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8Institut d’Astrophysique de Paris, Paris F-75014, France

Accepted 2017 August 31. Received 2017 August 31; in original form 2017 March 12

ABSTRACT
Cosmic strings are a well-motivated extension to the standard cosmological model and could
induce a subdominant component in the anisotropies of the cosmic microwave background
(CMB), in addition to the standard inflationary component. The detection of strings, while
observationally challenging, would provide a direct probe of physics at very high-energy
scales. We develop a framework for cosmic string inference from observations of the CMB
made over the celestial sphere, performing a Bayesian analysis in wavelet space where the
string-induced CMB component has distinct statistical properties to the standard inflationary
component. Our wavelet-Bayesian framework provides a principled approach to compute the
posterior distribution of the string tension Gμ and the Bayesian evidence ratio comparing
the string model to the standard inflationary model. Furthermore, we present a technique to
recover an estimate of any string-induced CMB map embedded in observational data. Using
Planck-like simulations, we demonstrate the application of our framework and evaluate its
performance. The method is sensitive to Gμ ∼ 5 × 10−7 for Nambu–Goto string simulations
that include an integrated Sachs–Wolfe contribution only and do not include any recombination
effects, before any parameters of the analysis are optimized. The sensitivity of the method
compares favourably with other techniques applied to the same simulations.

Key words: methods: data analysis – methods: statistical – cosmic background radiation –
cosmology: observations.

1 IN T RO D U C T I O N

High-precision measurements of the anisotropies of the cosmic
microwave background (CMB) strongly favour a standard cosmo-
logical model in which the large-scale structure of the Universe
is seeded by nearly scale-invariant Gaussian density perturbations
created during a phase of inflation (Hinshaw et al. 2013; Planck
Collaboration XIII 2016). These measurements do, however,
leave room for additional subdominant contributions to the CMB
generated by processes beyond the standard inflationary paradigm.
Cosmic strings represent a particularly well-motivated extension

�E-mail: jason.mcewen@ucl.ac.uk

to the standard model (for reviews, see Brandenberger 1994;
Vilenkin & Shellard 1994; Hindmarsh & Kibble 1995; Copeland &
Kibble 2009). Arising in a range of attempts at Grand Unification,
cosmic strings are linear topological defects produced when the
Universe undergoes certain symmetry-breaking phase transitions.
In an expanding Universe, the existence of causally separate
regions prevents the symmetry from being broken in the same
way throughout space, with a network of cosmic strings inevitably
forming as a result (Kibble 1976). Such a string network cannot
be solely responsible for producing the anisotropies of the CMB –
cosmic strings cannot explain the acoustic peaks of the CMB power
spectrum (Pen, Seljak & Turok 1997). However, cosmic strings
could induce a subdominant contribution to the CMB through the
Kaiser–Stebbins effect (Kaiser & Stebbins 1984), which induces a
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step-like (i.e., highly non-Gaussian) temperature change between
photons passing either side of a moving string. The magnitude of
the contribution to the relative CMB temperature anisotropies from
a single, straight string is given by

�T

T0
= 8πGμvγs, (1)

where v is the transverse string velocity, γ s is the corresponding
relativistic gamma factor, G is the gravitational constant and μ

is the string tension (throughout we use natural units c = 1).
More generally, the situation is complicated by the existence of
an evolving network of wiggly strings in an expanding universe.
Calculating accurate observable effects of a network of cosmic
strings is a rich and computationally demanding area of research
(Albrecht & Turok 1989; Bennett & Bouchet 1989, 1990; Allen
& Shellard 1990; Hindmarsh 1994; Bouchet, Bennett & Steb-
bins 1988; Vincent, Antunes & Hindmarsh 1998; Moore, Shellard &
Martins 2002; Landriau & Shellard 2003; Ringeval, Sakellar-
iadou & Bouchet 2007; Fraisse et al. 2008; Blanco-Pillado,
Olum & Shlaer 2011; Landriau & Shellard 2011; Ringeval &
Bouchet 2012), requiring the numerical evolution of the network in
the presence of photons, matter and dark energy. Tools to simulate
full-sky, high-resolution maps of string-induced CMB anisotropies
incorporating all physical effects are not yet available. The current
state-of-the-art methods produce matter-free simulations, which
faithfully represent the small-scale structure imparted by the string
network via the integrated Sachs–Wolfe (ISW) effect (Ringeval
& Bouchet 2012), but do not include recombination effects.
These simulations nevertheless remain computationally intensive,
requiring hundreds of thousands of CPU hours to simulate a single
full-sky map at Planck resolution.

The energy scale of the string-inducing phase transition η is
directly related to the string tension μ by μ ∼ η2. Detecting the sig-
natures of cosmic strings would therefore provide a direct probe of
physics at extremely high-energy scales. However, since any string
signature must be subdominant, detecting strings is a significant
observational challenge. The magnitude of the task is demonstrated
in Fig. 1, in which we compare the power spectrum of a simulated
string-induced CMB contribution (Ringeval & Bouchet 2012), with
amplitude close to current observational limits, and a standard infla-
tionary component, as would be observed by Planck. Hereafter, we
refer to string-induced CMB anisotropy maps with the shorthand
‘string maps’.

