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Compact Microstrip-Based Folded-Shorted Patches
by PCB Technology for Use on Microsatellites
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Abstract—A compact printed circuit board (PCB) antenna
for use on microsatellite was designed and measured for UHF
low data rate communication applications. In particular, the
miniaturized and fully integrated antenna structure consists
of an array of four, linearly polarized folded-shorted patch
elements placed in a sequential rotation with a coupler-based
feeding circuit to achieve circular polarization. Dimensions of
the fabricated and measured PCB antenna are 0.2λ0 by 0.2λ0

by 0.05λ0. Measured gain values are greater than 0.4 dBic at
398 MHz. A design procedure for the microstrip-based antenna
is provided along with a transmission line model that accurately
predicts the operation and resonant frequency of the miniaturized
patches. Numerical calculations are in agreement with the full-
wave simulations as well as the antenna measurements which
demonstrate functionality. The miniaturized and low cost an-
tenna unit can be useful for space communications and other
surveillance applications as well as network formations of small
satellites where broad beam patterns with low gain values are
required for adequate coverage.

I. INTRODUCTION

The design, construction, testing, and launching of satellites
is a very expensive process. However, satellites can be very
effective and they are often the only viable method to achieve
tasks in space from a remote location [1]-[3]. A possible
solution for such space and communication applications is the
use of microsatellites. When compared to conventional single
satellite systems, microsatellite configurations can include a
network of small satellites that can offer reduced launching
costs and mission development time. These microsatellites and
the even smaller nanosatellites and picosatellites, are becoming
popular to perform specific space related research or geograph-
ical surveillance. They can also be relatively inexpensive when
compared to more traditional satellite systems.

With such satellite miniaturization many new engineering
challenges arise. One important aspect is antenna integration,
as the satellite structure is often comparable, or even smaller,
than the communications wavelength. Thus satellite size and
weight restrictions inherently drive the need for innovative
and compact feed systems and antennas with low cost. While
the conventional half-wavelength microstrip patch may serve
as a suitable antenna on conventional satellites using printed
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circuit board (PCB) technology at microwave frequencies,
more compact implementations [4]-[9] may be needed for
microsatellites.

Common techniques to reduce the physical size of printed
microstrip antennas include the use of high dielectric constant
materials [10], but narrowed bandwidth (BW) performances
may be observed with these designs along with reduced radi-
ation efficiencies. Other strategies for size reduction involve
placing shorting pins near the probe feed, patch shape and feed
optimization, slot inclusions, spur-line notching, and the very
popular quarter-wave patch arrangement [11]-[14]. In [15], the
quarter-wave concept was extended by proposing the idea of
folding both the patch and the ground plane into two layers
to create a folded-shorted patch. This procedure can further
reduce the physical size of the quarter-wave patch.

Several preliminary investigations using this miniaturization
technique have been reported [15]-[17] for a single metal-
lic element offering linear polarization. In [18], the folded-
shorted patch concept was recently implemented in an array
configuration offering circular polarization (CP) at 400 MHz
for operation on a microsatellite. This design also had a
metallic construction and required very precise and expensive
machining during its fabrication. Development of the folding
technique into a planar antenna design that uses multilayer
printed circuit board (PCB) manufacturing would enable low
cost implementation. Such a microstrip-based structure was
originally investigated in [19] by the assistance of commercial
solvers. Similar radiation performances were obtained for the
low cost PCB design to that of the earlier metallic imple-
mentation in [18]. A completely planar realization, as further
developed and modeled in this paper, would allow for the
addition of other performance improvement techniques that
have been previously applied to printed antennas while also
providing easier scaling to higher frequencies of operation.

We describe in this work the design and experimental
verification of a new and highly integrated, low cost printed
array of folded-shorted patches offering CP using standard
PCB technology for use on microsatellites as well as other
application where compact antenna structures are needed.
Dimensions of the PCB antenna are 150 mm by 150 mm
(0.2λ0 by 0.2λ0) and measured gain values are greater than 0.4
dBic at about 400 MHz. Specific microsatellite applications of
the four-layer design include low data rate communications in
the UHF band for telemetry and remote sensing. In Section
II of this paper an analysis of a single element is presented
along with a simple but accurate transmission line model and
tuning approach for antenna synthesis. Calculated resonant
frequencies are in agreement with the full-wave simulations
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Fig. 1. Cross-sectional view of a four-layer folded-shorted patch implemented
using PCB technology. The top of the ground plane is defined as the x-y plane
with the z-axis oriented to the direction of the top air-dielectric interface.

and our proposed transmission line model is also extended to
an N -layer folded-shorted patch. Section III provides assembly
details of the PCB, four-layer antenna and its measurement. To
the best of our knowledge such a low cost, microstrip-based
antenna, which is well suited for microsatellites, has not been
investigated previously, which offers simple fabrication, good
integration and a very compact size.

