[
n−1∑
j=1

e−ΛTj

[
E(XTj)1{∆ZTj=−1} − F (XTj)1{∆ZTj=1}

]
1{Tj<∞}

]
,

(7)

where E represents income gained by discharging the facility and F the cost
of charging the facility.

To ensure that our optimisation problem is well-posed (see [15, Lemma
1]), we assume

E(x)− F (x) < 0, for all x ∈ I,

meaning that the ‘round trip’ efficiency of the storage technology is less
than 100%. In the problem considered here, the MOC is bounded and the
functions E and F are smooth and so the requirements of Assumption 4 in
[15] are satisfied. This means that we have the identity [15, Eqn (19)] for F ,
with corresponding expression for E,

F (x) = −
(
φ(x)

∫ x

α

2ψ(s)

σ2(s)W(s)
LF (s)ds+ ψ(x)

∫ β

x

2φ(s)

σ2(s)W(s)
LF (s)ds

)
.

(8)
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Here W is defined as

W(x) := φ(x)ψ′(x)− φ′(x)ψ(x) > 0, for all x ∈ I.

and the operator L is defined by

Lf(x) :=
1

2
σ2(x)fxx(x) + b(x)fx(x)− r(x)f(x). (9)

This operator is determined by b and σ, which are not specified unless (1) is
defined. However, (8) yields

F ′(x)φ(x)− F (x)φ′(x) = −W(x)

∫ β

x

2φ(s)

σ2(s)W(s)
LF (s)ds,

F ′(x)ψ(x)− F (x)ψ′(x) = W(x)

∫ x

α

2ψ(x)

σ2(x)W(x)
LF (s)ds,

implying

−
(
F (x)

φ(x)

)′
φ2(x)

W(x)
=

∫ β

x

2φ(s)

σ2(s)W(s)
LF (s)ds, (10)(

F (x)

ψ(x)

)′
ψ2(x)

W(x)
=

∫ x

α

2ψ(x)

σ2(x)W(x)
LF (s)ds. (11)

revealing that the integrals in (8) are related to the slopes F/φ and F/ψ
and the sign of LF is given by the signs of the derivatives of (10)–(11). In
particular, we have the result that Lψ = Lφ = 0.

We have the result, [15, Defn 3, Thrm 4], that a function v : {0, 1}×I 7→ R
defines the optimal strategy in relation to the performance criterion, (7), if

−Lv is positive on I, (12)

v(1− z, x)− v(z, x) + zE(x)− (1− z)F (x) ≤ 0, for all x ∈ I, z ∈ {0, 1},
(13)

and

Lv(0, ·)(Cc) = Lv(1, ·)(Cd) = 0. (14)

Here, Cc and Cd are the open sets defined by

Cc =
{
x ∈ I | v(0, x) > v(1, x)− F (x)

}
, (15)

Cd =
{
x ∈ I | v(1, x) > v(0, x) + E(x)

}
. (16)
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The objective of the storage problem is to identify the load, a, below which
we should charge the system by buying energy and the load, b, at which we
discharge system, earning income that maximises the expected discounted
value of the storage facility. This is analogous to the ‘Switching Case’ in [15]
suggesting that the value function has the form given by the expressions

v(0, x) =

{
Bψ(x)− F (x), if x ∈ ]α, a],

Aφ(x), if x ∈ ]a, β[= Cc,
(17)

v(1, x) =

{
Bψ(x), if x ∈ ]α, b[= Cd,

Aφ(x) + E(x), if x ∈ [b, β[,
(18)

for some constants A, B and free-boundary points a, b such that α < a <
b < β.