Various methods have been developed to search for string-
induced contributions to the CMB, from power-spectrum
constraints (Lizarraga et al. 2014a,b, 2016; Charnock et al. 2016) to
higher order statistics such as the bispectrum (Planck Collaboration
XXV 2014; Regan & Hindmarsh 2015) and trispectrum (Fergusson,
Regan & Shellard 2010), and tools such as edge detection (Lo &
Wright 2005; Amsel, Berger & Brandenberger 2008; Stewart &
Brandenberger 2009; Danos & Brandenberger 2010), Minkowski
functionals (Gott et al. 1990; Ducout et al. 2013; Planck
Collaboration XXV 2014), wavelets and curvelets (Starck,
Aghanim & Forni 2004; Hammond, Wiaux & Vandergheynst 2009;
Wiaux, Puy & Vandergheynst 2010; Planck Collaboration
XXV 2014; Hergt et al. 2016), level crossings (Sadegh Movahed &
Khosravi 2011) and peak–peak correlations (Movahed, Javanmardi
& Sheth 2013). Current constraints on the string tension depend on
the string model and simulation technique adopted. For Nambu–
Goto strings, power spectrum analyses based on simulations
computed by the unconnected segment model (Albrecht, Battye &
Robinson 1997, 1999; Pogosian & Vachaspati 1999) constrain

Figure 1. Power spectra of the fiducial CMB, smoothed by the Planck beam
and the HEALPIX pixel window function corresponding to Nside = 2048 (grey,
long dash), Planck instrumental noise (grey, short dash) and their sum (blue,
solid). For comparison, a power spectrum estimated from a simulated full-
sky cosmic string-induced CMB component (Ringeval & Bouchet 2012)
is plotted, corresponding to Gμ = 5 × 10−7 (orange, dot–dashed). The
string contribution is clearly subdominant, highlighting the challenge in
constraining cosmic string models.

the string tension to Gμ < 1.3 × 10−7 (Planck Collaboration
XXV 2014) using Planck temperature data and to Gμ < 1.1 × 10−7

(Charnock et al. 2016) when Planck polarization data are also
included. Recombination effects have been considered by Regan &
Hindmarsh (2015), but were found not to have a significant effect on
the bispectrum. Beyond spectra, non-Gaussian analyses for Nambu–
Goto strings – based on high-resolution simulations of stringy CMB
maps including only the ISW contribution and no recombination
effects (Ringeval & Bouchet 2012) – constrain the string tension to
Gμ < 7.8 × 10−7 (Planck Collaboration XXV 2014) using Planck
temperature data. Considering only the ISW effect enables the
production of high-resolution full-sky string maps, but these maps
are necessarily conservative, and the resulting constraints are hence
weaker. Furthermore, effects of recombination physics would
increase the string anisotropy signal considerably (Planck Collabo-
ration XXV 2014). While power spectrum statistics are inherently
lossy, map-based analyses have the potential to better discriminate
cosmic strings from other potential subdominant CMB signals.

As constraints on the amplitude of any string-induced component
tighten, analysis techniques must become more sensitive to improve
on the status quo. Wavelets are a particularly powerful tool for
searching for cosmic strings due to their ability to simultaneously
characterize signal structure in both scale and position. Further-
more, wavelets that are well matched to the expected structure of
string maps can be adopted, facilitating extraction of the string sig-
nal from the CMB and instrumental noise. Although string-induced
CMB anisotropies are non-Gaussian, the statistical distribution of
the pixels of a cosmic string map nevertheless remains close to
Gaussian. In Fig. 2 histograms of simulated inflationary and cosmic
string components are plotted, in both pixel (Fig. 2a) and wavelet
(Fig. 2b) space. The shape of the distributions is reasonably sim-
ilar in pixel space, whereas in wavelet space, the distributions are
markedly different. The distribution of the string component in
wavelet space is highly peaked (i.e. leptokurtic) due to the sparse
representation of the string component in wavelet space (i.e. due to
the property that many of the wavelet coefficients of the string com-
ponent are near zero). The inflationary CMB component, however,
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Figure 2. Distributions of map m ∈ {c, s}, comprising either a CMB
simulated inflationary component c (blue, dashed) or string component s
(red, solid) CMB components, in both pixel space and scale-discretized
wavelet space (for Gμ = 2 × 10−6). The string-induced component is
simulated by the method of Ringeval & Bouchet (2012). The shape of the
distributions is reasonably similar in pixel space, whereas in wavelet space,
the distributions are markedly different.

remains Gaussian distributed in wavelet space, since the wavelet
transform is linear. The difference in the statistical properties of
the string and inflationary CMB components in wavelet space can
be exploited to isolate and estimate the parameters of any string
component. This is the approach taken in this work.1

