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Abstract: 9 

Conventional simulation of fractured carbonate reservoirs is computationally expensive because of the 10 

multiscale heterogeneities and fracture-matrix transfer mechanisms that must be taken into account using 11 

numerical transfer functions and/or detailed models with a large number of simulation grid cells. The 12 

computational requirement increases significantly when multiple simulation runs are required for sensitivity 13 

analysis, uncertainty quantification and optimisation. This can be prohibitive, especially for giant carbonate 14 

reservoirs. Yet, robust sensitivity analysis, uncertainty quantification and optimisation become increasingly 15 

important workflow components as they enable us to analyse, determine and rank the impact of geological and 16 

engineering parameters on the economics and sustainability of different Enhanced Oil Recovery (EOR) 17 

techniques.   18 

We use experimental design to set up multiple screened simulations of a high-resolution model of a Jurassic 19 

Carbonate ramp, which is an analogue for the highly prolific reservoirs of the Arab D formation in Qatar. We 20 

consider CO2 water-alternating-gas (WAG) injection, which has been shown to be a successful EOR method for 21 

carbonate reservoirs. The simulations were used as a basis for generating data-driven surrogate models for the 22 

rapid simulation and optimisation of hydrocarbon recovery and net gas utilisation. We compare response 23 

surfaces from polynomial regression to response surfaces generated with polynomial chaos expansion (PCE). 24 

PCE allows for non-linear mapping of parameter uncertainty to the predicted results. In the current work, 25 

parameter uncertainties affecting WAG modelling in fractured carbonates are evaluated. These include fracture 26 

network properties, fault transmissibility configurations, wettability scenarios, and residual trapping due to 27 

hysteresis. Effective fracture permeabilities are computed using discrete fracture networks (DFN) for sparsely 28 

distributed regional fractures.  29 

The results enable us to adequately explore the parameter space, quantify and rank the interrelated effect of 30 

uncertain model parameters on CO2 WAG efficiency in fractured carbonate reservoirs. The results highlight the 31 

first order impact of the fracture network properties, wettability and hysteresis on hydrocarbon recovery and 32 

gas utilisation. Furthermore, surrogate (i.e. proxy) models enable us to calculate quick estimates of the 33 

probabilistic uncertainty range and to rapidly optimise hydrocarbon recovery and gas utilisation, while, achieving 34 

significant computational speed-up compared with conventional fractured reservoir simulation. 35 
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1. Introduction 38 

Carbonate reservoirs contain a significant proportion of the world’s conventional and 39 

unconventional hydrocarbon resources, commonly estimated at around 60% of global 40 

reserves (Burchette, 2012; Agar and Geiger, 2015). Hydrocarbon recovery in carbonates, 41 

however, is typically low, due to multiscale heterogeneities and oil- to mixed-wet rock 42 

properties (Manrique et al., 2007; Montaron, 2008; Mohan et al., 2011; Agada et al., 2014). 43 

Low recovery factors can further be influenced by complex connected high permeability 44 

fracture networks which may establish preferential flow paths in the reservoir (e.g., 45 

Bourbiaux et al., 2002; Makel, 2007; Spence et al., 2014). The variability in matrix architecture 46 

and fracture network connectivity is the main reason why fractured carbonate reservoirs 47 

show a large variety of flow behaviours, leading to significant uncertainties in their evaluation, 48 

performance prediction and management (e.g., Cosentino et al., 2001; Makel, 2007; Agada et 49 

al., 2016).  50 

To account for multiple geological and engineering uncertainties, a large number of numerical 51 

reservoir simulations are typically required to adequately explore the parameter space, 52 

investigate parameter relationships and optimise hydrocarbon recovery. Sensitivity analysis, 53 

uncertainty quantification and recovery optimisation for fractured carbonate reservoirs, 54 

however, are computationally expensive because of the multiscale heterogeneities and 55 

fracture-matrix transfer mechanisms that must be taken into account using numerical 56 

transfer functions and/or detailed models with a large number of simulation grid cells. This is 57 

particularly important for CO2 WAG injection, a successful EOR method for carbonate 58 

reservoirs which combines the benefits of gas injection to reduce the residual oil saturation 59 

and water injection to improve mobility control and frontal stability (Christensen et al., 2001; 60 

Manrique et al., 2007; Azzolina et al., 2015). 61 

One efficient way of reducing the computational cost is by using data-driven surrogate 62 

modelling techniques that construct an approximation (or proxy) of the simulation response 63 

based on a limited number of simulation runs (Queipo et al., 2005; Forrester and Keane, 2009; 64 
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Gogu et al., 2009; Simpson et al., 2008; Oladyshkin et al., 2011; Gogu and Passieux, 2013; 65 

Petvipusit et al., 2014). The modelling process typically involves generating an initial surrogate 66 

model with a set of full-physics training simulations. Subsequently, an approximate solution 67 

to the objective function is obtained by evaluating the data-driven surrogate. For validation 68 

purposes, approximate solutions from the data-driven surrogate are compared to model 69 

predictions using full-physics simulation (e.g. black oil or compositional simulation). If the 70 

comparison shows a mismatch, the data-driven surrogate is iteratively updated with more 71 

training runs and testing points added until the mismatch is eliminated (Koziel and Yang, 72 

2011). 73 

In the context of EOR in fractured carbonate reservoirs, data-driven surrogates may be able 74 

to provide good approximations of time consuming numerical simulations. The surrogate 75 

models can then help to understand the respective dependencies and correlations of 76 

uncertain input parameters and contribute to rapid simulation, optimisation and decision 77 

making under uncertainty. Geological parameter uncertainties that affect CO2 WAG injection 78 

include the nature and flow significance of faults and subseismic fractures (Bourbiaux et al., 79 

2002; Casabianca et al., 2007; Ramirez et al., 2009) and the role of wettability and hysteresis 80 

when controlling imbibition and drainage in the rock matrix (Larsen and Skauge, 1998; Al-81 

Futaisi and Patzek, 2003; Schmid and Geiger, 2013; Ryazanov et al., 2014). Similarly, 82 

engineering parameter uncertainties include WAG design parameters such as the flow rate 83 

and location of wells, WAG slug sizes and WAG injection ratios. 84 

The current paper presents results of a synergy between design of experiments, data-driven 85 

surrogates and optimisation under uncertainty. The novelty of our work is the synergistic 86 

application of the aforementioned approaches to EOR simulation and optimisation for 87 

heterogeneous fractured carbonate reservoirs. Although the specific experimental design 88 

techniques (i.e. Box-Behnken, Latin Hypercube) and optimisation algorithm (i.e. genetic 89 

algorithm) are not new, the application of the experimental design – surrogate workflow to 90 

the modelling of fractured carbonate reservoirs has not been previously reported. A brief 91 

overview of the state of the art for experimental design, data-driven surrogates from 92 

polynomial chaos expansion and optimisation is presented in sections 1.1, 1.2 and 1.3.  93 

 94 
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1.1 Design of experiments 95 

Design of Experiments (DOE) is commonly used for extensive exploration of parameter spaces 96 

(Simpson et al., 2008; Koziel and Yang, 2011). Here, DOE is employed to ensure that data-97 

driven surrogates fully explore the parameter space and provide a robust representation of 98 

the full-physics simulation model. DOE aims to maximise the amount of information acquired 99 

from a minimum number of simulation runs by optimally allocating samples in the design 100 

space (Chen et al., 2006; Montgomery, 2008; Simpson et al., 2008; Myers et al., 2009; Koziel 101 

and Yang, 2011). DOE employs different sampling methods to identify a subset of experiments 102 

from a larger set according to the number of experimental parameters under investigation.  103 

Deterministic experimental designs such as Box-Behnken, fractional factorial and central 104 

composite designs are perfectly orthogonal, explore a large region of the search space and 105 

are able to capture model non-linearities (Box et al., 1978; Chen et al., 2006). To select input 106 

parameters from random distributions, stochastic samplers such as Latin Hypercube (Helton 107 

and Davis, 2003) or nearly orthogonal array (Giunta et al., 2003) are frequently used. 108 

Stochastic samplers are also called space filling designs because they are not restricted to 109 

sample sizes that are specific multiples of design parameters (Stein, 1987; Giunta et al., 2003; 110 

