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ABSTRACT 

Three-layered feedforward backpropagation (BP) artificial neural networks (ANN) and 

multiple nonlinear regression (MnLR) models were developed to estimate biogas and 

methane yield in an upflow anaerobic sludge blanket (UASB) reactor treating potato starch 

processing wastewater (PSPW). Anaerobic process parameters were optimized to identify 

their importance on methanation. pH, total chemical oxygen demand, ammonium, 

alkalinity, total Kjeldahl nitrogen, total phosphorus, volatile fatty acids and hydraulic 

retention time selected based on principal component analysis were used as input variables, 

whiles biogas and methane yield were employed as target variables. Quasi-Newton method 

and conjugate gradient backpropagation algorithms were best among eleven training 

algorithms. Coefficient of determination (R
2
) of the BP-ANN reached 98.72% and 97.93% 

whiles MnLR model attained 93.9% and 91.08% for biogas and methane yield, 

respectively. Compared with the MnLR model, BP-ANN model demonstrated significant 

performance, suggesting possible control of the anaerobic digestion process with the BP-

ANN model.  

Keywords: potato starch processing wastewater; upflow anaerobic sludge blanket; methane 

yield; optimized; artificial neural networks 
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1 Introduction 

Energy recovery through biological processes is an environmentally sensitive means to 

generate energy and reduce greenhouse gases that has the potential to impacts negatively on 

the environment (Angenent et al., 2004; Şentürk et al., 2010; Akkaya et al., 2015). 

Anaerobic wastewater treatment can yield methane, hydrogen or other scarce biochemicals 

that can effectively be used as energy. Potato starch processing generates tons of 

wastewater which contains organic by-products such as starch, proteins, amino acids sugars, 

and potassium (Dabestani et al., 2017). These organic by-products that are biodegradable 

contributes to the high records of chemical oxygen demand (COD), 5-day biochemical 

oxygen demand (BOD5) and suspended solids (SS) in the potato starch processing 

wastewater (PSPW) (Dabestani et al., 2017). Regarding the biodegradability characteristics, 

valuable energy resources such as methane or biogas could be harnessed from the 

wastewater (PSPW) through anaerobic digestion (AD) (Arhoun et al., 2013). 

AD has not only been employed to treat sewage and industrial wastewater but also generate 

biogas (Şentürk et al., 2010; Zheng et al., 2012; Arhoun et al., 2013). So far, various types 

of processes have been proposed and reported in the treatment of potato wastewater, among 

which AD has proven to be very effective and improved the final effluent quality (Wang, 

2013). As known, process modeling can be employed as a tool for predicting and 

describing performance of biological processes (Hu et al., 2002). Artificial neural networks 

(ANN) could be developed into process models and used successfully due to its capacity to 

capture the non-linear relationships that might exist among variables (multi-input/output) in 

a complex system (Kanat and Saral, 2009; Delnavaz et al., 2010; Khataee and Kasiri; 2011 
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Sun et al., 2012; Ghosh et al., 2013; Yetilmezsoy et al., 2013; Gong and Ordieres-Meré, 

2016; Nair et al., 2016). Nasr and coworkers (Nasr et al., 2013) were successful in 

predicting hydrogen production profile with an ANN model. Khataee and coworkers also 

investigated the biological treatment of a dye solution by macro algae Chara sp., where 

97% of the variations in the output variable were well explained by the input variables 

within the ANN framework (Khataee et al., 2010). Mechanistic modeling has also been 

implemented successfully, although means to acquire kinetic parameters is often laborious 

and difficult (Nasr et al., 2013; Brooks et al., 2016). Comparatively, the ANN methodology 

and framework can investigate and model AD processes without dependence on kinetic 

parameters acquired from the anaerobic process or system. However, few researches could 

be found employing ANN modeling to estimate biogas and methane yield in an upflow 

anaerobic sludge blanket (UASB) reactor treating PSPW. 

Herein, the aim was; to develop a rapid and efficient methodology able to estimate biogas 

and methane production processes given initial substrate compositions and operational 

parameters; to identify and optimize essential process variables capable of making reliable 

predictions; and to develop a process that could possibly reduce cost and time of analysis. 

pH, COD, ammonium (NH4
+
), alkalinity (ALK), total Kjeldahl nitrogen (TKN), total 

phosphorus (TP), volatile fatty acids (VFAs) and hydraulic retention time (HRT) obtained 

from the anaerobic process were selected based on principal component analysis and used 

as input variables to develop three-layered ANN models (8:NH:1) and multiple non-linear 

regression models. The anaerobic process parameters were optimized to identify their 

effects on methanation from the UASB. The efficiency of the developed ANN-based 
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models was compared with the multiple nonlinear regression models to make reliable 

simulations and predictions about biogas and methane yields within the UASB. 