In this article, we develop a hybrid wavelet-Bayesian approach to
infer the presence and parameters of any cosmic string component in
the CMB. We do not consider (insufficient) summary statistics like
many alternative methods (e.g. the kurtosis), for which the origin
of any non-Gaussian component cannot be rigorously determined.
Instead, we learn and exploit the complex non-Gaussian structure
of string-induced CMB contributions. We follow the approach of
Hammond et al. (2009), generalizing from the planar setting to the
celestial sphere. In Hammond et al. (2009), techniques using planar
wavelets are presented to learn the statistical structure of string-
induced CMB contributions and to exploit this structure to recover

1 For very small scales, the underlying string distribution in pixel space
becomes increasingly different to a Gaussian distribution in its tails, however
these features can be washed out observationally by instrumental beams. In
any case, for small instrumental beams that preserve these features, the
wavelet approach presented in this work would characterize such structure,
improving the sensitivity of the analysis.

an estimate of a planar map of the string component. We general-
ize these techniques to the full-sky setting using scale-discretized
wavelets defined on the sphere (Wiaux et al. 2008; Leistedt et al.
2013; McEwen et al. 2015b), adopting directional wavelets with pa-
rameters selected to match the characteristic step-like temperature
changes induced by strings in the CMB (Kaiser & Stebbins 1984).
While Hammond et al. (2009) adopt a power spectrum approach to
estimate the string tension, we recover the posterior distribution of
the string tension in our wavelet formalism. Moreover, we also com-
pute the Bayesian evidence to distinguish between the cosmic string
model and the standard inflationary model. In summary, we present
a principled and robust statistical framework based on Bayesian
inference for parameter estimation and model selection, perform-
ing a Bayesian analysis in wavelet space where the inflationary-
and string-induced CMB components have very different statistical
properties. An overview of the string model and the recovery of any
string-induced component is illustrated in Fig. 3, while an example
of the scale-discretized wavelets considered is shown in Fig. 4.

We restrict our attention here to simulated observations modelling
idealized Planck observations. An optimization of the parameters
of the method and the application to Planck data will be presented
in a subsequent study. We employ the matter-free simulations of
Ringeval & Bouchet (2012), which faithfully represent the small-
scale string anisotropies produced by the ISW effect. As previously
stated, these simulations come at a cost of hundreds of thousands
of CPU hours per full-sky Planck resolution map. Fortunately, our
approach requires only two realizations of string maps: one to train
our method and one to test it (see Fig. 6).

The outline of the paper is as follows. In Section 2, we review
the wavelets used in this analysis. In Section 3, we describe in de-
tail our hybrid wavelet-Bayesian framework for inferring the string
tension and determining the Bayesian evidence for the string model
relative to the standard inflationary model. We present in Section 4
the approach to recovering an estimate of the string-induced CMB
component at the map level in the full-sky setting, which can be
viewed as a Bayesian thresholding approach to denoising the ob-
served CMB signal. In Section 5, we apply our framework to simu-
lated observations and discuss the results. Concluding remarks are
made in Section 6.

2 SC A L E - D I S C R E T I Z E D WAV E L E T S O N T H E
SPHERE

Wavelets on the sphere have found widespread use in anal-
yses of the CMB (e.g. Vielva et al. 2004; McEwen et al.
2005, 2006b, 2008b; Vielva, Martı́nez-González & Tucci 2006;
McEwen et al. 2007b, 2008c; Feeney et al. 2011a,b; Feeney
et al. 2012; Planck Collaboration XII 2014; Planck Collaboration
XXIII 2014; Planck Collaboration XXV 2014) due to their ability
to localize signal content in scale and space simultaneously (for a
review, see McEwen et al. 2007c).

Initial stable wavelet constructions on the sphere were
based largely on continuous methodologies (e.g. Antoine &
Vandergheynst 1998, 1999; Wiaux, Jacques & Vandergheynst 2005;
Sanz et al. 2006; McEwen, Hobson & Lasenby 2006a), which
do not support the exact synthesis of a sampled signal from its
wavelet coefficients in practice. Consequently, cosmological anal-
yses based on these constructions were limited to the analyses of
wavelet coefficients; sampled signals on the sphere could not be ac-
curately recovered from processed wavelet coefficients. Alternative
discrete constructions based on the lifting scheme (Sweldens 1997)
were developed (Schröder & Sweldens 1995; Barreiro et al. 2000;
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Figure 3. Illustration of string map recovery. Under the string model, the CMB is comprised of a string-induced component (top left quadrant) and a Gaussian
inflationary background component (top right quadrant), yielding the observed CMB map (bottom right quadrant). For visualization purposes, in this simulation,
the string component is generated for a relatively large value of the string tension (Gμ = 2 × 10−6), which controls the amplitude of the string map. We invert
this process to recover an estimate of the input string component (bottom left quadrant). This is achieved by our hybrid wavelet-Bayesian analysis pipeline,
which estimates the posterior distribution of the string tension, the Bayesian evidence for strings and the mean-posterior string map. The same quadrant of each
map is displayed in each panel, rotated and reflected as required.