Helton and Davis, 2003).  111 

Here, we use the Box Behnken experimental design to generate surrogate training simulations 112 

Box-Behnken is a quadratic experimental design that assures global coverage of the 113 

parameter space at acceptable computation cost and takes the interaction of input 114 

parameters into account. For validation of the surrogates, we generate surrogate testing 115 

simulations using the stochastic Latin Hypercube experimental design which can select input 116 

parameters from random distributions and explore the parameter space in a non-rigid way. 117 

 118 

1.2 Polynomial chaos expansion 119 

Experimental design techniques coupled with data-driven surrogates have been widely used 120 

in hydrocarbon recovery (e.g., Friedmann et al., 2003; Cullick et al., 2006; Panjalizadeh et al., 121 

2014) and CO2 storage (e.g., Ashraf et al., 2013; Li and Zhang, 2014; Wriedt et al., 2014) 122 

applications for uncertainty quantification, risk assessment, optimisation and history 123 
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matching. One group of data-driven surrogate modelling techniques that has received 124 

increasing attention is polynomial chaos expansion (PCE) (Crestaux et al., 2009; Eldred and 125 

Burkardt, 2009; Buzzard, 2012; Oladyshkin et al., 2011; Zhang and Sahinidis, 2012; Ashraf et 126 

al., 2013; Elsheikh et al., 2014). PCE methods build a polynomial approximation of the model 127 

response using an orthogonal polynomial basis. PCE techniques are efficient and provide a 128 

high-order accurate way of including non-linear effects in stochastic analysis (Oladyshkin and 129 

Nowak, 2012). 130 

PCE techniques are mainly classified into intrusive and non-intrusive approaches. Intrusive 131 

approaches such as the stochastic Galerkin methods (Villadsen and Michelson, 1978; Ghanem 132 

and Spanos, 1993; Xiu and Karniadakis, 2003; Matthies and Keese, 2005) require manipulation 133 

of the underlying partial differential equations that are solved within the reservoir simulator. 134 

Non-intrusive approaches do not require manipulation of the governing equations and use 135 

the reservoir simulator as a black box. They are hence more straightforward to apply and 136 

involve the evaluation of the coefficients in the chaos expansion using a given number of 137 

model simulations (Isukapalli et al., 1998; Li and Zhang, 2007; Blatman and Sudret, 2010; 138 

Oladyshkin et al., 2011; Zhang and Sahinidis, 2012; Petvipusit et al., 2014).  139 

In this study, we focus on non-intrusive sparse polynomial chaos expansion (sPCE) and 140 

arbitrary polynomial chaos expansion (aPCE) in comparison to polynomial regression (PR). 141 

Polynomial regression estimates the coefficients for a second-order polynomial by least 142 

squares fitting of the data-driven surrogate model to the training data (Myers et al., 2009). 143 

Sparse polynomial chaos (sPCE) is an extension of the generalised polynomial chaos which is 144 

based on the Askey Scheme (Askey and Wilson, 1985) of orthogonal polynomials (Xiu and 145 

Karniadakis, 2003; Blatman and Sudret, 2010; Elsheikh et al., 2014). Arbitrary polynomial 146 

chaos (aPCE) techniques have been shown to minimise the subjectivity of input data 147 

distributions by directly using the available information in a data-driven formulation of PCE 148 

and employing a global polynomial basis for arbitrary distributions of data (Witteveen et al., 149 

2007; Oladyshkin et al., 2011; Oladyshkin and Nowak, 2012; Ashraf et al. 2013). 150 

 151 

 152 
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1.3 Optimisation 153 

In the presence of multiple uncertainties, finding the most favourable combination of 154 

uncertain input parameters to obtain an optimum value of the objective function (e.g. oil 155 

recovery, gas utilisation factor) is challenging and commonly requires the application of 156 

stochastic optimisation algorithms. Stochastic algorithms including simulated annealing 157 

(Dowsland and Thompson, 2012), particle-swarm optimisation (Esmin et al., 2015), 158 

neighbourhood algorithm (Subbey et al., 2003), differential evolution (Hajizadeh et al., 2011) 159 

and genetic algorithm (Sen et al., 1995; McCall, 2005) have been applied to many reservoir 160 

engineering problems. Stochastic algorithms incorporate a random component that allows 161 

the search during optimisation to move toward worse solutions occasionally, thereby gaining 162 

the ability to seek out the global optimum objective function while escaping from local 163 

minima (Abdollahzahdeh et al., 2013). 164 

We use the genetic algorithm, a heuristic search and optimisation technique based on natural 165 

evolution through selection (Back and Schwefel, 1993; Gen and Cheng, 2000; Eiben and Smith, 166 

2003; McCall, 2005). The algorithm uses selection, crossover, mutation and recombination of 167 

individual reservoir models to obtain a new generation of potentially superior individuals 168 

based on ranking with a fitness function (i.e. objective function – see section 3.3). The 169 

procedure is repeated to obtain multiple generations until an optimum value of the objective 170 

function is reached. The genetic algorithm is robust, flexible and easy to adapt to different 171 

engineering problems because it uses the objective function value to determine new search 172 

steps and does not require gradient information from the optimisation problem. Hence, the 173 

genetic algorithm can be applied to optimisation problems for which traditional algorithms 174 

fail because of significant non-linearities or discontinuities in the search space. Several studies 175 

provide more details about the genetic algorithm (e.g., Michalewicz, 1996; Mitchell, 1999; 176 

Gen and Cheng, 2000) and its application (e.g., Back et al., 2000; McCall, 2005; Costa et al., 177 

2014). 178 

  179 

 180 

 181 
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1.4 Objective and workflow 182 

The aim of this study is to generate, analyse and compare non-intrusive data-driven surrogate 183 

modelling techniques and illustrate their application to the simulation and optimisation of 184 

CO2 WAG injection in fractured carbonate reservoirs where multiple geological (e.g. fracture 185 

properties), physical (e.g. trapping of the gas phase) and engineering (e.g. well controls) 186 

uncertainties are encountered. We seek to show the benefit of surrogate models for faster 187 

sensitivity analysis and optimisation of complex EOR methods in fractured reservoirs by 188 

overcoming challenges associated with the high computational cost of conventional 189 

simulation. Box-Behnken experimental design is used to set up a wide range of simulations of 190 

the high-resolution carbonate reservoir model. Subsequently, the simulations are used to 191 

build data-driven surrogates. For validation, additional simulations with random design 192 

parameters are set up using the Latin Hypercube experimental design and compared to the 193 

response of the data-driven surrogates for the same input parameters. The most accurate 194 

surrogate model after validation is then coupled with Monte Carlo methods to generate 195 

cumulative distribution functions of oil recovery and gas utilisation. Subsequently, the 196 

selected surrogate model is employed for optimisation of the objective function using a 197 

genetic algorithm.  198 

A summary of the workflow we have used to construct data-driven surrogates for fractured 199 

carbonate reservoirs is presented in figure 1. Input data from multiple sources such as seismic 200 

surveys, wireline logs, borehole imaging, petrophysics, core analysis, surface and subsurface 201 

analogues is used to build a detailed geological model which is then upscaled to a full-physics 202 

finite difference simulation model. Full-physics simulation using the minimum and maximum 203 

values of uncertain parameters is used to identify and rank input variables with significant 204 

impact (i.e. heavy hitters) on the objective function(s). The heavy hitters are then coupled 205 

with DOE techniques to generate surrogate models which are validated before they are 206 

employed for rapid simulation, optimisation and uncertainty quantification. 207 

This paper is organized as follows. Section 2 describes the reservoir model, matrix properties, 208 

fracture characteristics and fluid properties employed in the full-physics flow simulations 209 

used to train and test the surrogate models. The set-up of the data-driven surrogate models 210 

is discussed in section 3, including the screening of parameters, experimental design, 211 
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surrogate modelling methodology, validation approach and the optimisation algorithm. 212 

Section 4 demonstrates the prediction of the objective function(s) with adequately trained 213 

surrogate models before describing how goodness of fit measures can be used to validate the 214 

surrogates. Subsequently, the surrogates are employed for rapid uncertainty quantification 215 

and optimisation. Finally, a discussion of the results and the conclusions are presented in 216 

sections 5 and 6, respectively. 217 

 218 

2. Reservoir Model Description 219 

2.1 Matrix characterisation and fluid properties 220 

In this study, we use a high-resolution flow simulation model of the Amellago Island Outcrop, 221 

a middle Jurassic Carbonate ramp in the High Atlas Mountains of Morocco (Pierre et al., 2010; 222 