2 Materials and Methods 

2.1 Experimental setup and operation 

Experiments were conducted in a 120 cm high UASB constructed with a Plexiglas column 

(Fig. 1). The reactor had a total and effective working volume of 8.8 L and 7 L, 

respectively. Five sampling ports at approximately 25 cm interval were allocated along the 

vertical height of the cylinder under the gas-liquid-solid separator. The reactor was 

operated at 35±1°C which was maintained with a controller. Excess activated sludge 

collected from a local anaerobic-anoxic-oxic process treating municipal sewage was used to 

inoculate the UASB. At the started up of the reactor, the mixed liquor suspended solid 

(MLSS) and mixed liquor volatile suspended solid (MLVSS) was 11.5 and 5.6 g/L, 

respectively. PSPW was collected from a local starch producing industry and kept under 

4
o
C.  

The concentration of the wastewater in terms of COD, NH4
+
, TP, TKN, ALK and VFAs 

averaged 49179, 302, 190, 1023, 4945 and 534 mg/L, respectively. The raw wastewater 

was diluted to a favorable quality and fed to the UASB by a peristaltic pump (BT100-2J, 

Langer Instruments, UK). The average feed concentration in terms of COD, NH4
+
, pH, 

ALK, TKN, TP and VFAs was 4029, 110, 7, 2152, 511, 45, 103 mg/L, respectively . 

Within the startup period, operation of the UASB was divided into two stages in terms of 

HRT. The first 49 days was the first stage with a HRT of 48 h. HRT was subsequently 
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curtailed to 24 h in the following 63 days as the second stage. The evolved biogas were 

collected by the gas-solid-liquid separator and was measured daily by a wet gas meter 

(Model LML-1, Changchun Filter Co., Ltd., China).  

2.2 Analytical methods 

All chemical analysis were conducted in accordance with Standard Methods for the 

Examination of Water and Wastewater, APHA (APHA, 2007). Influent and effluent COD, 

ALK (in terms of CaCO3), TKN, NH4
+
 and TP were analyzed daily. pH was  determined 

using a DELTA 320 (Mettler Toledo, USA). VFAs in liquid samples were measured by a 

gas chromatograph (SP6890, Shandong Lunan Instrument Factory, China) equipped with a 

30 m capillary column (Stabilwax-DA, i.d.0.32 mm, 11054, Restek) and  a  flame  

ionization  detector  (FID) (Liu et al., 2015). The operational temperatures of the injection 

port, oven and detector were 210°C, 180°C, and 210°C, respectively. Nitrogen gas was 

used as the carrier gas, with a 0.75 MPa column head pressure. The split ratio was 1:50. 

Liquid sample of 1 mL was centrifuged at 13000 rpm for 3 min. A 0.5 mL of the 

supernatant after centrifuge was pipetted and acidified with 25% H3PO4, and then 1 µL of 

the final solution injected. For biogas fraction, 0.5 mL biogas was sampled from the 

headspace of the UASB to determine methane (CH4) and carbon dioxide (CO2) fractions by 

another gas chromatograph (SP-6800A, Shandong Lunan Instrument Factory, China). The 

gas chromatograph was equipped with a thermal conductivity detector (TCD) and a 2 m 

stainless column packed with Porapak Q (60/80 mesh) (Liu et al., 2015). Temperatures of 

the injector, column and the TCD were 80°C, 50°C and 80°C, respectively.  
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2.3 Optimization and selection of input and output variables  

Optimization of anaerobic parameters was carried out by setting methane recovery target at 

65-75% to the biogas production.  

Parameters above the targeted limits (65-75%) were easily identified with scatter plots. 

Based on the variable selection process output, thus principal component analysis (PCA), 

pH, COD, ammonium (NH4
+
), alkalinity (ALK), total Kjeldahl nitrogen (TKN), total 

phosphorus (TP), volatile fatty acids (VFAs) and biogas yield were optimized against the 

targeted methane proportion. Furthermore, the experimental data set was divided into input 

(IP) and target (TP) variables and loaded into the MATLAB workspace (Matrix Laboratory 

R2014a, version 8.3 by MathWorks, Inc., USA) to appropriately identify and select the 

most effective variables. The input and target data given in matrices [IP] and [TP] were 

normalized using prestd algorithm code. Prior to the training of the network, clear 

definitions were given to the mean input data, mean target data, standard deviations of input 

data, standard deviations of target data, transformed input vectors and principal component 

transformation matrix as meanIp, meanTp, stdIp, stdTp, Iptrans and transMat, respectively. 

Principal component analyses (PCA) were carried out to reduce the number of variables. 