Figure 4. Directional scale-discretized wavelet with odd azimuthal sym-
metry for N = 4, j = 7, �max = 2048 and λ = 2. The wavelet is rotated from
the North pole to the equator for visualization purposes. The same wavelet
parameters are assumed when analysing cosmic string maps, although lower
j (i.e. smaller scales) are also considered. The wavelet is selected to match
the step-like structure of contributions to the CMB due to cosmic strings,
in order to yield a sparse representation of the string component in wavelet
space.

McEwen & Scaife 2008; McEwen, Wiaux & Eyers 2011), however
these do not necessarily lead to a stable basis (Sweldens 1997).

More recently, a number of exact discrete wavelet frameworks
on the sphere have been developed, with underlying continuous
representations and fast implementations that have been made
available publicly, including needlets (Narcowich, Petrushev &
Ward 2006; Marinucci et al. 2008; Baldi et al. 2009), directional
scale-discretized wavelets (Wiaux et al. 2008; Leistedt et al. 2013;
McEwen, Vandergheynst & Wiaux 2013) and the isotropic undeci-
mated and pyramidal wavelet transforms (Starck et al. 2006). Each
approach has also been extended to analyse spin functions on the
sphere (Geller et al. 2008; Geller, Lan & Marinucci 2009; Starck,
Moudden & Bobin 2009; Geller & Marinucci 2010, 2011; McEwen

et al. 2015b, 2014) and functions defined on the three-dimensional
ball formed by augmenting the sphere with the radial line (Lanusse,
Rassat & Starck 2012; Leistedt & McEwen 2012; McEwen & Leist-
edt 2013; Durastanti et al. 2014; Leistedt et al. 2015). Ridgelet and
curvelet wavelets on the sphere have also been constructed (Starck
et al. 2006; Chan et al. 2016; McEwen 2017).

In this work, we adopt directional scale-discretized wavelets
(Wiaux et al. 2008; Leistedt et al. 2013; McEwen et al. 2013;
McEwen et al. 2015b; McEwen, Durastanti & Wiaux 2016), which
are essentially the generalization of needlets (Narcowich et al. 2006;
Marinucci et al. 2008; Baldi et al. 2009) to directional wavelets
(McEwen et al. 2016). Directional scale-discretized wavelets have
recently been shown to satisfy quasi-exponential localization and
asymptotic uncorrelation properties similar to needlets (McEwen
et al. 2016) and consequently have excellent spatial localization
properties.

In the remainder of this section, we review directional scale-
discretized wavelets concisely; for further details, please see the
related literature (Wiaux et al. 2008; Leistedt et al. 2013; McEwen
et al. 2013; McEwen et al. 2015b; McEwen et al. 2016). The reader
not interested in the details may safely skip the following subsec-
tions and simply note the notation used to denote wavelet coeffi-
cients specified in equation (3).

2.1 Wavelet transform and inversion

The scale-discretized wavelet transform of a function f ∈ L2(S2)
on the sphere S

2 is defined by the directional convolution of f with
the wavelet � (j ) ∈ L2(S2). In order to perform directional, spherical
convolutions, it is necessary to rotate functions on the sphere. The
rotation operator Rρ is defined by

�jρ(ω) ≡ (Rρ�j )(ω) ≡ �j (R−1
ρ ω̂), (2)
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where Rρ is the three-dimensional rotation matrix corresponding
to Rρ . Spherical coordinates are denoted ω = (θ, ϕ) ∈ S

2 with co-
latitude θ ∈ [0, π] and longitude ϕ ∈ [0, 2π), where ω̂ denotes the
Cartesian vector corresponding to ω. Rotations are specified by
elements of the rotation group SO(3), parametrized by the Eu-
ler angles ρ = (α, β, γ ) ∈ SO(3), with α ∈ [0, 2π), β ∈ [0, π] and
γ ∈ [0, 2π). The scale-discretized wavelet transform on the sphere
then reads

W
f
jρ ≡ W

f
j (ρ) ≡ (f � �j )(ρ) ≡ 〈f , �jρ〉

=
∫

S2
d�(ω)f (ω)�∗

jρ(ω), (3)

where j denotes the wavelet scale, which encodes the angular local-
ization of the wavelet, d�(ω) = sin θ dθ dϕ is the usual rotation-
invariant measure on the sphere and ·∗ denotes complex conjugation.
The inner product of functions on the sphere is denoted 〈·, ·〉, while
the operator � denotes directional convolution on the sphere.

The wavelet transform of equation (3) thus probes directional
structure in the signal of interest f, where γ can be viewed as
the orientation about each point on the sphere (θ , ϕ) = (β, α).
Wavelet coefficient at scale j therefore live on the rotation group, i.e.
W

f
j ∈ L2(SO(3)). We adopt the shorthand notation W

f
jρ to denote

the wavelet coefficients of the signal f at scale j and position and
orientation ρ, in order to simplify subsequent statistical calculations.