II. PRINCIPLE OF OPERATION AND ANTENNA MODELING

The geometry of the folded-short patch (see Fig. 1) main-
tains the electrical length of the quarter-wavelength patch,
however, the folding technique forces the fields to follow a
meandered path enabling size reduction [16]-[18]. For exam-
ple, the ground plane and shorted patch can be folded three
times to achieve a compact folded-shorted patch with four
layers having an electrical length of approximately a quarter-
wavelength, but with a reduced physical antenna length of
Lmax. This total antenna length is related to the number of
stacked layers; i.e. Lmax ≈ λg

/
4N where λg is the guided

wavelength and N ≥ 2. In our case λg = λ0
/√

εr and N = 4
since the antenna is four layers and implemented using a host
dielectric substrate defined by εr as shown in Fig. 1.

A. Modeling of the Folded-Shorted Patch

To accurately predict the operation of the four-layer folded-
shorted patch we advance the equivalent transmission line
model which was originally presented in [15] and [16]. In
particular, to improve model accuracy we include the physical
effects of open-ended transmission line sections within the
antenna structure and accommodate for its resulting modifi-
cation to the effective patch length. We also do not make
the assumption, as in [15], that all patch segments are of
equal length within the four-layer antenna due to the folding
and extending of the patch sections and ground plane; ie.
L1 = L4 6= L2 = L3 as shown in Fig. 2. This is because a
small gap, newly defined in this work as Lgap, exists between
the patch layers and the shorting wall.

Modeling techniques also include a simple tuning procedure
which can assist in antenna performance optimization at the
desired frequency of operation. Mainly, the radiating length of
the top patch layer, L4 (or transmission line section), can be
altered by ∆L4 as illustrated in Fig. 1. To the authors’ knowl-
edge this is the first time that such a detailed transmission

Fig. 2. Transmission line model for the four-layer (N = 4) folded-shorted
patch. Segments L1, L2, L3, and L4 can be modeled by transmission lines
(defined by W/d) where Ys is the equivalent admittance for the radiating
slot, Yin is the input admittance at the feed point, and Y1 and Y2 are the
input admittances looking into the shorting wall and slot, respectively.
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Fig. 3. Simulated electric field (in V/m) within the four-layer folded-shorted
patch antenna at resonance. In particular, the electric field vector within the
antenna structure is described by arrows with color defining magnitude or field
strength (red defines a field maximum while blue defines a field minimum).
The direction of the arrow represents phase. Fringing fields can be observed at
the open edges of the four metallic layers (near the shorting wall and extended
ground plane) and are defined by electric field maximums.

line representation has been presented which also accurately
models the fringing fields at the microstrip open edges.

In the next few sections we discuss the electric field
distribution generated within the single element due to a probe
excitation (Fig. 3). Then our proposed transmission line model
is detailed and numerical calculations are compared in Fig. 4.
Predicted resonant frequency values show agreement with the
full-wave simulations. Simulated and calculated resonant fre-
quency values as a result of element tuning are also compared
in Fig. 5.

B. Electric Field within the Compact Antenna Structure

Electric field distributions are illustrated in Fig. 3 for the
four-layer, folded-shorted patch antenna at resonance. Within
the interior of the structure it can be observed that the electric
field maximums are concentrated near the open edges of the
four patch layers illustrating the fringing fields. Physically,
a single radiating slot can be thought to form between the
top two layers. Thus the far-fields originate from the current
distributions generated near this radiating slot.

C. Transmission Line Modeling & Tuning Analysis

Following [6], [15]-[17] the input impedance, Zin, at the
probe feed can be defined by the complex load of the single
element, Zant, and the probe reactance, Xp, mainly

Zin = Zant + jXp , where
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Xp = ωµ0d
2π

[
ln
(

2
krp

)
− 0.57721

]
, and

Zant =
1

Y1 + Y2

= Z0

/(
Ys + jY0 tan (k0 (L− Lp))
Y0 + jYs tan (k (L− Lp))

+
1

j tan (kLp)

)
(1)

where Z0(= 1/Y0) is the characteristic impedance of the
individual transmission line layers, k = ω

√
µ0ε0εr, L is the

effective length of all the transmission line segments, and Ys
is the equivalent admittance defined by the slot conductance
‘Gs’ and susceptance ‘Bs’ for the radiating edge [6].