The PCA transformed a number of correlated variables into a smaller number of 

uncorrelated variables which could sufficiently explain the data structure. The principal 

components that contributed less than 0.1% to the variation in the data set were eliminated 

(Yetilmezsoy and Sapci-Zengin, 2009). As reported, predictive effects of anaerobic 

digestion processes highly depends on the variable selection process (Yetilmezsoy et al., 



  

 

8 

 

2013). Based on the PCA, eight process-related parameters were selected as shown in Table 

1 and considered as IP in the ANN model development (Faul et al., 2009) while, biogas and 

methane yield were selected as Tp. 

2.4 Description of the artificial neural network 

The MATLAB backpropagation (BP) algorithm was used to develop the ANN model. The 

ANN model of input vector (8×112) and target vector (2×112) consisted of neurons ordered 

in 3 layers, thus input layer, hidden layer and output layer as illustrated in Fig.2. The input 

neurons represented the independent process variables. The output neurons were the 

dependent predicted variables.  

The hidden layer transformed the input information (Beltramo et al., 2016). As data set was 

trained, the input pattern given to the input layers of the network would compute the output 

in the output layer (Liu et al., 2016). The BP learning rule defined a method to adjust the 

weights of the networks. The network then gave outputs that could match the desired output 

pattern given any input pattern in the training set (Cheng et al., 2016). The outputs of the 

hidden neurons acted as inputs to the output neuron and then underwent another 

transformation. The output of the BP-ANN with a hidden layer and one output neural 

network was estimated with Eq.1. 

�� = ���∑ �	
��
� × ���∑ ���
��� × ��� + �
� + ���                          (1) 

where, WHij is the weight of the link between the i
th
 input and the j

th
 hidden neuron, m is the 

number of input neurons, WOj is the weight of the link between the j
th
 hidden neuron and 

the output neuron, fh is the hidden neuron activation function, fo is the output neuron 
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activation function, bj is the bias of the j
th
 hidden neurons, bo is the bias of the output 

neuron, Xit is the input variable, and HN is the number of hidden neurons. 

Tangent sigmoid transfer function (tansig) (Eq.2) and linear transfer function (purelin) 

(Eq.3) were employed at the hidden and output layer, respectively.  

���� = ���� !"#$%�− 1	                                                      (2) 

���� = �                                                                           (3) 

where x is the vector of inputs. 

The original data set was divided randomly into three ANN subsets (train, validation and 

test). Out of 112 data set points obtained to develop the 3-layered ANN model, 17 data 

points representing 15% of the original data set were respectively selected for the validation 

and testing subsets, whiles 78 data set points representing 70% were allocated for the 

training set. The test set was used for the prediction. The BP-ANN models were 

subsequently validated with the index of agreement (IA) and the fractional variance (FV) as 

shown in Eq.4 and Eq.5. 

)* = 1 −	 ∑ �+,-.,�$/,01∑ �|+,-.3|�|.,-.3|�$/,01                                               (4) 

45 = ��67-68��67�68�                                                                        (5) 

where O, P, 9 and m indicates experimental data, predicted values, standard deviation and 

arithmetic mean of the observed data points, respectively. 
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2.5 ANN Training algorithm selection and optimization process  

A benchmark comparison was conducted to facilitate the selection of the optimum neural 

network in the ANN modeling process (Almasri and Kaluarachchi, 2005). The mean square 

error (MSE) was used to justify the learning effects of the BP-ANN. The hidden layer was 

firstly assigned with two neurons as an initial assumption. As neuron numbers were 

increased stepwisely, the corresponding MSEs obtained were used for the comparison. The 

training continued until the MSEs were below some tolerance level. 10 neurons were 

finally set as default number of neurons at the hidden layer for each training algorithms. 

Networks selection was primarily centered on the highest performed training algorithm. 

The relationship between the MSE values and the number of neurons in the hidden layer is 

given in Eq.6. 

:;< = ��∑ �=� − *������                (6) 

where N is the number of data point, Ti is the network predicted value at the i
th
 data, Ai is 

the experimental value at the i
th
 data and i is an index of the data. Since there is the 

tendency of underfitting or overfitting per the number neurons, the early stopping method 

was employed in this study. The training set was used as the first subset to compute the 

gradient and update the network weights and biases. The validation set was the second 

subset and the error obtained in this set was constantly monitored during the training 

process. 
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2.6 Multiple non-linear regression analysis 

A multiple nonlinear regression models (MnLRM) by residual analysis was also developed 

within the MINITAB (version 17), SIGMAPLOT (version 12.5) and XLSTATS statistical 

computing environment. First, Pearson's correlation analysis was performed using the 

correlation function in MINITAB. Significances of variables were corrected based on p-

values less than 0.05 (Ramette, 2007). The general form of the MnLRM used in this study 

is as shown in Eq.7. The output variable y, written as a function of k, had input variables x1, 

x2…. xk and a random error term >̂ that was added to make the model probabilistic rather 

than deterministic. The coefficients β0, β1... βk which were usually unknown were 

subsequently estimated (Mac Nally, 2000; Huang and Chen, 2001; Yetilmezsoy and Sakar, 