The wavelet coefficients do not encode the low-frequency content
of the signal f; a scaling function is introduced for this purpose. The
scaling coefficients Sf ∈ L2(S2) are given by the convolution of f
with the axisymmetric scaling function � ∈ L2(S2) and read

Sf
ω ≡ Sf (ω) ≡ (f 	�)(ω) ≡ 〈f , �ω〉

=
∫

S2
d�(ω′)f (ω′)�∗

ω(ω′), (4)

where the rotated scaling function is defined by

�ω(ω′) ≡ (Rω�)(ω′) ≡ �(R−1
ω ω̂′), (5)

with Rω = R(ϕ,θ,0). The operator 	 denotes axisymmetric convo-
lution on the sphere. Note that the scaling coefficients live on the
sphere, and not the rotation group SO(3), since directional structure
of the low-frequency content of f is not typically of interest. We
adopt the shorthand notation Sf

ω to denote the scaling coefficients
of the signal f at position ω. In addition, we introduce the shorthand
notation Wf = W(f ) to represent the overall wavelet analysis of
f, i.e. including both wavelet and scaling coefficients.

Provided the wavelets and scaling function satisfy an admis-
sibility condition (see Section 2.2), the original signal f can be
synthesized exactly from its wavelet and scaling coefficients by

f (ω) = ∫
S2 d�(ω′)Sf

ω′�ω′ (ω) + ∑J
j=0

∫
SO(3) d�(ρ)Wf

jρ�jρ(ω),

(6)

where d�(ρ) = sin β dα dβ dγ is the usual invariant measure on
SO(3). We introduce the shorthand notation f = W−1(Wf ) to rep-
resent the synthesis of a signal from its wavelet and scaling coeffi-
cients.

We adopt the same convention as Wiaux et al. (2008) and
McEwen et al. (2016) for the wavelet scales j, with increasing j cor-
responding to larger angular scales, i.e. lower frequency content.2

2 Note that this differs to the convention adopted in Leistedt et al. (2013) and
McEwen et al. (2015b), where increasing j corresponds to smaller angular
scales and higher frequency content.

The maximum possible wavelet scale j is denoted by Jmax and is
set to ensure the wavelets probe the entire scale (frequency) range
(except zero) of the signal of interest, yielding Jmax = �logλ(�max)�,
where λ is a dilation parameter (see Wiaux et al. 2008; Leistedt
et al. 2013; McEwen et al. 2015b; McEwen et al. 2016). The max-
imum wavelet scale considered in a given analysis J may be freely
chosen, provided 0 ≤ J < Jmax. For J = Jmax, the wavelets probe the
entire frequency content of the signal of interest except its mean,
which is incorporated in the scaling coefficients.

2.2 Wavelet construction

For the original signal to be synthesized perfectly from its wavelet
and scaling coefficients through equation (6), the wavelets and scal-
ing function must satisfy the following admissibility property:

4π

2� + 1
|��0|2 + 8π2

2� + 1

J∑
j=J0

�∑
m=−�

|(�j )
�m

|2 = 1, ∀�, (7)

where ��0δm0 = 〈�, Y�m〉 and (� j)�m = 〈� j, Y�m〉 are the spherical
harmonic coefficients of � and � j, respectively, where δij for i, j ∈
Z denotes the Kronecker delta. The spherical harmonic functions
are denoted by Y�m ∈ L2(S2), with � ∈ N and m ∈ Z, |m| ≤ �.

Wavelets are defined in harmonic space in the separable form

(�j )
�m

≡
√

2� + 1

8π2
κj (�) ζ�m, (8)

in order to control their angular and directional localizations
separately, respectively through the kernel κj ∈ L2(R+) and di-
rectionality component ζ ∈ L2(S2), with harmonic coefficients
ζ �m = 〈ζ , Y�m〉. Without loss of generality, the directionality com-
ponent is normalized to impose

�∑
m=−�

|ζ�m|2 = 1, ∀�. (9)

An azimuthal bandlimit N is imposed on the directionality compo-
nent such that ζ �m = 0, ∀�, m with |m| ≥ N, which controls the
directional selectivity of the wavelet. Moreover, the wavelets are
constructed to exhibit odd (even) azimuthal symmetry for N − 1
odd (even). For further detail regarding the explicit construction of
the wavelet kernel and directionality component see e.g. McEwen
et al. (2016). An example of a scale-discretized wavelet on the
sphere is plotted in Fig. 4.