With reference to [15, 115–135], (17)–(18) and (10)–(11) imply that at a
and b the equality

qψ(a, b) = 0 = qφ(a, b) (19)

should hold, where

qψ(u, v) =

[
d

dx

(
E(x)

ψ(x)

) ∣∣∣∣
x=v

ψ2(v)

W(v)

]
−
[
d

dx

(
F (x)

ψ(x)

) ∣∣∣∣
x=u

ψ2(u)

W(u)

]
, (20)

qφ(u, v) =

[
d

dx

(
E(x)

φ(x)

) ∣∣∣∣
x=v

φ2(v)

W(v)

]
−
[
d

dx

(
F (x)

φ(x)

) ∣∣∣∣
x=u

φ2(u)

W(u)

]
. (21)

In addition, (17)–(18) must satisfy (12), which precludes the optimal
strategy being identified solely by solving (19). Checking (12) can be done
by using the derivatives of (10)–(11). This means that the set of possible
charging points can be defined by

Dc :=

{
x ∈]α, β[

∣∣∣ sgn

([(
F (x)

ψ(x)

)′
ψ2(x)

W(x)

]′)
= sgn

([(
F (x)

φ(x)

)′
φ2(x)

W(x)

]′)
≥ 0

}
(22)

and possible discharging points by

Dd :=

{
x ∈]α, β[

∣∣∣ sgn

([(
E(x)

ψ(x)

)′
ψ2(x)

W(x)

]′)
= sgn

([(
E(x)

φ(x)

)′
φ2(x)

W(x)

]′)
≤ 0

}
.

(23)
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Having identified the sets (22)– (23) a solution to (19) is sought by defin-
ing the functions,

lA : Dc 7→ Dd and lB : Dc 7→ Dd (24)

such that

qψ(u, lA(u)) = 0 and qφ(u, lB(u)) = 0, (25)

and

u < lA(u) and u < lB(u). (26)

It is possible that Dc and Dd are not contiguous intervals requiring the
construction of various pairs of lA and lB. In addition, for each pair of (sub-)
intervals of Dc and Dd they will be unique and continuous so long as the
pay-offs are smooth, as is the case here (see Figure 3).

If the pair of functions lA and lB exist and there is a point ā such that
lA(ā) = lB(ā) := b̄ then the pair (ā, b̄) is a candidate to solve (19). If either
of the sets {x ∈]α, ā]

∣∣ x /∈ Dc} or {x ∈]b̄, β]
∣∣ x /∈ Dd} is not empty, then

these sets need to be ‘covered’ by a continuation region using the approach
described in [17, Case VI]. If (a, b) are located then A and B can be identified
by noting (8) with (10)–(11), and the equivalent expression for E, imply that

A = −
(
F (a)

ψ(a)

)′
ψ2(a)

W(a)
=

(
E(b)

ψ(b)

)′
ψ2(b)

W(b)

while

B =

(
F (a)

φ(a)

)′
φ2(a)

W(a)
= −

(
E(b)

φ(b)

)′
φ2(b)

W(b)
.

These facts enable the innovation taken here, where we solve a practical,
complex, optimisation problem based only on knowledge of E, F , ψ and φ,
without any presumption of the SDE (1). The assumption that ψ and φ
are as (2)–(6) is substantial, though weaker than the assumption the process
is given by a particular choice of b and σ which deliver ψ and φ. In [15]
conditions are specified on the pay-off and diffusion parameters that ensure
that the pair of functions lA and lB and there is a unique pair, (a, b) such
that lA(a) = lB(a) = b.
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In the practical problem of the storage facility, the Assumptions underpin-
ning the verification theorem summarised by (12)–(14) might hold but this
will not guarantee the existence of (a, b); and even if these exist, the value
function might be more complex than that defined by (17)–(18); and even if
such a value function can be constructed, it might not satisfy (12)–(14). An
example of a complex case where no valid value function can be identified
is mentioned in the following section and discussed in the Supplementary
Material.

3 Data and method

There are four inputs to the model: load data; the MOC; the operating
characteristics of the storage facility made up of its capacity (in Watts), rate
of charging/discharging of the facility and round trip efficiency of the facility;
and the discount rate. These are combined to deliver functions that map load
to cost of charging the facility, F , and to the revenue from discharging the
facility, E. The load data and discount rate are combined to deliver the
functions φ and ψ.

This paper seeks to be a ‘proof of concept’ of applying the approach
described in Section 2 to realistic data rather than accurately model a specific
technology.