2008; Singh et al., 2010; Turkdogan-Aydınol and Yetilmezsoy, 2010). 

y = β0 + β1x1 + β2x2 + · · · + βkxk + >̂                                              (7) 

where x1, x2, and xk represented terms for quantitative predictors. Assumptions, including 

linearity, independence among errors, non-multicollinearity, homoscedasticity, non-

autocorrelation and normal distribution of errors, were considered (Wold et al., 2001). 

2.7 MnLRM selection 

The optimum MnLRM were selected based on the following statistical performance 

criterion: coefficient of multiple determination (R
2
) (Eq.8), adjusted coefficient of multiple 

determination (Adj-R
2
) (Abdul-Wahab et al., 2005) (Eq.9), residual average (RA) (Eq.10), 

sum of squared residuals (SSR) (Eq.11), standard error of the estimate (SEE) ( Xu et al., 
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2015) (Eq.12), VIF (Eq.13), Durbin-Watson statistics (d) (Eq.14) and p-value (Yetilmezsoy 

et al., 2013) (Eq.15).  

R
2
=
∑ �Yp-Y@�2n

i=1∑ �Yo-Y@�2n
i=1

                                                                   (8) 

Radj
2

= A�1-R
2��n-1�

n-k-1
B                                                    				        (9) 

C* = ∑ ��� − �"�D�� 																																																																						(10) 

	SSR=E �Yo-Yp�2
                                               			             (11)

n

i=1

 

 SEE=F∑ �Yo-Yp�2n
i=1

n-m
                                    		                        (12) 

 VIF=
1

1-R2
                                                                           (13) 

	d=
∑ �ei-ei-1�2n

i=1∑ ei
2n

i=1

                            			                                 (14) 

	p=2×P�TS>|tsH‖Ho is trueH�=2×�1-cdf�|ts|��                               (15) 

where, Yo, Yp and �@ denotes experimental data, predicted values and arithmetic mean of the 

observed data; n and m is the number of data points and parameters in the regression model, 

respectively; k is the number of independent regressors excluding the constant term; 

J� = K� − KLM , and yi and KLM  were, respectively, the observed and predicted values of the 

response variable for individual i; TS is random variable associated with the assumed 

distribution; ts is the test statistics calculated from sample, and cdf is the cumulative density 

function of the assumed distribution. 
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3 Results and Discussion  

3.1 Performance of the UASB and optimized anaerobic parameters 

The UASB was operated for a period of 112 days at different HRTs (48 h and 24 h). The 

operation commenced with a 48 h HRT along with an organic loading rate (OLR) of 1.5 

kgCOD/m
3
·d. Subsequently, HRT was stepwisely shortened to 24 h with an increased OLR 

of 4.23 kgCOD/m
3
·d. The OLRs employed had no inhibition effect on the UASB operation. 

Accordingly, Fang and coworkers had earlier reported that, an UASB could maintain a 

stable process once operation is within the normal OLR boundaries which ranges between 

1.5 and 16.0 kgCOD/m
3
·d (Fang et al., 2011; Jing et al., 2013). Fig. 3 presented the 

performance of the reactor during the 112 days of operation. As HRT of 48 h and influent 

COD of about 3799 mg/L was employed, an average COD removal of 87% was observed 

in the UASB (Fig.3a). However, when HRT was curtailed to 24 h along with increased 

OLR (4.23 kgCOD/m
3
·d), COD removal achieved was about 92%. This could be ascribed 

to the high adaptability of the responsible microbes to the environment (Lu et al., 2015). 

Observably, biogas yield increased along with an increasing OLR suggesting positive 

correlation among biogas yield and OLR. At both HRTs, biogas produced ranged from 3.4 

to 17.4 L/d. Methane (CH4) fractions were maintained in the range of 56.2% to 84.5% at 

both HRTs (Fig.3b). It was found that the average influent and effluent ALK at HRT 48 h 

were 6010 and 10948 mg/L, while that of 24 h HRT were 3592 and 8638 mg/L for HRT 24 

h, respectively (Fig.3c). The ALK could be prime factor as the UASB reactor exhibited a 

better buffering capacity regardless of the influent pH.  pH of about 8.0 was maintained in 
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the effluent although influent pH (5.2 - 8.0) fluctuated remarkably ( Fig.3c). The feasible 

pH and ALK enhanced the acetogenesis and methanogenesis in the reactor, resulting in few 

VFAs (<150 mg/L) in the effluent shown in Fig.3d (De Sousa et al., 2008). 