For improved accuracy in the prediction of the resonant
length of the folded-shorted patch, we include the factor ∆loc
[20] to account for the fringing fields1 near the open microstrip
transmission lines. Specifically, to account for open-end effects
within the folded antenna structure, we define the patch length
‘L’ of the combined transmission line layers as

L = L1 + L2 + L3 + L4 + 3∆loc . (2)

The factor 3∆loc is included in Eq. (2) to provide an accurate
prediction of the effective patch length and its relation to the
physical patch length (defined here as Lmax = L4 + Lgap).

By following this approach the three open-ended sections
for the lossless microstrip line can be further identified in
Figs. 1 and 3 as follows: the junction between the metallic
transmission line segments L1 and L2 (near the bottom of
the right sidewall), near metallic segments L2 and L3 (in
the middle of the antenna structure near the left sidewall),
and at the junction of L3 and L4 (near the top of the right
sidewall). The capacitive effective of the fourth open-ended
microstrip line, due to the radiating slot and the corresponding
effective length adjustment of the top transmission line section,
is accounted for in the Bs suspetance term.

D. Numerical Results & Discussions

Figure 4 compares the calculated resonant frequency with
and without the fringing field term (∆loc). In fact, if edge
effects are not included in the antenna modeling, prediction
errors in the resonant frequency can increase to beyond 10
MHz, in particular for this layer separation and W/d ratio
where W and d are the width of the patch and its layer
thickness, respectively. The resonant length of the folded-
shorted patches can also be tunned by adjusting the top
transmission line section by ∆L4. This small modification can
alter the radiating length of the folded-shorted patch and hence
its resonant frequency. In practice this may be achieved by
reducing the length of the top layer of the patch. Calculated
resonant frequencies as a result of tuning are compared to
simulations in Fig. 5 for the host dielectric (which was taken
as free space, εr = 1) and values are in agreement. Hence,

1The equation for ∆loc is not only useful for predicting the edge sus-
pectance for a radiating slot, but is also an empirical formula (based on
hybrid-mode full-wave analysis) to quantify the additional line length of an
open-ended microstrip line [20].
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Fig. 4. Comparison of the calculated resonant frequency versus L1 for the
four-layer, folded-shorted patch with and without fringing field considerations.
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Fig. 5. Analysis of the tunable resonant frequency versus L1 by altering the
top vein length by ∆L4. Full-wave simulations (red 3) are in agreement with
the calculations (black/grey dash-dot lines) using the proposed transmission
line model for the four-layer folded-shorted patch (W/d = 47.5 and L =
L1 + L2 + L3 + L4 + 3∆loc + ∆L4).

the resonant frequency of the patch elements can be tuned to
accommodate for the results of fabrication and any variations
of the dielectric constant from rated values. Thus, by reducing
the length of the top layer, gain and reflection loss values can
be optimized for the antenna system.

It should also be noted that the proposed transmission line
model is accurate when dmax is much smaller than Lmax (by
at least 5 times [15]) and this explains the reduced accuracy
when predicting the resonant frequency for L1 ≤ 37 mm
in Fig. 5. In addition, for L1 > 70 mm minor differences
between the full-wave simulations and calculations can be
observed due to the increased layer size with respect to the
wavelength. Regardless, general agreement is still observed
and this suggests that the presented transmission line model
is suitable for patch layer lengths that are greater than 5% of
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the wavelength.
Improvements in the model are also possible by including

the reactive effects within the antenna structure due to the
separation between the shorting wall and the metallic layers
(Lgap), the added inductance due to the shorting wall, and
the extended ground plane. Nevertheless, calculations are in
agreement with the full-wave simulations. Thus, the proposed
transmission line model and extension to single element
tuning, may be useful for the design of such folded-shorted
patches.