2.3 Computation

By appealing to sampling theorems on the sphere (e.g. McEwen &
Wiaux 2011) and rotation group (e.g. McEwen et al. 2015a), the
forward and inverse wavelet transforms of sampled signals can be
computed exactly in theory for bandlimited signals on the sphere,
i.e. signals with spherical harmonic coefficients f�m = 0, ∀� ≥ �max,
where f�m = 〈f, Y�m〉. The only error arising in numerical com-
putations is that due to the finite representation of floating point
numbers (indeed, numerical errors are found to be on the order of
machine precision; see e.g. McEwen et al. 2015b). In practice, many
real-world signals can be approximated accurately by bandlimited
signals. Furthermore, fast algorithms to compute the harmonic
transforms associated with sampling theorems on the sphere and
rotation group (e.g. McEwen & Wiaux 2011; McEwen et al. 2015a,
respectively) can be exploited to render forward and inverse scale-
discretized wavelet transforms computationally feasible for large
cosmological data sets (e.g. Planck maps).
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The scale-discretized wavelet transform on the sphere is im-
plemented in the S2LET code (Leistedt et al. 2013; McEwen
et al. 2015b). The core algorithms of S2LET are implemented in
C, while MATLAB, PYTHON and IDL interfaces are also provided.
Consequently, S2LET is able to handle very large harmonic ban-
dlimits, corresponding to data sets containing tens of millions of
pixels. S2LET3 is publicly available, and relies on the SSHT4 code
(McEwen & Wiaux 2011) to compute spherical harmonic trans-
forms, the SO35 code (McEwen et al. 2015a) to compute Wigner
transforms and the FFTW6 code to compute Fourier transforms. Note
that it also supports the analysis of data on the sphere defined in the
common HEALPIX7 (Górski et al. 2005) format. S2LET provides the
most recent and feature-rich implementation of scale-discretized
wavelets, however, development on this project and S2LET was con-
current, and here we therefore use the previous S2DW8 code (Wiaux
et al. 2008), which is functionally identical for the setting consid-
ered. S2DW is implemented in Fortran, and relies on the S29 code
(McEwen et al. 2007a; McEwen, Hobson & Lasenby 2008a) to
handle data defined on the sphere and FFTW to perform Fourier
transforms.

3 IN F E R E N C E O F C O S M I C S T R I N G M O D E L

While a cosmic string-induced component embedded in the CMB
will not be Gaussian, the statistical distribution of the pixels of a
cosmic string map nevertheless remains close to Gaussian. In Fig. 2
histograms of simulated inflationary- and string-induced CMB com-
ponents are plotted, in both pixel (Fig. 2a) and wavelet (Fig. 2b)
space. In pixel space, the distributions are similar. In wavelet space,
however, while the distribution of the inflationary CMB component
remains Gaussian (since the wavelet transform is linear), the dis-
tribution of the string-induced component is highly non-Gaussian.
The latter distribution is peaked sharply about zero, illustrating the
sparsifying nature of the wavelet transform for strings: the wavelet
coefficients of the string-induced CMB component are sparsely dis-
tributed in wavelet space, while the coefficients of the inflationary
CMB component are not.

We construct a hybrid wavelet-Bayesian framework to infer the
presence of cosmic strings from CMB temperature observations. By
constructing the statistical framework in wavelet space, where the
inflationary- and string-induced components have quite different
statistical properties, we exploit the sparseness of the wavelet rep-
resentation of the string signal to effectively determine the presence
and parameters of any such component.

In this section, we first describe the various models considered.
We then define the statistical distributions of the inflationary- and
string-induced CMB components and noise, before presenting the
framework for estimating the posterior distribution of the string
tension Gμ and for estimating the Bayesian evidence in order to
perform model selection.

3 http://www.s2let.org
4 http://www.spinsht.org
5 http://www.sothree.org
6 http://www.fftw.org
7 http://healpix.jpl.nasa.gov
8 http://www.s2dw.org
9 http://www.jasonmcewen.org/codes.html

Figure 5. Graphical Bayesian model Ms of the observed inflationary
(Gaussian) and string-induced (non-Gaussian) CMB components, repre-
sented in both wavelet and pixel spaces. Solid lines represent stochastic de-
pendencies, while dashed lines represent deterministic dependencies. The
string component is modelled by a GGD in wavelet space, while the in-
flationary and noise components are modelled by Gaussian distributions in
pixel space. The string component, Gaussian component and observed data
are denoted by s, g and d, respectively, while wavelet coefficients are de-
noted by W with superscript representing the relevant signal. The forward
and inverse wavelet transforms are represented by the shorthand notation
W and W−1, respectively. The GGDs modelling the wavelet coefficients of
the string component are defined by the string tension Gμ and the scale and
shape parameters ζ j and ξ j, respectively. The Gaussian component is defined
by the inflationary CMB and noise power spectra, C� and N�, respectively.