The illustration in Fig.3e depicts the average influent and effluent TKN. At HRT of 48 h 

and 24 h, the influent TKN were respectively, 466 and 518 mg/L, while that in the effluent 

at 48 h and 24 h were 307 and 507 mg/L, respectively. The degradation of organic nitrogen 

compounds elevated the NH4
+
 concentration in the effluent as similarly reported by Park 

and coworkers (Park et al., 2010). Accordingly, effluent NH4
+ 

observed averaged 241mg/L 

whiles that in the influent feed (PSPW) averaged 109 mg/L (Fig.3f).  The UASB showed 

little TP removal with almost same concentration (45 mg/L) in both influent and effluent at 

both HRTs. 

The anaerobic parameters optimized by setting CH4 content in biogas at 60–80% is shown 

in Fig S1. The optimum range of the corresponding anaerobic parameters were determined 

and the results are as follows: pH between 6.43 and 7.74, COD of 3485-4964 mg/L, 

ammonium (NH4
+
) of 80.9-137.2 mg/L, alkalinity (ALK) of 3010-6889 mg/L, total 

Kjeldahl nitrogen (TKN) of 399-604 mg/L, total phosphorus (TP) of 34-54 mg/L, volatile 

fatty acids (VFAs) of 259-809 mg/L and biogas yield of 3.40-16.8 L/d ( Fig S1). 

3.2 Optimization of the neural network structure 

Speed of a network algorithm primarily depends on the characteristics of the data set, the 

complexity of the problem and the number of neurons specified in the network 

(Yetilmezsoy and Sapci-Zengin, 2009).  
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Selection of a suitable training algorithm is vital to defining the optimal architecture of the 

ANN model. As a result, several training algorithms and their variations have been 

proposed in the literature (Giwa et al., 2016; Nasr et al., 2013). The benchmark comparison 

conducted among the 11 different algorithms in the present research revealed that, (Table 

2), the Broyden–Fletcher–Goldfarb–Shanno (BFGS) Quasi-Newton (trainbfg) and Polak-

Ribiere conjugate gradient backpropagation (CGP) algorithms (traincgp) for biogas and 

methane, respectively, manifested as best algorithms for making predictions (Fig.4). 

Compared with the other 9 algorithms, smaller mean squared errors (MSE) of 0.567 and 

0.617 (Table 2) were obtained in Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Polak–

Ribiere conjugate gradient backpropagation (CGP), respectively, for the estimation of 

biogas (Fig.4a) and methane (Fig.4b) yield. The BFGS and the CGP algorithms showed 

optimum performance in the ANN architectures for biogas and methane predictions. The 

worst performed algorithms in terms of MSE (Table 2) were the batch gradient descent 

(traingd) and the scaled conjugate gradient backpropagation (trainsgc) in biogas and 

methane predictions, respectively. Evidence of the loss on optimality in the 9 algorithms 

may be ascribed to the combinatorial nature and non-linear conditions that existed in the 

data set (Yetilmezsoy et al., 2013).  

As illustrated in Fig.4, the number of neurons in the hidden layer (NH) for methane neural 

network was optimized with 3 neurons at a minimum MSE of 0.541 (Fig.4c), while that of 

biogas occurred with 4 neurons with a minimum MSE value of 0.282 (Fig.4d). Cheng et al 

had discussed that, number of hidden neurons which is an important feature is not selected 

based on any formulae but rather on the relative mean squared error from the different 
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nodes within the range (Cheng et al., 2016). Herein, MSE increased tremendously as 

number of neurons exceeded the global minimum. Observably, when 10 neurons were 

assigned within the BFGS algorithm, MSE increased to 1.21 as compared to the 4 neurons. 

Similarly with the methane data set, MSE reached a peak of 1.884 within the CGP 

algorithm when neurons were increased to 16.  

Large size of nodes in hidden layer may lead to over-fitting (Gong and Ordieres-Mere, 

2016). In this study, the early stopping employed to evaluate underfitting and overfitting 

indicated that, the training set error and the validation error decreased at the initial training 

phase. However, the validation set error increased as the network began to overfit the data. 

When the validation error increased with a specified number of iterations, the training was 

pulsed, and the weights and biases at the minimum of the validation error were returned. 

No significant overfitting, underfitting and negative ANN estimations were observed in the 

output data sets although a linear transfer function (purelin) was used in the output layer. 

This phenomenal observation could be attributed to the characteristics of the input vectors 

used. 

The illustration in Fig.5 and Fig.6 depicted the correlations and corresponding visual 

agreement between the experimental data and the BP-ANN output. The proposed BP-ANN 

model demonstrated very satisfactory performance in predicting biogas and methane yield. 