Amour et al., 2013; Agada et al., 2014). The outcrop can be considered as an analogue for the 223 

highly productive carbonate reservoirs of the Arab D formation in Qatar (Al-Saad and Ibrahim, 224 

2005; Al-Emadi et al., 2009). Data from real subsurface reservoirs was used to model porosity 225 

and permeability for the facies in the outcrop to ensure a realistic distribution of the reservoir 226 

properties, while, the architectural elements of the model were obtained from the outcrop 227 

analogue. Many heterogeneous lithologies were preserved in the simulation model including 228 

mollusc banks, mud mounds, patch reefs, sub-seismic faults and fractures. Previously, a 229 

detailed description of the outcrop geology and static modelling (Agada et al., 2014) and the 230 

fracture network modelling (Agada et al., 2016) have been presented.  231 

Due to the large number of simulations required to generate different surrogates, a sector of 232 

the Amellago outcrop model consisting of 34 x 35 x 36 grid cells (42,840 cells in total) was 233 

used to study CO2 WAG injection in the heterogeneous reservoir (Fig. 2). Each grid cell has 234 

dimensions of 15m x 15m x 3m. An inverted 5-spot well pattern was used with a vertical 235 

injection well at the centre of the model and four vertical production wells at the corners. CO2 236 

WAG injection was simulated using a WAG ratio of 1:1 and eight alternate six-month cycles. 237 

The injectors and the producers were set to operate at target liquid rates subject to maximum 238 

bottom-hole pressure (BHP) constraints of 41,368 kPa and minimum BHP constraints of 239 

16,547 kPa respectively. The reservoir was assumed to have an initial reservoir pressure of 240 
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20,684 kPa and a bubble point pressure of 11,367 kPa. Reference densities for CO2, oil and 241 

water were assumed to be 1.35 kg/m3, 800 kg/m3 and 1000 kg/m3, respectively (Table 1).  242 

To account for rock-fluid interactions during full-physics flow simulations, two-phase relative 243 

permeability and capillary pressure curves (i.e. saturation functions) are typically utilised. 244 

Here, we use saturation functions similar to those generated by Agada et al. (2016) for end-245 

member wettability scenarios (i.e. water-wet to oil-wet) for carbonate reservoirs. The two-246 

phase saturation functions were generated with Corey (1954) relationships, which for 247 

oil/water and gas/oil systems can be described as: 248 

𝑘𝑟𝑤 = 𝑘𝑟𝑤,𝑚𝑎𝑥 (
𝑆𝑤 − 𝑆𝑤𝑖

1 − 𝑆𝑤𝑖 − 𝑆𝑜𝑟𝑤
)

𝑛𝑤

                                                                                                 (1) 249 

𝑘𝑟𝑜𝑤 = (
1 − 𝑆𝑤 − 𝑆𝑜𝑟𝑤

1 − 𝑆𝑤𝑖 − 𝑆𝑜𝑟𝑤
)

𝑛𝑜𝑤

                                                                                                             (2) 250 

𝑘𝑟𝑜𝑔 = (
1 − 𝑆𝑔 − 𝑆𝑜𝑟𝑔 − 𝑆𝑤𝑖

1 − 𝑆𝑔𝑖 − 𝑆𝑜𝑟𝑔 − 𝑆𝑤𝑖
)

𝑛𝑜𝑔

                                                                                                  (3) 251 

𝑘𝑟𝑔 = 𝑘𝑟𝑔,𝑚𝑎𝑥 (
𝑆𝑔 − 𝑆𝑔𝑖

1 − 𝑆𝑔𝑖 − 𝑆𝑜𝑟𝑔 − 𝑆𝑤𝑖
)

𝑛𝑔

                                                                                       (4) 253 

𝑃𝑐𝑜𝑤 = 𝑃𝑐𝑜𝑤,𝑚𝑎𝑥 (
𝑆𝑤 − 𝑆𝑤𝑖

1 − 𝑆𝑤𝑖
)

−1
𝛾⁄

                                                                                                       (5) 254 

𝑃𝑐𝑔𝑜 = 𝑃𝑐𝑔𝑜,𝑚𝑎𝑥 (
𝑆𝑜 − 𝑆𝑜𝑟

1 − 𝑆𝑜𝑟
)

−1
𝛾⁄

                                                                                                        (6) 255 

 252 

where kr , S and n denote the relative permeability, fluid saturation and Corey exponent, 256 

respectively. Subscripts, w, o and g represent water, oil and gas respectively, while, subscripts 257 

i and r denote the initial and residual saturations. 𝛾 is the pore size distribution index. 258 

Three-phase saturation functions which are important to account for multiphase flow 259 

interactions in the three-phase flow regions generated during WAG injection were computed 260 

using the Stone II model (Stone, 1973), while, hysteresis in the relative permeabilities during 261 

alternate drainage and imbibition cycles was modelled using the Killough (1976) hysteresis 262 

model. For fluid displacement processes where the capillary pressure drop is much less than 263 

the drop in viscous pressure at the scale of the grid resolution (such as in this study), capillary 264 
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pressure hysteresis effects are negligible and therefore not evaluated. Detailed discussions 265 

on the selection and application of three phase saturation functions and hysteresis models 266 

for reservoir simulation are not within the scope of this paper. 267 

 268 

2.2 Fracture characterisation and discrete fracture network 269 

The unique flow behaviour of fractured carbonate reservoirs is due to the interaction 270 

between high-permeability low pore volume fractures and the low-permeability high pore 271 

volume matrix. Characterisation of the fracture system is therefore critical to ensure accurate 272 

reservoir simulations of fractured carbonate reservoirs which form the basis for accurate 273 

surrogates. During the investigation of outcrop analogues, fracture characterisation involves 274 

evaluating data from detailed geological observations in the context of well-established 275 

conceptual models for the evolution of the fracture network. Conceptual models for the 276 

fracture system include but are not limited to pervasive background (or regional) fracture 277 

systems, fault related fracture systems and bedding related fracture systems (Makel, 2007; 278 

Chesnaux et al., 2007; Agada et al., 2016). Here, we assume that the fractures are part of a 279 

pervasive background fracture system with volumetric fracture intensities (P32) that vary 280 

from 0.05 m2/m3 to 0.2 m2/m3. The fracture data is obtained from detailed observations of 281 

the Amellago outcrop during extensive field mapping using high-resolution photopanels and 282 

LiDAR (Light Detection and Radar). 283 

The fractures are modelled using a discrete fracture network (DFN) approach which is thought 284 

to capture the connectivity and scale-dependent heterogeneity of fracture systems 285 

(Dershowitz et al., 2000; Bourbiaux et al., 2002; Makel, 2007; Spence et al., 2014). Three 286 

intersecting fracture sets are evaluated (Fig. 3). On average, the dip azimuth for each fracture 287 

set varies between 95, 135 and 165, while, the dip angle varies between 74, 75 and 76 (Fig. 288 

4). The mean fracture length is 20 m, while, the variation of the fracture length with respect 289 

to the mean is defined using an exponential distribution. Fracture apertures with a mean of 290 