The load data was taken from the ‘Gridwatch’ website2 that publishes
details of UK load supplied by Elexon, the UK system operator (system
balancer) at five minute intervals split into different classes of generation
and enabled large scale wind generation to be distinguished. The primary
driver of gross load is economic activity and the weather. Load net of wind
has also been impacted by the rapid increase in large scale wind generation
and in order to study a relatively stable period, the study was restricted to in
the period 1 August 2013 to 31 July 2015. This period was chosen based on
European Wind Energy Agency data that after 1 August 2013 the UK had an
installed wind generation capacity of 10.5 GW while from 1 July 2014 it had
a wind generation capacity of 12.4 GW. Over this period the actual average
daily wind generation did not exceed 6.24 GW and wind generation did not
exceed 20% of total generation during the night-time and 17% during the day.
Small scale renewable, including all solar, generation cannot be distinguished
in the Gridwatch data; this is important because there was a significant

2www.gridwatch.templar.co.uk
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increase in domestic solar generation that affected daytime load recorded
in the Gridwatch data over the period of interest. Overall, these factors
indicate that the data was not stationary and it would be difficult to perform
sound statistical analysis on it. To mitigate seasonal non-stationarity, in
modelling UK power load it is common to split the year into 3 ‘seasons’ with
distinctive demand characteristics. During the winter: November, December,
January and February, load is consistently high (apart from the Christmas
week running 24 December-1 January), while in the summer: May, June,
July and August, load is consistently low. In the ‘shoulder’ months of March,
April, September and October, load is less predictable; it can be mild and
windy, or cold and still. In order to simplify matters, without losing realism,
the analysis we undertake is restricted to Winter months, excluding weekends
and the Christmas week (25 December – 1 January).

The merit-order-curve was supplied by the energy markets consultancy,
ÅF-Mercados EMI3. The MOC was constructed by cataloguing and clas-
sifying all large scale hydro and thermal generators and for each class of
generator a short-run production (marginal) cost based on market prices of
input commodities, technical parameters, historical running characteristics
and fixed operating costs was calculated. The MOC will be constantly chang-
ing as market prices change meaning that the data employed in this study
was realistic for a period in 2014 but not generally accurate.

The discount rate was set at a constant 5% per annum continuously
compounded and there were no ‘working day’ adjustments. In the empirical
approach taken here, the discount factor is only relevant in the estimation
of φ and ψ and it is straight forward to apply state dependent discounting,
unlike in the standard approach. In regard to the power storage problem this
is not necessary, though it may be appropriate when a firm’s cost of capital
is related to the price of its products, as with commodity producers.

The data for the storage facility was based on, but does not reproduce, the
Huntorf Compressed Air Energy (CAES) storage plant in Germany. CAES
technology was chosen because it is between chemical (battery) technology
and pumped hydro technology in scale. Battery storage is important in man-
aging short-term imbalances (‘frequency response’) but does not have the
capacity to deliver ‘peak-load’ balancing, between night-time and day-time
demand, which can be provided by pumped-storage facilities, such as the
Ffestiniog Power Station. Wind variability poses new challenges as there can

3Personal communication.
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be periods of time lasting days when wind-generation capacity falls, so sup-
plementary storage capacity needs to be on the scale of Gigawatt-hours. To
realistically model the longer durations of over/under-supply, Huntdorf was
chosen because it has limited capacity that would be fully charged/discharged
in a single operation. If Ffestiniog had been modelled, with a capacity of
around 360 MW over 5.5 hours, it might only be partially emptied/filled in
a single operation.

The efficiency of Huntorf is around 42%. This efficiency is too low to
deliver an expected profit and so an efficiency of η = 0.9 was chosen such that
E(x) = ηF (x). We construct F by combining the discount rate, the actual
load data with the merit order curve and the fact that Huntorf’s capacity is
290MW and fully charges/discharges over two hours. The results, and Merit
Order Curve, are shown in Figure 1 with

F (x) = 5.1926× 10−35 x9 − 1.7997× 10−29 x8 + 2.7287× 10−24 x7

− 2.3728× 10−19 x6 + 1.3025× 10−14 x5 − 4.6751× 10−10 x4

+ 1.0960× 10−5 x3 − 0.16169x2 + 1361.3x1 − 4.9723× 106.

Further details of how all results were obtained are in the Supplementary
Material.