3.1 Models

In the presence of a subdominant contribution due to cosmic strings,
we model full-sky observational CMB data d as the sum of a string
component s, an inflationary Gaussian component c and noise n:

Ms : d = s + c + n. (10)

All signals are assumed to be zero mean, since we study the pertur-
bations of cosmological signals about their mean. We denote this
string model by Ms. The alternative (standard) model is denoted by
Mc and consists of an inflationary CMB component and noise only,
absent of any string component:

Mc : d = c + n, (11)

We work predominantly in wavelet space, where the inflationary-
and string-induced CMB components exhibit very different statis-
tical distributions. Since the wavelet transform is linear, the models
considered can be recast in wavelet space by, respectively,

Ms : Wd
jρ = Ws

jρ + Wc
jρ + Wn

jρ (12)

and

Mc : Wd
jρ = Wc

jρ + Wn
jρ, (13)

where Wd = W(d), Ws = W(s), Wc = W(c) and Wn = W(n)
are the wavelet coefficients of the observed CMB data, string com-
ponent, inflationary component and noise, respectively. Here, we
denote the wavelet coefficients for each scale j and rotation ρ sepa-
rately (hence the subscripts). Similar expressions hold for the scal-
ing coefficients.

A graphical representation of the string model Ms in both wavelet
and pixel space is shown in Fig. 5. The distributions modelling the
string component, inflationary component and noise are defined
subsequently. While some of the variables used in the model shown
in Fig. 5 have yet to be defined, it is nevertheless useful to present
the general model now, which can then be used as a reference as the
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details of the model and distributions are specified in the subsequent
subsections.

3.2 Statistical distributions

We determine the statistical distributions of the inflationary, noise
and string-induced CMB components in wavelet space. The first
two can be calculated analytically from an assumed power spectrum
(since they are Gaussian), whereas the latter must be learnt from a
string training simulation.

Since we determine these distributions in wavelet space, it is nec-
essary in the following derivations to relate the wavelet coefficients
of a signal to its spherical harmonic representation (e.g. McEwen
et al. 2007a):

Wd
jρ =

∞∑
�=0

�∑
m=−�

�∑
n=−�

d�m (�j )∗
�n

D�
mn(ρ), (14)

where d�m = 〈d, Y�m〉 and D�
mn ∈ L2(SO(3)) are the Wigner D-

functions. We adopt the shorthand notation
∑∞

�=0

∑�
m=−�

∑�
n=−� =∑

�mn henceforth and, assuming signals bandlimited at �max, trun-
cate sums over � to �max.

3.2.1 CMB

The inflationary CMB component is assumed to be a homogeneous
and isotropic Gaussian random field on the sphere defined by its
power spectrum C�:

E

[
c�mc∗

�′m′
]

= C� δ��′ δmm′ , (15)

where E[·] denotes expectation. The cosmological parameters defin-
ing the power spectrum C� are assumed fixed at concordance values
(Planck Collaboration XIII 2016), since the string contribution is
subdominant. Since the wavelet transform is linear, the wavelet co-
efficients of the inflationary CMB component are also Gaussian.
Their variance for scale j is

(σ c
j )2 = E

[
Wc

jρ Wc
jρ

∗
]

= E

[∑
�mn

D�
mn(ρ) c�m (�∗

j )
�n

∑
�′m′n′

D�′∗
m′n′ (ρ) c∗

�′m′ (�j )
�′n′

]

=
∑
�m

C� |(�j )
�m

|2, (16)

where we have used equation (14) and the Wigner property
(Varshalovich, Moskalev & Khersonskii 1989)∑

m

D�
mn(ρ)D�∗

mn′ (ρ) = δnn′ (17)

[for an alternative proof of equation (16), see McEwen et al. 2007b].
Consequently, the probability distribution of the wavelet coefficients
of the inflationary CMB component on scale j read:

Pc
j (Wc

jρ) = 1√
2π(σ c

j )2
exp

⎡
⎣−1

2

(
Wc

jρ

σ c
j

)2
⎤
⎦. (18)

We use P(·) to denote generic probability distributions; however,
when referring to a particular distribution we add appropriate su-
perscripts and subscripts. Although this notation is not strictly nec-
essary it improves the readability of the Bayesian analysis that
follows. As typically considered in statistical wavelet analyses we
assume wavelet coefficients are independent and do not include their

full covariance structure. We revisit the assumption of independence
later and introduce measures to account for this approximation.

3.2.2 Noise

Assuming Gaussian noise, we can include noise by simply modify-
ing the Gaussian inflationary component to include the inflationary
signal c and noise n:

g = c + n. (19)

The resulting term g is Gaussian distributed, since both c and n are
Gaussian distributed. For modelling simplicity, we assume homo-
geneous and isotropic noise defined by power spectrum N� such
that

E

[
g�mg∗

�′m′
]

= (C� + N�) δ��′ δmm′ . (20)

In practice, a beam b� and pixel window function p� may also be
incorporated, yielding

E

[
g�mg∗

�′m′
]

= (b2
�p

2
�C� + N�) δ��′ δmm′ . (21)

3.2.3 Cosmic strings

Since the cosmic string-induced CMB component is not Gaussian
and its map space distribution is not known a priori, it is not possible
to analytically determine its distribution in wavelet space. Hence,
we learn its distribution from a training simulated string map and
test the distribution on a separate testing simulated string map.