0.5 mm are used to estimate fracture permeabilities with the cubic law. Fractures are 291 

assumed to be open in all scenarios. Vertical injection and production wells intersect fractures 292 

in all cases. 293 
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Fracture network flow parameters including equivalent permeability tensors and shape 294 

factors were obtained by upscaling the fracture networks to the grid cells of the simulation 295 

model (Fig. 5). We have chosen to use the modified Oda (1985) DFN upscaling method that is 296 

more computationally efficient than flow-based DFN upscaling and accurate for fracture 297 

systems with good connectivity. A dual-porosity dual-permeability formulation (e.g., Kazemi 298 

et al., 1992; Bourbiaux et al., 2002) was used to couple fracture-matrix fluid flow due to the 299 

significant heterogeneity and hydraulic continuity in the matrix. The exchange of fluids 300 

between the fractures and the matrix was modelled using the Gilman and Kazemi (1983) 301 

transfer function.  302 

 303 

3. Setup of data-driven surrogate models 304 

Data-driven surrogates were generated for two objective functions: the oil recovery factor 305 

and net gas utilisation factor (GUF). The oil recovery factor indicates the fraction of oil that is 306 

recovered from the reservoir, while, the GUF indicates the net amount of gas that is injected 307 

into the reservoir per barrel of oil produced from the reservoir. In general, it is economically 308 

desirable to maximise oil recovery and minimise GUF. 309 

The equations used to generate data-driven surrogates with polynomial regression and 310 

polynomial chaos expansion are presented below. We assume that second-order polynomials 311 

are sufficient to capture the non-linear interactions of the uncertain input parameters in this 312 

study. Higher-order polynomials can be employed to incorporate more non-linearity at 313 

greater computational expense. The general equation for second-order polynomial 314 

regression is given by: 315 

𝑓(𝑥) =  𝑐𝑜 + ∑ 𝑐𝑖1
𝑥𝑖1

𝑁

𝑖1=1

+ ∑ 𝑐𝑖1𝑖1
𝑥𝑖1

2

𝑁

𝑖1=1

+ ∑ ∑ 𝑐𝑖1𝑖2

𝑁

𝑖2=2

𝑥𝑖1
𝑥𝑖2

𝑁

𝑖1=1

,                                                                (10) 316 

where 𝑓(𝑥) is the objective function, 𝑥𝑖   are the uncertain parameters,  𝑐𝑜 is the intercept, 317 

𝑐𝑖1
are the coefficients of the linear terms, 𝑐𝑖1𝑖1

 are the coefficients of the quadratic terms; 318 

and 𝑐𝑖1𝑖2
 are the coefficients of interaction terms.  319 

The polynomial chaos expansion for a model output Ω is given by: 320 
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Ω(𝑥) =  ∑ 𝑐𝑖Ψ𝑖(𝑥)

𝑀

𝑖=1

,                                                                                                                                          (11) 321 

where the coefficients 𝑐𝑖  represent the dependence of the model output Ω  on the input 322 

parameters 𝑥. The function Ψi is a simplified form of the multivariate orthogonal polynomial 323 

basis for 𝑥. The number of 𝑀 terms in the expansion depends on the total number of input 324 

parameters 𝑁 and the order 𝑑 of the expansion, according to equation (12) (Oladyshkin et al., 325 

2011; Hosder, 2012). 326 

 𝑀 = (𝑁 + 𝑑)!/(𝑁! 𝑑!)   .                                                                                                                                (12) 327 

Subsequently, the unknown coefficients in the expansion (eqn. 2) are evaluated using a non-328 

intrusive least-square collocation method (Moritz, 1978; Chen et al., 2009). For arbitrary 329 

polynomial chaos expansion, the data-driven polynomial basis for one random variable (𝑥𝑗) 330 

of degree 𝑘 is given by: 331 

P𝑗
(𝑘)

(𝑥𝑗) =  ∑ 𝑝𝑖,𝑗
(𝑘)

𝑘

𝑖=0

𝑥𝑗
𝑖,             𝑘 = 0, 𝑑,     𝑗 =  0, 𝑁                                                                         (13) 332 

Here  𝑝𝑖,𝑗
(𝑘)

 are the coefficients in Pj
(k)

(𝑥j). The coefficients  𝑝𝑖,𝑗
(𝑘)

 are constructed in such a way 333 

that the polynomials in equation (13) form a basis that is orthogonal in arbitrarily given 334 

distributions of data (Oladyshkin et al., 2011). A detailed description of the polynomial basis 335 

functions used in sparse polynomial chaos expansion is presented in Elsheikh et al. (2014). 336 

 337 

3.1 Parameter screening 338 

Parameter screening is usually the first step in the process of generating surrogate models. 339 

Here, full-physics simulation using the minimum and maximum values of uncertain 340 

parameters is employed to identify and rank input variables with significant impact (i.e. heavy 341 

hitters) on the objective function(s). The heavy hitters are then coupled with experimental 342 

design techniques to generate surrogate models. Sensitivity analysis carried out by varying 343 

one parameter at a time is a simple and well known procedure for parameter screening. The 344 

screening results indicate that the most important uncertainties affecting CO2 WAG injection 345 
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in this reservoir include the fracture permeability, matrix wettability (KR), fault 346 

transmissibility (FT) and trapped gas saturation (Sgt) (Fig. 6).  347 

The screening study shows that as uncertain parameters vary between their minimum and 348 

maximum values, increasing the fracture permeability typically results in up to a 16% decrease 349 

in the oil recovered and the GUF. Conversely, increasing the maximum trapped gas saturation, 350 

wettability or fault transmissibility increases the oil recovery (and GUF) by 15%. Only 351 

uncertainties that show significant impact on the simulation model response as indicated in 352 

figure 6 are considered in the subsequent experimental design and surrogate model set-up. 353 

 354 

3.2 Experimental design 355 

A Box-Behnken design (Box et al., 1978) was used to vary the uncertain parameters (Table 2). 356 

Identical well configurations, flow rates and pressure constraints were maintained to ensure 357 

that the variability in simulation outcomes was due to the main uncertain parameters.  358 

Fracture permeability multipliers were varied between 0.1 and 10 to account for end-member 359 

fracture permeability scenarios. The fault transmissibility was varied between low 360 

transmissibility scenarios where the faults were completely sealing (FT = 0) and high 361 

transmissibility scenarios where the faults were fully conductive (FT = 1). Relative 362 

permeability and capillary pressure curves varied from oil-wet to water-wet corresponding to 363 

the low and high end-members respectively. The trapped gas saturation varied from zero (no 364 

hysteresis) to a maximum trapped gas saturation of 0.4. 365 

 366 

3.3 Surrogate modelling and validation  367 

Full-physics reservoir simulations were carried out employing the Box-Behnken experimental 368 

design using a training data set of 312 samples. The simulation input variables and the 369 

corresponding outputs were used to train polynomial regression (PR), sparse polynomial 370 

chaos (sPCE) and arbitrary polynomial chaos (aPCE) algorithms to generate approximations of 371 

the simulator output. To test the prediction accuracy of the surrogate models, we evaluated 372 

validation simulations using 105 Latin Hypercube samples and compared the response of the 373 
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data-driven surrogates to the numerical simulation output. We used the coefficient of 374 

determination (R2), adjusted coefficient of determination (R2
adj) and root mean square error 375 

(RMSE) as goodness of fit measures. R2 indicates how well the data-driven surrogates predict 376 

full-physics simulation results. R2
adj is a modified form of the coefficient of determination that 377 

accounts for the number of regression coefficients in the surrogate equation. RMSE is the 378 

root mean square error of the data-driven surrogate response compared to the full-physics 379 

simulation. In general, higher values of R2, higher values of R2
adj and lower values of RMSE 380 

indicate higher surrogate accuracy. Mathematically, R2, R2
adj and RMSE are given by:  381 

 382 

𝑅2 =  1 −
∑ (𝑦𝑖 − 𝑓𝑖)2𝑁

𝑖

∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖

                                                                                                     (7) 383 

𝑅𝐴𝑑𝑗
2 =  1 −

∑ (𝑦𝑖 − 𝑓𝑖)2𝑁
𝑖

∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖

 ×
𝑁 − 1

𝑁 − 𝐾
                                                                               (8) 384 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 − 𝑓𝑖)2𝑁

𝑖

𝑁
                                                                                                   (9) 385 

 386 

where 𝑦 denotes the full-physics simulation result (i.e. oil recovery factor or GUF) used to 387 

train the surrogates. 𝑦̅ is the mean value of 𝑁 full-physics simulation results evaluated at the 388 

end of production. 𝑓  represents the surrogate predictions corresponding to N simulation 389 

cases. 𝐾 denotes the number of regression parameters utilised in the surrogate model. By 390 

incorporating the number of regression parameters, 𝑅𝑎𝑑𝑗
2  provides a conservative estimate of 391 

the surrogate accuracy. 392 

 393 

3.4 Optimisation with genetic algorithm 394 

The surrogate models were coupled with the genetic algorithm to optimise the oil recovery 395 

and GUF based on a modelling framework in which multiple realisations of the geological 396 

model are considered while varying operational (i.e. engineering) parameters such as well 397 

locations and flow rates to optimise the oil recovery and GUF. Here, we assume multiple 398 

realisations of the geological model are obtained when different combinations of the DFN 399 

model, saturation functions, residually trapped fractions and fault transmissibility interact 400 
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with the matrix, based on the experimental design. Therefore, each combination represents 401 

a unique fracture-matrix geological model scenario. Subsequently, the operational 402 

parameters of the central injector in the 5-spot well pattern are varied to optimise the oil 403 

recovery and GUF across the full range of fracture-matrix geological scenarios. During the 404 

optimisation process, the location of the central injector is varied within an area of 120 m2, 405 

while, injection rates are varied up to a maximum of 1987 m3/day, set to ensure that the well 406 

bottom-hole pressures generated during injection are below the formation fracture pressure 407 

at all times. 408 

The genetic algorithm optimises an objective function by a process of selection, mutation and 409 

recombination as shown in Algorithm 1 (Koziel and Yang, 2011). We used a population size of 410 