The functions φ and ψ were estimated, as φ̂ and ψ̂, by applying the
load data and discount rate to (2)–(3). By observing a scatter plot of the
preliminary results shown in Figure 2 it was decided to fit the data to the
functions

φ̂(x) := Hφ +
Jφ

(x− Pφ)Kφ
+

Lφ
(x−Qφ)Mφ

, (27)

ψ̂(x) := Hψ +
Jψ

(x− Pψ)Kψ
+

Lψ
(Qψ − x)Mψ

. (28)

This choice was based on the fact that the hyperbolic functions ensure
(6) at the boundaries α ≡ Pφ and β ≡ Qψ. The parameter values were
calculated to be as in Table 1 and shown, along with the estimations of data
points, φ̂ and ψ̂, in Figure 2. It should be noted that since Mφ = 1 then the
conditions of (4) are satisfied while the fact that Jψ < 0 ensures (5). Note

that there is no suggestion that φ = φ̂ only that φ̂ is an approximation of φ,
similarly for ψ.
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Figure 1: Construction of F , left-hand axis, based on observed load and the
Merit Order Curve, right hand axis.

H J K L M P Q
φ 1.00021 256.23253 1.65366 2.87953 1.00000 20156 54096.6
ψ 0.99986 -35.79520 1.38294 9.44348 1.15731 20156. 54093

Table 1: Parameters for φ̂ and ψ̂. α̂ = Pφ = 20156, β̂ = Qψ = 54093
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Figure 2: Construction of φ̂ and ψ̂.

Having defined the functions E, F , φ̂ and ψ̂ problem is solved if the pair
(a, b) that solve (19) are found and when used in (17)–(18) satisfies (12)–(14).
The first step in doing this is to plot different components in (21) and (20),
as in Figure 3.

Note that Dc is made up of two intervals, D1
c∪D2

c and similarly Dd = D1
d∪D2

d.
This means that candidates for (a, b) need to be found by on the basis of

l11
A : D1

c 7→ D1
d and l11

B : D1
c 7→ D1

d,

l22
A : D2

c 7→ D2
d and l22

B : D2
c 7→ D2

d

and

l12
A : D1

c 7→ D2
d and l12

B : D1
c 7→ D2

d.
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Ŵ

d
dx

(
E

φ̂

)φ̂2

Ŵ

Figure 3: Preliminaries to finding the solution. The top plot relates to (20)
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Observe that the function lA satisfying (24)–(26) can be represented as

a horizontal line starting on the curve − d
dx

(
F (x)
φ(x)

)
φ2(x)
W(x)

and finishing on

d
dx

(
E(x)
φ(x)

)
φ2(x)
W(x)

in the top panel of Figure 3, while lB can be similarly rep-

resented in the bottom panel. A candidate pair, (a, b), exists when the two
lines start and finish at exactly the same point, so that (19) is satisfied. Only
D1

c 7→ D2
d delivers a candidate pair: a = 24, 292.04 MW and b = 44, 681.32

MW with A = £1, 229, 881 and B = £1, 243, 656 as shown in Figure 4.

The value function is therefore

v(0, x) =

{
1, 243, 656 ψ(x)− F (x), if x ∈ ]α, 24, 292.0],

1, 229, 881 φ(x), if x ∈ ]24, 292.0, β[= Cc,

v(1, x) =

{
1, 243, 656 ψ(x), if x ∈ ]α, 44, 681.3[= Cd,

1, 229, 881 φ(x) + E(x), if x ∈ [44, 681.3, β[,

as presented in Figure 5.

Note that if the candidate pair were such that a ∈ D1
c and b ∈ D1

d then
(18) does not satisfy (12) on D2

c and the value function would have to be
enhanced to include an interval where

v(1, x) = A11φ(x) +B11ψ(x)

on a superset of D2
c that does not include b. An example of this issue occur-

ring is given below, where it results in no strategy being identified, which is
discussed in the Supplementary Material.