Coefficient of determination in all ANN subset including training, validation and testing 

data sets for biogas predictions reached 98% (Fig.5a, Fig.5c, and Fig.5e). Validation and 

testing data sets in the methane prediction were greater than 97% (Fig.6c, Fig.6e), but that 

in the training set reached a little above 95% (Fig.6a). This phenomenal performance could 
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be attributed to the fact that, BP-ANN model had the ability to capture the complex 

behavior that existed among the variables obtained from the anaerobic digestion process 

(Giwa et al., 2016). 

3.3 Optimization of the multiple regression models 

Biogas and methane yield from the UASB were also estimated with the multiple nonlinear 

regression models. The model coefficients, constants term, input variables and the result on 

variable analysis including standard error and the p-values are given in Table 3. Statistical 

analysis of the regression input variables revealed that some variables were statistically 

significant which confirmed their importance in the model development over the others. 

Considering the p-values obtained (Table 3) for all input variables in the MnLR models, it 

was evident that COD, VFAs, NH4
+
 and HRT were more statistically significant compared 

to that of pH, TKN, ALK and TP. This observation demonstrated that COD, VFAs, NH4
+
 

and HRT had greater importance in estimating biogas and methane yield compared to the 

other input variables. Obviously, pH, TKN, ALK and TP with p-values of 0.75, 0.74, 0.8 

and 0.9, respectively, were greater than the 0.05 threshold value specified. Similar 

observation was made in the case of methane prediction by the MnLR models. pH, NH4
+
, 

TKN, ALK and TP were not significant except COD, VFA and HRT (Table 3). 

The results from the regression model are presented in Table 4. The best fit models for both 

biogas and methane predictions were the linear model.  Wider deviations were noticed 

between experimental data and the predicted values obtained from the exponential model. 

However, relatively smaller deviations were demonstrated by the linear model during 
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predictions. The linear models were defined as a function of HRT and seven anaerobic 

process parameters including COD, VFAs, NH4
+
, TKN, ALK, PH and TP. To appreciate 

the performance of the MnLR models, residual analysis were conducted and the results 

presented in Table 4. The multiple coefficient of determination (R
2
) obtained in predicting 

biogas and methane were 93.30% and 91.08%, respectively. Obviously, the deviations were 

seen in the visual agreements between MnLR output and the experimental data as 

illustrated in Fig S2. 

In terms of standard error of the estimates (SEE), the linear model in both biogas and 

methane predictions recorded the lowest values of 0.82 and 1.10, respectively (Table 4), 

suggesting a more precise evaluation of the variation in the estimated mean for the set of 

predictor values. The values obtained in estimating the squared sum residual (SSR) were the 

lowest compared to the exponential models. The values 69.7 and 125.2 for biogas and 

methane, respectively (Table 4), represented least variation or deviation of predictions from 

the mean. 

3.4 Comparison of BP-ANN and MnLR Models  

The prediction accuracy of the BP-ANN and MnLR models were evaluated with R
2
, index 

of agreement (IA) and the fractional variance (FV) (Table 5). At biogas predictions, the 

obtained coefficient of determination (R
2
) in BP-ANN (98.72%) was relatively higher 

compared to that in MnLR model (95.31%). Similar higher performance was also observed 

with BP-ANN (97.93%) during methane prediction. However, that noticed in the MnLR 

model (92.62%) was relatively low suggesting the inability of the MnLR to make reliable 
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predictions in complex biological systems. Further comparing the models efficiency with 

the R
2
, BP-ANN model demonstrated higher predicting efficiency over the MnLR model. It 

was noticed that, only 1.28 % of the total variation existing in the biogas data sets were not 

explained by the BP-ANN model as opposed to 4.69% of the MnLR model. With respect to 

estimating methane with the BP-ANN model, similar lower percentage (2.07%) of the total 

variation did not fit (unexplained) the experimental methane data set. However, as much as 

7.38% was unexplained by MnLR model indicating its low efficiency in predicting 

methane. The observation could be ascribed to the advantage of the ANNs capability in 

explaining complex interactions between inputs and output parameters (Yetilmezsoy and 

Sapci-Zengin, 2009). The index of agreement (IA) obtained with the BP-ANN model at 

biogas and methane prediction was 0.9941 and 0.9806, respectively. Comparing the IAs 

obtained in MnLR model (biogas; 0.9725, methane; 0.9611) to that of the BP-ANN model, 

it was obvious IAs in BP-ANN were higher, suggesting that BP-ANN model could make 

reliable prediction.  