50 and a crossover probability of 0.8 to ensure that the algorithm captured a large search 411 

space and to avoid being trapped in local minima. Larger population sizes had no effect on 412 

the optimisation results. The algorithm was evaluated for 50 generations (i.e. iterations) to 413 

obtain optimum results based on a function tolerance of 10-6. The function tolerance defines 414 

the minimum difference between new and existing optimal values so that the optimisation 415 

iteration is terminated when a predefined function tolerance is reached. 416 

 417 

4. Results  418 

4.1 Surrogate training with full-physics simulations 419 

We use black oil simulations in IMEXTM as a basis for generating the data-driven surrogates. 420 

The full-physics flow simulations indicate channelling during hydrocarbon displacement in the 421 

reservoir which makes CO2 WAG injection a desirable recovery option because WAG injection 422 

can ensure better mobility control and frontal stability to improve contact of injected fluids 423 

with unswept zones (Fig. 7a). Buoyant CO2 migration to the top of the reservoir due to gas-oil 424 

density difference is also apparent (Fig. 7b). Furthermore, the full-physics simulations provide 425 

the relevant training and testing data sets for generating the proxy models. On average, the 426 

computational cost for each black oil simulation run is 8.2 hrs when the simulation is 427 

truncated after 1500 days. Considering that simulations were evaluated for 312 Box-Behnken 428 

samples and 105 Latin Hypercube samples, truncating each simulation after 1500 days 429 
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seemed to be the most feasible way to complete the entire study within a reasonable time 430 

frame. 431 

The oil recovery and GUF profiles for the training simulations (Fig. 8a, b) show a range of 432 

simulation responses based on various combinations of uncertain input parameters. As 433 

expected, the oil recovery increases as alternate cycles of water and gas are injected into the 434 

reservoir. The GUF, however, increases initially but begins to decrease as the reservoir 435 

becomes gas saturated. 436 

 437 

 438 

4.2 Oil recovery surrogate prediction 439 

The response surfaces that can be generated from training simulations using the three data-440 

driven surrogate models (PR, sPCE and aPCE) are very similar and the relative error between 441 

response surfaces is approximately 0.002. For analysis, we focus on second-order aPCE 442 

response surfaces (Fig. 9). We observe from the four response surfaces that the horizontal 443 

fracture permeability always has the highest impact on the simulated oil recovery. This clear 444 

link between an increase in the fracture connectivity and a decrease in the oil recovery is to 445 

be expected because an increased connectivity across the fracture network results in a 446 

reduction in the residence time of injected fluids and subsequently a reduction in the 447 

effectiveness of oil recovery from the matrix due to gravity drainage and capillary imbibition.  448 

Consequently, the highest overall oil recovery is observed when the fracture permeability is 449 

low and the matrix is water-wet and hence imbibition is most effective (Fig. 9c). The lowest 450 

overall recovery is observed when both the vertical and horizontal fracture permeabilities are 451 

at their highest values (Fig. 9d) indicating that when the fractures are well connected, fracture 452 

networks form fluid flow highways that lead to rapid transport of injected fluids thereby 453 

resulting in low oil recovery. Increased fault transmissibility (Fig. 9a) allows the injected fluids 454 

to access all parts of the reservoir more readily which improves recovery. Similarly, an 455 

increase in the maximum trapped gas saturation reduces the overall gas mobility and leads 456 

to improved recovery predictions (Fig. 9b). This is because a reduction in the gas mobility 457 

increases the stability of the gas-water mobility front, delays gas breakthrough and improves 458 

the contact of gas with residual oil, thereby ensuring better microscopic and macroscopic 459 

sweep of the reservoir. On average, the computational cost for each surrogate model 460 
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evaluation is 13.2 seconds indicating significant reduction in CPU time when compared with 461 

the 8.2 hrs CPU time required for a single full-physics simulation. However, consideration 462 

must be given to the overhead associated with creating the surrogates. The overhead for 463 

creating the surrogates is directly proportional to the number of training and testing 464 

simulations that are required to generate robust surrogates. Once the simulations are run, 465 

computer codes in MATLAB are applied to the data to generate surrogates within seconds. It 466 

is difficult to quantify the time required to write MATLAB codes or analyse the results at each 467 

level of modelling complexity as these depend on the experience or expertise of the modeller. 468 

For a modeller who fully understands the workflow, a minimum of 7 days simulation using a 469 

high performance computer cluster with 20 processors would be required to generate 470 

training/testing simulations and generate the surrogate models in this study. 471 

 472 

 473 

4.3 Gas utilisation factor surrogate prediction 474 

The net gas utilisation factor (GUF) generally increases with increasing horizontal fracture 475 

permeability (Fig. 9). This increase is caused by high-permeability fracture networks that allow 476 

more gas flow per barrel of oil recovered from the matrix due to the rapid fluid transport in 477 

the fractures. We notice that the fault transmissibility has a limited effect on the GUF (Fig. 478 

10a). This is because the fault transmissibility impacts oil and gas migration in the reservoir in 479 

the same way: when the fault transmissibility is low, flow of gas and oil across the faults is 480 

limited; when the fault transmissibility is high, flow of gas and oil across the faults is enhanced.  481 

The GUF increases with higher values of gas trapping due to hysteresis (Fig. 10b). It is well 482 

known that relative permeabilities depend on the saturation path during hydrocarbon 483 

displacement cycles (e.g., Larsen and Skauge, 1998). The cycle dependence influences the 484 

amount of gas trapped in the subsurface, thereby resulting in higher GUFs as the trapped gas 485 

fraction increases. Conversely, the GUF decreases with increasing water-wetness (Fig. 10c). 486 

Although the amount of trapped non-wetting gas is higher in a water-wet scenario, the oil 487 

recovery is also very high (Fig. 9c). Hence, the GUF, which is a ratio of net gas utilised to oil 488 

produced, decreases with increasing water-wetness. The GUF is highest (Fig. 10d) when the 489 
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vertical and horizontal fracture permeabilities are high, which indicates rapid gas transport 490 

and accumulation at the top of the reservoir when the fracture permeability is very high. 491 

 492 

4.4 Surrogate validation: Goodness of fit measures 493 

To validate the surrogate models that were obtained from the training simulation, we 494 

compare the predictions of the surrogates with results from full-physics simulations and 495 

generate the relevant cross-plots to estimate goodness of fit measures. The coefficient of 496 

determination (R2) for oil recovery obtained from polynomial regression (PR), sparse 497 

polynomial chaos (sPCE) and arbitrary polynomial chaos (aPCE) is 0.9635, 0.9768 and 0.9770, 498 

respectively (Fig. 11 and Table 3). The R2 value indicates that all the data-driven surrogates 499 

are valid and that the PCE models yield a slightly better approximation of the actual simulation 500 

model. The goodness of fit measures for the GUF also show that the PCE models give 501 

consistently better predictions of the actual simulation results (Fig. 11 and Table 3). A 502 

comparison of the PCE models for both oil recovery and GUF indicates that the aPCE models 503 

give marginally better results compared to the sPCE models. However, it is expected that 504 

further tuning of the sPCE model may allow us to eradicate the difference between the aPCE 505 

and sPCE model. Subsequent relative error analysis, Monte Carlo simulations and model 506 

optimisation focus on proxy models from aPCE.  507 

 508 

4.5 Surrogate validation: Relative error 509 

Relative error response surfaces (Fig. 12 and 13) show the discrepancy between the response 510 

surfaces from PR and aPCE. In comparison to aPCE, PR always over predicts the oil recovery 511 