This is a naive strategy, in that there is a single charging and a single
discharging interval. The optimality of this simple strategy can be easily
checked by comparing it to all possible, similar, strategies applied to the
data set. A contour plot of the present value of all such strategies applied to
the load data is presented in Figure 6.
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Figure 4: The solution to the stopping problem. There is a single solution in
(c) at the point u = 24, 292 ∈ D1

c and l12
A (u) = l12

B (u) = 44, 681 ∈ D2
d.
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Figure 6: NPV contour plot of the value of naive strategies applied to input
load data. The star (a∗ = 24, 600 MW, b∗ = 42, 900 MW) is the, ex-ante,
optimal strategy, the cross is the candidate strategy identified by the method-
ology (a = 24, 292 MW, b = 44, 681 MW).
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The candidate strategy that has been identified (a = 24, 292 MW, b =
44, 681 MW) resulted in a NPV over the two winters of £40,149 that is
close to what would have been the optimal strategy of £44,514 (a∗ = 24, 600
MW, b∗ = 42, 900 MW). This is reasonable given that the identified strategy
maximises the expected payoff based on an assumption of stationarity of
data, which is not the case. Both these strategies lie on an ‘NPV plateau’
discharging in the load range of 42-45 GW, which corresponds to power
supplied by similar Combined Cycle Gas Turbines4 and charging load range
of 24-25.5 GW corresponding to the four Ratcliffe on Soar coal powered
turbines.

The robustness of the solution was investigated by considering a stor-
age facility that could charge/discharge four times faster, in half-an-hour.
This delivered a candidate optimal strategy of (a = 24, 021.9 MW, b =
43, 434.9 MW), which is still on the ‘plateau’, with A =£1,499,921 and
B =£1,513,763. However, as discussed in the Supplementary Material, this
candidate requires that the discharge interval must be discontinuous and a
value function that conforms to (12)–(14) does not exist.

Reducing the round-trip efficiency has a more dramatic effect. Intuitively,
reducing the efficiency will induce a larger separation between a and b, re-
ducing the potential number of cycles resulting in an overall loss of value.
The results of reducing the round-trip efficiency from 0.90 to 0.85 changes
delivers a candidate solution (a = 23, 345.8 MW, b = 47, 628.7 MW) with
A =£569,797 and B =£582,949.

4 Discussion

The aim of this paper was to develop a methodology for assessing the eco-
nomic impact of power storage facilities that can be used by policy makers,
in the spirit of the recommendations in [5, 5.2.2]. The methodology deliv-
ers reasonable results in a manner more accessible to policy maker than, for
example [20, 21, 10, 22, 23]. The results are not predictive, in that they
would not accurately value the storage facility, but they are indicative, sug-
gesting that the storage facility considered would store coal generated power
and discharge it in competition with flexible CCGT turbines. This might
be sub-optimal in broader policy terms. The identified strategy is naive, in-

4Specifically, Damhead Creek, Rocksavage, Shoreham, Spalding, Great Yarmouth, En-
field, South Humberbank 1 & 2.

19



volving a single stopping region for each regime. However the methodology
is capable of identifying more sophisticated strategies, involving a number of
stopping regions in each regime, a possibility discussed in relation to the fast
charging/discharging case. While capable of delivering complex strategies
the methodology does not require scarce mathematical expertise that would
be costly for policy makers to access.

The innovation in this paper is removing the requirement to first identify
a driving diffusion (1). Rather, it assumes that the data is driven by a suit-
able diffusion and on this basis estimates of φ, ψ, F and E are made directly
from the data. This innovation is made possible by realising that the critical
conditions (12)–(14) can be verified just with reference to the slopes of func-
tions given explicitly by φ, ψ, F and E. On this basis an optimal strategy is
identified that is reasonable when compared to the optimal strategy identified
with perfect hindsight. The solution is found with reference to calculating
the slopes of polynomials and does not require detailed knowledge of special
functions, such as in [24, 25, 26, 27, 28]. This novel approach would be useful
to a wide range of problems beyond power systems economics.

Having delivered the methodology, future work should focus on modelling
time series of load net of renewable supply which could be applied to var-
ious technologies and policies to support power storage. The methodology
presented shifts the workload from delivering results to considering different
scenarios to enable the identification of the best incentive policies for power
storage providers to address wind-variability.
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