E. Model for an N-layer Folded-Shorted Patch

The proposed transmission line model for the four-layer
folded-shorted patch outlined in the last few sections can be
generalized to an N -layer design. First we modify Eq. (2), the
effective electrical length of the antenna ‘L’, to account for
the possibility of ‘N ’ different layers:

L = L1 + L2 + · · ·+ LN−1 + LN + (N − 1) ∆loc , (3)

where N ≥ 2. In addition, the physical antenna length ‘Lmax’
can be related to the resonant frequency, fr:

Lmax ≈
c

4Nfr
+N ∆loc , (4)

where c is the phase velocity in vacuum and

fr ≈
c

4 (L1 + L2 + · · ·+ LN−1 + LN +N ∆loc)
. (5)

Calculations of the input impedance and the exact resonant
frequency (defined in this paper as =m {Zin} = 0) can also
be completed for an N -layer folded shorted patch using Eqs.
(1) and (3). Moreover, the impedance BW can also be related
to the number of N -layers since it has been observed in [16]
and [18], that bandwidth decreases for an increase in N but

R
e

s
o

n
a

n
t 
F

re
q

u
e

n
c
y
 [
M

H
z
]

Number of Layers, N

Lmax  / dmax 

3 4 5 6 7 8 9 10

150

250

350

450
Transmission Line Model

Full-Wave Simulation

22.3 16.8 13.4 11.2 9.6 8.4 7.4 6.7

40/ dW

Fig. 6. Calculated and simulated resonant frequencies for an N -layer folded-
shorted patch element (all structures defined with Lmax = 67 mm). Here
dmax is defined as the total height of the folded-shorted patch.

R
e

s
o

n
a

n
t 
F

re
q

u
e

n
c
y
 [
M

H
z
]

Lmax [mm]

30 40 50 60 70 80

250

300

350

400

450

500

550

N
 =

 10

N
 =

 9

N
 =

 8

N
 =

 7

N = 3
N = 4

N = 5

N =
 6

45/ dW

Fig. 7. Resonant frequency versus Lmax (N defines the number of layers).

30 40 50 60 70 80

20

30

40

50

60

70

80

90

45/ dW

N = 4
N =

 5

N =
 6

N
 =

 7

N
 =

 9

N
 =

 10
N

 =
 8

N = 3

Lmax [mm]

G
s
 [
m

ic
ro

S
ie

m
e

n
s
]

Fig. 8. Radiation conductance Gs calculated at resonance versus Lmax.

also broadened by enlarging the air gap separation ‘d’ between
layers:

BW ∝ d

N
. (6)

Calculated resonant frequency values are shown in Fig. 6 up
to and including a ten-layer folded-shorted patch. Results are
in agreement with the full-wave simulations. As discussed in
the previous sections, the proposed transmission line model
is accurate when dmax is much smaller than Lmax and
thus explains the reduced accuracy for the predicted resonant
frequencies when N ≥ 8. The resonant frequency is also
plotted versus Lmax in Fig. 7 and the corresponding slot
conductance (Fig. 8) at patch resonance. It can be observed
that for Lmax = 50 mm, the resonant frequency for the folded-
shorted patch can vary by about 40% (from 600 MHz to 240
MHz) for N = 3 to N = 8. Moreover, the corresponding
slot conductance is reduced by approximately 25% for the
N = 8 design when compared to the three-layer configuration
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Fig. 9. Designed HFSS model of the array for CP with the ground plane and
the folded-short patches shown in orange and red, respectively. The x, y, z
coordinate system is defined at the centre of the structure and directly above
the ground plane.

(N = 3). This signifyies a reduced radiated power with an
increase in the number of layers. Figures 6, 7, and 8 can
be useful for the antenna engineer to recognize the relative
amount of radiated power when compared to the number
of N -layers, physical patch size, and the resulting resonant
frequency when designing compact and planar foled-shorted
patches for microsatellite.

III. ANTENNA DESIGN, RESULTS, & DISCUSSION

One method of producing CP is to arrange four linearly
polarized elements (sequentially rotated) and with a 90◦

offset in phase [18], [22]. Utilizing the feeding circuit as
previously outlined by the authors in [18], a new multilayer
PCB implementation of the antenna structure was designed
and simulated using HFSS [21] for operation at 395 MHz
(see Fig. 9). The multilayer structure was then created by wet
etching techniques (in house) at The Royal Military College of
Canada. The shorting walls were implemented by metallic rods
of appropriate length which were soldered and drilled through
the PCB layers. Also, the substrate material Rogers 6002TM

was chosen for its relatively low dielectric constant and loss
tangent, 2.94 and 0.0012, respectively. Twelve substrate panels
were stacked to make the four layers of the patches and this
assembly was completed using an adhesive spray. The size of
the miniaturized and ultra compact antenna with the integrated
feed system was 150 mm by 150 mm by 37 mm (0.2λ0 by
0.2λ0 by 0.05λ0) while the individual patches were 30 mm in
width and 39 mm in length with a height 36.6 mm. See Fig.
10 for a photograph of the fabricated antenna structure.