(Fig. 12) and under predicts the GUF (Fig. 13). Analysis of the relative error between the aPCE 512 

and PR response surfaces shows that although the overall error is minimal, the difference in 513 

the prediction is most evident in the middle of the design space. This is because the 514 

deterministic Box-Behnken experimental design used in setting up the training simulations 515 

generates samples that more adequately capture the actual model behaviour at the 516 

boundaries of the design space but have greater uncertainty at the middle of the design 517 

space.  518 
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To further investigate the deterministic sampling bias, we generated test simulations using 519 

the more random Latin Hypercube experimental design (Fig. 14). We observe that when 520 

random samples are added to the design, the mismatch between PR and aPCE prediction has 521 

a wider spread in the design space. However, the absolute error from such a random design 522 

is greater than the error from the deterministic design.  523 

The final choice of what design method to employ should be a function of how well the 524 

surrogate predicts the behaviour of the actual simulation in any given scenario. Furthermore, 525 

combining different experimental design techniques, as we have done in this study, could also 526 

be a reliable way to account for uncertainties that may propagate from the experimental 527 

design techniques used to generate the data-driven surrogates. 528 

 529 

4.6 Surrogate based uncertainty quantification and probabilistic assessment 530 

Monte Carlo simulations carried out using the aPCE surrogate and evaluated 65000 times 531 

were used to determine the cumulative distribution functions for oil recovery and gas 532 

utilisation factor over the range of uncertainty for the input parameters (Fig. 15). The 10th, 533 

50th and 90th (P10, P50 and P90) percentile probabilistic estimate for oil recovery is 0.31, 0.34 534 

and 0.37 respectively for simulation of immiscible CO2 WAG injection. Also, the P10, P50 and 535 

P90 probabilistic estimate is 0.45, 0.53 and 0.60 for GUF. 536 

 537 

4.7 Surrogate based optimisation 538 

The aPCE surrogate model coupled with the genetic algorithm was employed to optimise the 539 

oil recovery and GUF. Optimisation using the genetic algorithm progresses as a minimisation 540 

of the fitness value (i.e. -1 x objective function) with the mean fitness value improving during 541 

each generation until the optimum is reached after 50 generations as determined by the 542 

predefined function tolerance (Fig. 16).  543 

As discussed in section 3.4, the aPCE surrogate is coupled with the genetic algorithm to 544 

optimise the oil recovery and GUF based on a framework where multiple realisations of the 545 

geological model are considered while varying operational parameters such as well locations 546 

and flow rates (Table 4). It is assumed that multiple realisations of the geological model are 547 



20 
 

obtained when different combinations of the DFN model, wettability scenario, residually 548 

trapped fraction and fault transmissibility interact with the matrix, based on experimental 549 

design with each combination representing a unique fracture-matrix scenario. Here, the 550 

operational parameters of the central injector in the 5-spot well pattern (Fig. 7) are varied to 551 

optimise the oil recovery and GUF across the full range of fracture-matrix geological scenarios. 552 

Figure 17 illustrates convergence of the oil recovery (and GUF) to the optimum after 2000 553 

evaluations of the surrogate model based on the genetic algorithm. 554 

When the surrogate-based optimisation results are compared to evaluations of the full-555 

physics model using the optimum input parameters, an absolute error of 0.0048 and 0.0043 556 

is obtained for the oil recovery and GUF respectively. We observe a few random sub-optimal 557 

solutions as the algorithm evolves and converges to the optimum due to the random 558 

component in the genetic algorithm that allows the search during optimisation to move 559 

toward sub-optimal solutions occasionally in order to seek out the global optimum objective 560 

(Fig. 17). These random solutions increase our confidence that the algorithm adequately 561 

explores the parameter space and obtains a global optimum. 562 

In this study, it was sufficient to optimise a single objective (e.g., oil recovery). Since the oil 563 

recovered is inversely proportional to the GUF, maximizing the oil recovery concurrently 564 

minimises the GUF which are both desirable outcomes. To study the possibility of optimising 565 

many competing objectives, however, multi-objective optimisation is required. Multi-566 

objective optimisation finds a set of optimal solutions in the range between two (or more) 567 

optima. The set of optimal solutions, known as the pareto front, should ideally have a good 568 

spread (Mohamed et al., 2011; Deb, 2014). The surrogates generated in this study can be 569 

utilised for multi-objective optimisation at no additional cost (i.e. no additional simulation 570 

runs). 571 

 572 

5. Discussion 573 

Reservoir simulation and optimisation of CO2 WAG injection in fractured carbonate reservoirs 574 

is a complex and time-consuming process. By applying surrogate models to approximate full-575 

physics numerical simulations using a limited number of training and testing simulations that 576 

cover the parameter space and account for key uncertainties, we can significantly reduce the 577 
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overall modelling time. The surrogates can then help to understand the respective 578 

dependencies and correlations of uncertain input parameters and contribute to rapid 579 

simulation and optimisation under uncertainty.  580 

Response surfaces generated using surrogate models show that fault transmissibility, fracture 581 

network properties, matrix wettability, residual trapping due to hysteresis and the fracture 582 

network properties are key uncertainties that significantly impact the prediction of oil 583 

recovery and gas utilisation for fractured carbonate reservoirs. Furthermore, the interrelated 584 

effect of these uncertain parameters is often greater than the impact of one parameter on 585 

the model outcome. For example, the interrelated effect of high wettability and low fracture 586 

network permeability on oil recovery, is higher than the end-member effect of either of these 587 

parameters on oil recovery. Such observations necessitate the application of experimental 588 

design techniques that improve evaluation of the parameter space and capture the 589 

interactions of major uncertainties. Here, Box-Behnken and Latin Hypercube experimental 590 

designs were used to generate a large number of training and testing samples (i.e. full-physics 591 

simulations), respectively.  592 

The chosen experimental design is a source of uncertainty in the surrogate modelling 593 

workflow which may propagate to the surrogate model prediction because deterministic 594 

designs could be biased towards the boundaries of the design, while, random designs may 595 

need more training and testing to constrain. By combining deterministic (Box-Behnken) and 596 

random (Latin Hypercube) experimental designs to account for the uncertainty from sampling 597 

bias, the workflow employed in this study improves the reliability of the surrogate model 598 

predictions. 599 

Although, it is considerably faster to evaluate a data-driven surrogate than to run a full 600 

simulation case, it is self-evident that such a simple model must be constructed and used with 601 

care. The accuracy of the model should be thoroughly validated in order to estimate its 602 

prediction capability. Hence, the application of appropriate goodness of fit measures, such as 603 

the coefficient of determination (R2) and the root mean square error (RMSE), is essential to 604 

ensure that the surrogate reliably replaces the full simulation model inside and outside of the 605 

design space. When the surrogates generated in this study are compared using R2 and RMSE, 606 

surrogate results from polynomial chaos expansion (PCE) – both sparse and arbitrary PCE, 607 

consistently give better results than traditional polynomial regression. 608 
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The work presented in this paper, provides a solid basis for diverse applications of PCE-based 609 

surrogates to several aspects of fractured reservoir simulation and optimisation that would 610 

benefit from the computationally efficient workflow. First, the PCE-based surrogates can be 611 

applied to advanced global sensitivity analysis using Sobol indices (e.g., Buzzard, 2012; 612 

Oladyshkin et al., 2012). As discussed in section 3, the PCE-based surrogate output is 613 

presented as an orthogonal decomposition through the uncertain input parameters. The 614 

orthogonal decomposition can directly be employed through Sobol sensitivity indices (Sobol, 615 

1990) to quantify the relative importance of uncertain input parameters on the final 616 

prediction. Once the PCE-based surrogate model is generated, the sensitivity indices can be 617 

constructed on-the-fly using analytical relations, thereby, providing information on the high 618 

order interaction between contributing model parameters (e.g., Oladyshkin et al., 2012). 619 

Second, robust optimisation under geological uncertainty (e.g., Mulvey and Vanderbei, 1995; 620 

Nghiem et al., 2009; Chen et al., 2012; Petvipusit et al., 2014) can be achieved using the 621 

developed surrogates. During robust optimisation, a given objective function is optimised by 622 

modifying engineering parameters (e.g., well location and flow rates) for a wide range of 623 

geological scenarios, thereby, capturing geological uncertainty in the optimisation process. 624 