The fractional variance (FV) will be 1 if the explanatory variables (x) tell nothing about 

variable (Y), thus, the predicted values of Y do not co-vary with Y. On the contrary, FV is 0 

if the explanatory variables (x) are able to make perfect predictions of variable Y 

(Yetilmezsoy et al., 2008). Relatively lower FVs were observable in BP-ANN model. At 

biogas predictions, FVs obtained in BP-ANN and MnLR model were 0.0075 and 0.0821, 

respectively, whiles that obtained at methane prediction was 0.00284 and 0.073, 

respectively. The results confirmed that, BP-ANN model could not estimate only 0.75% of 

the biogas data set and 0.28% of the methane data set. However, the MnLR model 
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manifested about 8.2% and 7.3% for biogas and methane prediction, respectively. The 

overall performance of the models in terms of R
2
, IA and FV suggested that, the BP-ANN 

model had a stronger predictive power compared to the MnLR models.  

4 Conclusions 

Biogas and methane generated from mesophilic UASB was evaluated and modeled. 

Optimized methanation (target at 65-75%) could be achieve at pH between 6.43 and 7.74, 

COD of 3485-4964 mg/L, ammonium (NH4
+
) of 80.9-137.2 mg/L, alkalinity (ALK) of 

3010-6889 mg/L, volatile fatty acids (VFAs) of 259-809 mg/L and biogas yield of 3.40-

16.8 L/d. Quasi-Newton method and conjugate gradient backpropagation were best 

algorithms among eleven training algorithms. R
2
, IA and FV obtained in BP-ANN model 

indicated that, only 1.2% and 2.07% of the biogas and methane data set respectively, were 

unexplained suggesting BP-ANN’s potential to simulate nonlinear relationship in 

wastewater treatment systems.  
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Figure captions 

Fig. 1:  Schematic diagram of the upflow anaerobic sludge bed reactor 

Fig.2: Schematic flowchart of the proposed feedforward BP-ANN methodology 

Fig.3: (a) COD and COD removal; (b) biogas and methane; (c) ALK and pH; (d) influent 

and effluent VFAs in total; (e) influent and effluent TKN; (f) influent and effluent 

ammonium 

Fig 4: Comparison between training algorithms based on MSE, (a) biogas yield, (b) 

Methane yield; Optimum number of neurons required  at hidden layer based on MSE; (c) 

Polak–Ribiere conjugate gradient backpropagation algorithm for methane yield (d) BFGS 

Quasi–Newton backpropagation algorithm for biogas yield.  

Fig.5: Correlations (a,c,e) and visual agreements between biogas experimental data and 

ANN predictions(b,d,f) 

Fig.6: Correlations (a,c,e) and visual agreements between methane experimental data and 

ANN predictions(b,d,f)  
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Tables  

Table 1. Descriptive statistics of input and output variables 

Variable Term Mean 

Input parameters COD (mg/L) x1 4028 

 NH4
+ (mg/L) x2 110 

 pH x3 7.1 

 ALK (mg/L, CaCO3) x4 4944 

 TKN (mg/L) x5 510 

 TP (mg/L) x6 45 

 Total VFAs (mg/L) x7 534 

 HRT (h) x8 -- 

Target parameters Biogas yield (L/d) Y1 10.9 

 Methane yield (L/d) Y2 7.4 
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Table 2: Comparison of backpropagation training algorithms 

Training Algorithm Function Abrv 

Target  sets used in the ANN study 

Biogas data set Methane data set 

R
2
 IN MSE R

2
 IN MSE 

Broyden–Fletcher–Goldfarb–

Shanno Quasi-Newton 
trainbfg BFG 97.7 109 0.567 97.05 119 1.405 

Powell–Beale conjugate 

gradient backpropagation 
traincgb CGB 98.4 115 1.126 93.92 110 1.056 

Fletcher–Reeves conjugate 
gradient backpropagation 

traincgf CGF 98.7 162 0.914 96.6 174 0.895 

Polak–Ribiere conjugate 

gradient backpropagation 
traincgp CGP 98.6 128 0.643 97.04 229 0.617 

Batch gradient descent traingd GD 14.6 100 3.21 96.57 1000 1.157 

Batch gradient descent with 

momentum 
traingdm GDM 98.0 1000 1.414 94.67 237 1.620 

Variable learning rate 

backpropagation 
traingdx GDX 97.6 172 0.929 94.84 202 2.250 

Levenberg Marquardt 

backpropagation 
trainlm LM 96.7 76 2.140 95.16 105 1.940 

One step secant 
backpropagation 

trainoss OSS 98.8 193 0.645 95.26 112 0.922 

Resilient backpropagation trainrp RP 99.0 164 0.992 95.76 109 0.841 

Scaled conjugate gradient 

backpropagation 
trainsgc SGC 98.7 139 0.781 95.47 128 2.826 

R
2 - coefficient of determination; IN - number of iterations; MSE - mean squared errors; Abrv- abbreviation 
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Table 3: Descriptive statistics of MnLR model variables  