Simulation results show that maximum gain values of 2.3
dBic (RHCP) can be obtained at 395 MHz which are similar
to the metallic implementation in [18]. Comparison of the
simulated and measured antenna gain, parametric sweeps of
important dimensions, and the matching versus frequency are
shown in Figs. 11 and 12 for the PCB design as well as the
beam pattern in Fig. 13 at the observed measured maximum
of 397.5 MHz. These plots show that the measured antenna
matching, the CP gain, and the beam pattern (co-polarized,
RHCP) are in general agreement with the simulations.
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Fig. 10. The fabricated and measured multilayer PCB prototype with the
integrated feeding circuit.
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Fig. 11. Comparison between the measured and simulated realized gain
and VSWR (50-Ω impedance). Measured values recorded using a calibrated
far-field anechoic chamber.

Parametric sweeps were completed to further simulate and
investigate the effects of the fabrication and assembly on
the realized gain of the antenna. Results are reported in
Fig. 12. One parameter was investigated while others were
held constant. This is important to explain any discrepancies
between the measurements and that of the optimized and
simulated structure for operation at 395 MHz. As shown in
Fig. 12, if the probe position for a single radiating element
is altered from the optimal position by up to 1.5 mm, there
is a slight change in the total realized gain for the structure
(less than 0.5 dB) as well as a minor upward shift in the
operation frequency. Now with a horizontal positioning of the
top dielectric layer by 1 mm in the x- and y-directions, the
realized gain can decrease by about 1 dB. It is also interesting
to note that similar effects can still be observed with a shift of
only 0.25 mm. However, if an air gap is included between all
twelve of the dielectric layers which define the total antenna
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structure, a frequency shift can still be observed along with a
minor degradation in the maximum realized antenna gain. For
example, with a 0.05 mm air gap, the maximum realized gain
is still above 2 dBic but at 400 MHz. For the fabricated and
measured antenna structure it was likely that a minor air gap
between the dielectric layers was present (<0.05 mm) which
shifted the frequency for the maximum realized gain to 397.5
MHz, as well as a minor misalignment for one of the dielectric
layers which reduced the measured gain to about 0.6 dBic as
shown in Fig. 11.

The cross polarization levels for the fabricated antenna are
higher than the simulated values where a null at broadside
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Fig. 14. Measured axial ratio versus angle at 398 MHz.

can be observed. Also, the quality of the polarization in terms
of the measured axial ratio versus beam angle for each plane
is plotted in Fig. 14; similar values were reported in [18].
Deviations between the measurements and the simulations for
the cross-polarization levels in this work may be attributed
to the above mentioned practical fabrication and assembly
tolerances, variations in the dielectric constant of the utilized
feeding circuit, cable bending and twisting during the antenna
measurements, and the possible interference of the antenna
positioner and the measurement cable attached to the SMA
connector of the antenna prototype.

It should be mentioned that the high-cross pol. radiation
(LHCP) into the antenna backside, as shown in Fig. 13, is not
much of a concern for our compact microsatellite antenna,
mainly since the main co-pol. pattern (RHCP) can be aligned
with that of the base station antenna with cross-pol. radia-
tion into vacant space. This is made possible by appropriate
placement on the satellite structure. Regardless of the minor
discrepancies with that of the simulations and measurements,
general agreement can still be observed. As described, the
deviations between the simulated and measured designs can
be attributed to fabrication and assembly tolerances, air gaps
between the dielectric layers, minor probe misalignment, and
practical difficulties in measuring such a miniaturized CP
antenna.

IV. CONCLUSION

This work has described the design, simulation, and mea-
surement of a folded-shorted patch array offering circular
polarization. An accurate but simple transmission line model
for the antenna was developed by including the effects of open-
ended microstrip transmission lines within the structure. Nu-
merical calculations are in good agreement with the full-wave
simulations. Using this theoretical model as a starting point,
HFSS simulations were carried out to optimize functionality.
Experimental performance of a prototype implemented using
PCB technology was then measured and analyzed. Results
support the design procedure using the proposed transmission
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line modeling as well as the simulation findings. The demon-
strated circularly polarized folded-shorted patch antenna, using
multilayer PCB technology, is a good candidate for UHF
telemetry communications for microsatellite applications, in
particular, where antenna cost and antenna size are important.
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