Typically, robust optimisation progresses by optimising over the average and standard 625 

deviation of model results generated with different geological realisations. Because the 626 

average response surface obtained during robust optimisation is much smoother than the 627 

response surfaces for individual realisations, it can potentially reduce the total number of 628 

simulations needed to build surrogates. 629 

Third, multi-objective optimisation can be carried out to optimise competing objectives (e.g., 630 

Mohamed et al., 2011; Deb, 2014). For example, the oil recovery and net present value can 631 

be maximised while concurrently minimizing the GUF and water cut. When multi-objective 632 

optimisation is employed in the framework of geological uncertainty, the objective function 633 

will need to reflect the impact of geological uncertainties by using either a mean value or the 634 

mean value combined with the standard deviation for each objective. Subsequently, an 635 

optimisation algorithm (e.g., the classic genetic algorithm or the more recent Non-dominated 636 

Sorting Genetic Algorithm-II) is run on the PCE-based surrogate to obtain a pareto-optimal 637 

front representing competing objectives. The accuracy of the optimisation outcome can be 638 
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progressively improved by re-training the surrogates along the pareto-optimal front and re-639 

running the optimisation algorithm. 640 

This study seeks to demonstrate how surrogate models for fractured carbonate reservoirs can 641 

be coupled with a wide range of reservoir optimisation techniques. Therefore, it should be 642 

noted that we do not focus on the details of specific optimisation algorithms. We use the well-643 

known genetic algorithm but more advanced techniques that apply efficient gradient-based 644 

or stochastic techniques to field-scale reservoir optimisation have been widely researched 645 

(e.g., Dowsland and Thompson, 2012; Isebor et al., 2014; Esmin et al., 2015).  646 

 647 

 648 

6. Conclusion 649 

The purpose of this study was to generate, analyze and compare non-intrusive data-driven 650 

surrogate modelling techniques, and illustrate their application to the simulation and 651 

optimisation of CO2 WAG injection in fractured carbonate reservoirs. The synergistic 652 

application of experimental design, data-driven surrogates and genetic algorithms for CO2 653 

WAG simulation and optimisation represents a notable contribution of this work. We have 654 

shown that data-driven surrogates from PCE (arbitrary polynomial chaos expansion, aPCE, 655 

and sparse polynomial chaos expansion, sPCE) show a higher degree of accuracy in predicting 656 

oil recovery and GUF compared to surrogates from polynomial regression. PCE techniques 657 

capture the synergistic effects between low- and high-order polynomial terms and thereby 658 

provide higher accuracy. In particular, aPCE most closely approximates the actual simulations 659 

when trained and tested.  660 

We demonstrate that data-driven surrogate models significantly reduce the computational 661 

cost by completing each model evaluation in 13.2 seconds compared to 8.2 hours for full-662 

physics simulation using the inputs. Hence, we are able to rapidly evaluate the dependency 663 

and correlation of uncertain input parameters as they influence the oil recovery and GUF. For 664 

example, we find that low fracture permeabilities, more water wetting saturation functions, 665 

high residual trapping due to hysteresis and high fault transmissibilities are favourable to 666 

achieve higher oil recovery. When the computationally efficient surrogates are coupled with 667 
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the genetic algorithm, over 2000 model evaluations are rapidly carried out to optimise the oil 668 

recovery and show the combination of input variables that are favourable to the optimum 669 

recovery scenario. 670 

 671 
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 875 

FIGURE CAPTIONS 876 

Fig. 1. Workflow for constructing data-driven surrogates for fractured carbonate reservoirs using 877 

multiple experimentally designed simulations. 878 

Fig. 2. Distribution of permeability in the matrix simulation model of a sector of the Amellago Island 879 

Outcrop.  880 

Fig. 3. Network of pervasive background fractures with average fracture intensity of (a) 0.05 m2/m3, (b), 881 

0.1 m2/m3 and (c) 0.2 m2/m3. 882 
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Fig. 4. Characterization of fracture properties in the Amellago Island Outcrop. (a) Rose diagram 883 

showing strike of pervasive regional fractures. (b) Contoured density of fracture poles based on 884 

fractures generated for the 3D reservoir model. 885 

Fig. 5. Upscaled fracture permeabilities corresponding to fracture networks with average intensity of (a) 886 

0.05 m2/m3, (b), 0.1 m2/m3 and (c) 0.2 m2/m3. Fracture networks are upscaled to the geocellular grid of 887 

the simulation model using the modified Oda method. 888 

Fig. 6. Summary of parameter sensitivities affecting oil recovery and gas utilisation factor (GUF) during 889 

CO2 WAG. Tornado chart shows the difference in the model response when individual parameters are 890 

varied between their minimum and maximum values. Full-physics simulations are carried out using the 891 

regional discrete fracture network with fracture intensity of 0.1 m2/m3. See table 2 for description of 892 

symbols. 893 

Fig. 7. Distribution of matrix oil saturation (a) and gas saturation (b) after 8 cycles of immiscible CO2 894 

WAG injection using an inverted 5-spot well pattern. Geological layer channelling influences recovery 895 

efficiency (a), while, buoyancy influences CO2 migration to the reservoir top (b).  896 

Fig. 8. Profiles of oil recovery (a) and gas utilisation factor (b for experimentally designed simulations 897 

used to train and test the surrogate models. Only 50 simulation results are shown to avoid overlapping. 898 

Fig. 9. aPCE surrogate response surfaces for the oil recovery when (a) fault transmissibility, (b) 899 

maximum trapped gas saturation, (c) wettability and (d) vertical fracture permeability multiplier are 900 

varied along with the horizontal fracture permeability multiplier. ‘FT’ refers to fault transmissibility. ‘Sgt’ 901 

refers to maximum trapped gas saturation. ‘KR’ refers to the wettability which varies from -1 (oil-wet) to 902 

1 (water-wet). ‘Kfzmult’ refers to the vertical fracture permeability multiplier while ‘Kfxmult’ refers to the 903 

horizontal fracture permeability multiplier. Lower GUF is desired for positive recovery economics. 904 

Fig. 10. aPCE surrogate response surfaces for the gas utilization factor when (a) fault transmissibility, 905 

(b) maximum trapped gas saturation, (c) wettability and (d) vertical fracture permeability multiplier are 906 

varied along with the horizontal fracture permeability multiplier. ‘FT’ refers to fault transmissibility. ‘Sgt’ 907 

refers to maximum trapped gas saturation. ‘KR’ refers to the wettability which varies from -1 (oil-wet) to 908 

1 (water-wet). ‘Kfzmult’ refers to the vertical fracture permeability multiplier while ‘Kfxmult’ refers to the 909 

horizontal fracture permeability multiplier. Lower GUF is desired for positive recovery economics. 910 

Fig. 11. Model comparison of oil recovery and gas utilisation factor (GUF) between full-physics 911 

simulations and surrogate models from polynomial regression (a, d), sparse polynomial chaos 912 

expansion (b, e) and arbitrary polynomial chaos expansion (c, f). “Actual” refers to results from full-913 

physics IMEX simulations, while, “predicted” refers to results obtained using data-driven surrogates. 914 

Fig. 12. Relative error response surfaces for the oil recovery when the PR surrogate is compared to the 915 

aPCE surrogate. Overall error is minimal but notice for all surfaces that the error is lowest at the corners 916 

and highest in the centre of the design space because of the deterministic experimental design method. 917 
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Fig. 13. Relative error response surfaces for the gas utilisation factor (GUF) when the PR surrogate is 918 

compared to the aPCE surrogate. Overall error is minimal but notice for all surfaces that the error is 919 

lowest at the corners and highest in the centre of the design space because of the deterministic 920 

experimental design method. 921 

Fig. 14. The relative difference in response surfaces when the PR surrogate is compared to the aPCE 922 

surrogate for (a) oil recovery and (b) gas utilisation factor (GUF). Further validation sample points have 923 

been added using Latin Hypercube sampling to reduce the deterministic sampling bias. Blue dots refer 924 

to actual simulation runs for training (dots at the corners) and validation (random dots within the design). 925 