Model 

coefficient and 

constant term 

Input parameters Standard error a
p-value 

Biogas 

β0 = 18.28 constant term 1.67 0.000 

β1 = 0.00115 x1 =  COD 0.000157 0.000 

β2 = 0.0113 x2 =  NH4
+ 0.00583 0.055 

β3 = -0.050 x3 =  pH 0.162 0.757 

β4 = 0.000061 x4 =  ALK 0.000188 0.747 

β5 = -0.00028 x5 =  TKN 0.0011 0.801 

β6 = -0.001 x6 =  TP 0.0137 0.941 

β7 = 0.00197 x7 =  VFA 0.000668 0.004 

β8 = -0.4085 x8 =  HRT 0.0206 0.000 NOPQRSO 
β0 = 9.60 constant term 2.24 0.000 

β1 = 0.000892 x1 =  COD 0.00021 0.000 

β2 = 0.00086 x2 =  NH4
+ 0.0078 0.913 

β3 = 0.160 x3 =  pH 0.217 0.463 

β4 = 0.000261 x4 =  ALK 0.000252 0.304 

β5 = 0.00138 x5 =  TKN 0.00148 0.353 

β6 = 0.0175 x6 =  TP 0.0183 0.341 

β7 = 0.00186 x7 =  VFA 0.000895 0.040 

β8 = -0.304 x8 =  HRT 0.0276 0.000 
a
p-values < 0.05 were considered significant. 
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Table 4: Performance statistics of the Multiple Nonlinear Regression models  

Rank Structure of Equations NNI 

 

R2 

(%) 

Adj-R2 

(%) 

SEE SSR DWS RA 

Biogas yield (Output 1)       

1 TU+T��� + T��� +TV�V + TW�W +TX�X	+TY�Y + T �Z +T �[	  
 93.30 92.03 0.82 69.7 2.05 8.45×10-15 

2 <�\�TU+T��� + T��� +TV�V + TW�W +TX�X	+TY�Y + T �Z +T �[�	  
89 88.40 88.06 2.17 491.9  0.26 

Methane yield (Output 2)       

1 TU+T��� + T��� +TV�V + TW�W +TX�X	+TY�Y + T �Z +T �[	  
 91.08 90.39 1.10 125.2 1.83 1.03×10-15 

2 Exp	�TU+T��� + T��� +TV�V + TW�W +TX�X	+TY�Y + T �Z +T �[�	  
92 86.60 85.70 1.58 260.6  0.12 

SEE standard error of the estimate; SSR sum of squared residuals; R
2
 coefficient of multiple determination; Adj-R

2
 adjusted coefficient of 

multiple determination; NNI number of nonlinear iterations; DWS Durbin–Watson statistics; SR sum of residuals; RA residuals average 
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Table 5: Summary of ANN and MnLR models performance 

Performance criterion indicatorsa 

Testing data set 

Biogas yield Methane yield 

BP-ANN  MnLR  BP-ANN  MnLR  

Multiple coefficient of determination (R2): 98.72 % 95.31% 97.93% 92.62% 

    

Index of agreement (IA): 0.9941 0.9723 0.9806 0.9611 

     
Fractional Variance (FV): 0.0075 0.0821 0.00284 0.073 
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Figures  

 

 

Fig. 1  Schematic diagram of the upflow anaerobic sludge bed reactor 
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Fig.2: Schematic flowchart of the proposed feedforward BP-ANN methodology 
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Fig.3: (a) COD and COD removal; (b) biogas and methane; (c) ALK and pH; (d) influent and effluent VFAs 

in total; (e) influent and effluent TKN; (f) influent and effluent ammonium 
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Fig 4. Comparison between training algorithms based on MSE, (a) biogas yield, (b) Methane yield; Optimum  

number of neurons required  at hidden layer based on MSE; (c) Polak–Ribiere conjugate gradient 

backpropagation algorithm for methane yield (d) BFGS Quasi–Newton backpropagation algorithm for biogas 

yield.  
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Fig.5: Correlations (a,c,e) and visual agreements between biogas experimental data and ANN 

predictions(b,d,f) 
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Fig.6: Correlations (a,c,e) and visual agreements between methane experimental data and ANN 

predictions(b,d,f)  
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Highlights:   

• Estimation of CH4 and biogas yield from a UASB with BP-ANN and MnLR. 

• Evaluation and selection of optimum algorithm from eleven training algorithms. 

• Optimization of anaerobic parameters to identify their effects on methanation. 

• BP-ANN models predictions were more reliable compared to MnLR. 

 

 