Fig. 15. Cumulative probability distributions for (a) oil recovery and (b) net gas utilization factor 926 

generated from 65000 Monte Carlo simulations using the aPCE model. Oil recovery P10, P50 and P90 927 

is 0.31, 0.34 and 0.37 respectively. GUF P10, P50 and P90 is 0.45, 0.53 and 0.60 respectively.  928 

Fig. 16. Genetic algorithm (GA) optimisation process for the fractured carbonate reservoir model. Note 929 

the occasional sub-optimal solutions during optimisation to ensure that the GA obtains the optimal 930 

global solution. The algorithm is set to maximise the oil recovery, thereby concurrently minimising the 931 

GUF. 932 

Fig. 17. Multiple simulation iterations using aPCE surrogate model coupled with genetic algorithm for 933 

(a) optimisation of oil recovery and (b) optimisation of net gas utilisation factor. 934 
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 936 

TABLE CAPTIONS 937 

Table 1. Rock and fluid properties used in reservoir simulation 938 

Table 2. Main parameters used to generate oil-water and gas-oil relative permeability and capillary 939 

pressure curves with Corey equations. 940 

Table 3. Parameter, symbols and ranges of the uncertain parameters varied in the experimental design. 941 

Matrix relative permeability and capillary pressure curves that indicate the wettability (KR) are 942 

represented by discrete variables. ‘-1’ corresponds to oil-wet, ‘0’ corresponds to mixed-wet and ‘1’ 943 

corresponds to water-wet. 944 

Table 4. Goodness of Fit Measures. R2 is the coefficient of determination which indicates how well the 945 

data-driven surrogates predict full-physics simulation results. “R2
adj” is a modified form of the coefficient 946 

of determination which accounts for the number of regression coefficients in the surrogate equations. 947 

RMSE is the root mean square error of the data-driven surrogate compared to the actual simulation.  948 

Table 5. Mean value of uncertain input parameters and outputs (oil recovery factor, RF and gas 949 

utilisation factor, GUF) during optimisation with genetic algorithm. Each generation consists of 50 aPCE 950 

surrogate evaluations. Optimum solution is obtained after 50 generations.  951 
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 952 

TABLES 953 

Table 1. 954 

Parameter  Value Unit 

Grid dimension  34 x 35 x 36 - 

Grid block size 15 x15 x 3 m 

Reservoir pressure  20,684 kPa 

Bubble point pressure 11,376 kPa 

Oil density 1000 kg/m3 

Water density 800 kg/m3 

Gas density 1.28 kg/m3 

Reservoir temperature 121 0C 

 955 

 956 

Table 3. 957 

Parameter Symbol Low Intermediate High 

Fracture Permeability Multiplier X Kfxmult 0.1 5.0 10.0 

Fracture Permeability Multiplier Y Kfymult 0.1 5.0 10.0 

Fracture Permeability Multiplier Z Kfzmult 0.1 5.0 10.0 

Fault Transmissibility FT 0.0 0.5 1.0 

Matrix Wettability KR -1.0 0.0 1.0 

Maximum Trapped Gas Saturation Sgt 0.0 0.2 0.4 

 958 

 959 

Table 4. 960 

Goodness of Fit 

Measure 

Polynomial Regression Sparse Polynomial Chaos Arbitrary Polynomial Chaos 

Recovery GUF Recovery GUF Recovery  GUF 

R2 0.9635 0.9823 0.9768 0.9903 0.9770 0.9903 

R2
adj 0.9361 0.9690 0.9594 0.9830 0.9597 0.9830 

RMSE 0.0052 0.0098 0.0042 0.0073 0.0042 0.0073 

 961 
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 962 

 963 

Table 5. 964 

Generation Kfxmult Kfymult Kfzmult FT KR Sgt ILx ILy InjRate RF GUF 

1 1.4057 1.4057 1.4057 0.3059 -1 0.1844 18 17 1736 0.3661 0.4292 

2 5.5560 5.5560 5.5560 0.4917 0 0.1373 16 18 1821 0.3867 0.3899 

3 1.8103 1.8103 1.8103 0.6586 1 0.1986 17 18 1896 0.4444 0.3593 

4 1.6540 1.6540 1.6540 0.5768 1 0.3155 18 20 1814 0.4464 0.3838 

5 3.7237 3.7237 3.7237 0.6547 1 0.2877 17 18 1903 0.4467 0.3654 

6 1.1319 1.1319 1.1319 0.6648 1 0.1995 17 19 1954 0.4575 0.3537 

7 1.0484 1.0484 1.0484 0.7328 1 0.2018 17 18 1957 0.4602 0.3530 

8 1.2237 1.2237 1.2237 0.6542 1 0.3243 17 21 1953 0.4723 0.3648 

9 1.9328 1.9328 1.9328 0.6916 1 0.3688 15 21 1951 0.4732 0.3620 

10 1.2223 1.2223 1.2223 0.8040 1 0.3243 13 21 1956 0.4808 0.3557 

11 0.6790 0.6790 0.6790 0.8777 1 0.3348 13 18 1964 0.4797 0.3605 

12 0.8006 0.8006 0.8006 0.8771 1 0.3566 14 21 1939 0.4829 0.3603 

13 0.6183 0.6183 0.6183 0.8671 1 0.3882 16 21 1978 0.4881 0.3641 

14 0.9967 0.9967 0.9967 0.8762 1 0.3892 13 21 1976 0.4899 0.3566 

15 0.2848 0.2848 0.2848 0.9702 1 0.4117 14 21 1982 0.4961 0.3599 

16 0.2863 0.2863 0.2863 0.9758 1 0.4122 13 21 1983 0.4971 0.3579 

17 0.2474 0.2474 0.2474 0.9694 1 0.4125 14 21 1982 0.4969 0.3589 

18 0.1059 0.1059 0.1059 0.9992 1 0.4184 13 21 1987 0.4993 0.3581 

19 0.1132 0.1132 0.1132 0.9916 1 0.4182 13 21 1986 0.4991 0.3580 

20 0.1975 0.1975 0.1975 0.9504 1 0.4117 13 21 1983 0.4978 0.3578 

21 0.1047 0.1047 0.1047 0.9979 1 0.4185 13 21 1987 0.4993 0.3581 

22 0.1547 0.1547 0.1547 0.9985 1 0.3659 13 21 1987 0.4975 0.3932 

23 0.1062 0.1062 0.1062 0.9854 1 0.4112 13 21 1987 0.4993 0.3580 

24 0.1021 0.1021 0.1021 0.9991 1 0.4156 13 21 1987 0.4994 0.3581 

25 0.1036 0.1036 0.1036 0.9973 1 0.4128 13 21 1987 0.4994 0.3581 

26 0.1044 0.1044 0.1044 0.9979 1 0.4097 13 21 1987 0.4994 0.3582 

27 0.1034 0.1034 0.1034 0.9978 1 0.4122 13 21 1987 0.4994 0.3581 

28 0.1040 0.1040 0.1040 0.9877 1 0.4062 13 21 1987 0.4994 0.3581 

29 0.1018 0.1018 0.1018 0.9976 1 0.4079 13 21 1987 0.4994 0.3582 

30 0.1014 0.1014 0.1014 0.9968 1 0.4056 13 21 1987 0.4994 0.3582 

35 0.1004 0.1004 0.1004 0.9937 1 0.4103 13 21 1987 0.4994 0.3581 

40 0.1003 0.1003 0.1003 0.9938 1 0.4098 13 21 1987 0.4994 0.3581 

45 0.1002 0.1002 0.1002 0.9898 1 0.4013 13 21 1987 0.4995 0.3581 

50 0.1000 0.1000 0.1000 0.9887 1 0.4014 13 21 1987 0.4995 0.3581 
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ALGORITHM 968 

 969 

Algorithm 1: Genetic algorithm for optimisation by selection, mutation and recombination 

1 Start 

2    Initialize solutions xi of population λ 

3    Evaluate objective function for the solutions xi in λ 

4     Repeat 

5        For  i = 0 to β 

6             Select ρ parents from λ 

7             Create new xi by recombination 

8             Mutate xi 

9             Evaluate objective function for xi 

10             Add xi to λ’ 

11             Next 

12             Select µ parents from λ’ and form new λ 

13     Until termination condition 

14 End 

 970 

 971 

FIGURES 972 
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Figure 1 974 
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