String maps simulated by the method of Ringeval & Bouchet
(2012) are shown in Fig. 6. As previously stated, simulating these
full-sky string maps at high resolution is extremely computationally
demanding, requiring hundreds of thousands of CPU hours. Thank-
fully, we require only two simulated string maps: one for training,
i.e. learning the statistical properties of string-induced CMB com-
ponents; and one for testing our framework.

We adopt a generalized Gaussian distribution (GGD) to model
the string-induced component in wavelet space and fit its parameters
from the training simulation. The GGD of wavelet coefficients given
a string tension Gμ is defined by

Ps
j (Ws

jρ | Gμ) = ξj

2Gμζj�(ξj
−1)

exp

⎛
⎝−

∣∣∣∣∣ Ws
jρ

Gμζj

∣∣∣∣∣
ξj

⎞
⎠, (22)

where ζ j and ξ j are scale and shape parameters, respectively (note
that the overall scale of the distribution is dependent on the string
tension and is given by Gμζ j at each scale) and �(·) denotes the
Gamma function. The GGD reduces to many common distributions
for various shape parameters ξ . Gaussian and Laplacian distribu-
tions are recovered for ξ = 2 and 1, respectively, and in the limit ξ

→ ∞, the uniform distribution is recovered. The shape parameter
can thus be considered as a measure of sparsity of the underlying
signal. Note that GGDs have been used to model wavelet coeffi-
cients previously (e.g. Simoncelli & Adelson 1996). Due to sta-
tistical isotropy, the parameters of the GGD modelling the string
contribution depend on wavelet scale j only and not the position or
orientation of wavelet coefficients ρ. For small scales, we expect
the distribution of wavelet coefficients of the string map to be sparse
in wavelet space, which we check by testing whether the shape of
the distribution is leptokurtic, i.e. if ξ j < 2.

We learn the shape and scale parameters of the GGD for the
wavelet coefficients of a string-induced CMB component by the
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Figure 6. Cosmic string-induced CMB anisotropies simulated by the
method of Ringeval & Bouchet (2012).

method of moments approach outlined in Hammond et al. (2009).
The variance and kurtosis of the GGD distributed wavelet coeffi-
cients of the string signal are given by, respectively,

(σ s
j )2 = (Gμ)2ζj

2�(3ξj
−1)

�(ξj
−1)

(23)

and

κs
j = �(5ξj

−1)�(ξj
−1)(

�(3ξj
−1)

)2 . (24)

We compute the variance and kurtosis of the string training map
and then solve these equations numerically to recover the scale and
shape parameters of the GGD describing the wavelet coefficients of
the string signal at each scale j. In practice, we train on the training
string map with a beam and pixel windowed function applied.

The distributions of the cosmic string maps are shown in Figs 7
and 8, while the estimated GGD shape parameters are listed in
Table 1. The fitted GGD distribution of the training map matches
the histogram of the testing map well for small scales (low j), indi-
cating that the learnt GGD accurately models the general statistical
properties of cosmic string included CMB maps. As the scale be-
comes larger (higher j), the match becomes less accurate due to
cosmic variance. The distributions are also highly leptokurtic for
small scales (low j), i.e. ξ j < 2, as apparent from the plots of the
distributions (Figs 7 and 8) and the fitted GGD shape parameters
listed in Table 1: the string map is indeed sparse in wavelet space,
as expected. As the scale increases, the distribution becomes less
leptokurtic, also as expected. We therefore consider wavelet co-

efficients up to and including scale j = 7 only in the subsequent
analysis, i.e. we set J = 7.

While we focus on inference in this article, as an aside we note
that once we have learnt the statistical properties of string maps, we
can use the learnt distribution to simulate realizations of string maps
for very low computational cost. However, in the current approach
to training we do not learn the full covariance properties of the
string components in wavelet space. We leave the development of
a computationally efficient approach to simulating high-resolution,
full-sky cosmic string-induced CMB maps to future work.

3.3 String tension estimation

In this section, we derive the posterior distribution for the string
tension Gμ under the string model Ms. By Bayes theorem, the string
tension posterior P(Gμ | Wd) is related to the likelihood P(Wd | Gμ)
by

P(Gμ | Wd ) = P(Wd | Gμ) P(Gμ)

P(Wd )
∝ P(Wd | Gμ) P(Gμ), (25)

where P(Gμ) is the prior distribution for the string tension. For
now, we ignore the normalizing denominator P(Wd) (the Bayesian
evidence), which we return to in the following section. Recall that
Wd are the wavelet coefficients of the observed CMB data.

For each wavelet coefficient Wd
jρ at scale j and position and

orientation ρ, the likelihood can be calculated by

P(Wd
jρ | Gμ) = P(Ws

jρ + W
g
jρ | Gμ) (26)

=
∫

R

dWs
jρ Pg

j (Wd
jρ − Ws

jρ) Ps
j (Ws

jρ | Gμ), (27)

where W
g
jρ are the wavelet coefficients of the Gaussian component

g, which includes the inflationary CMB component and noise. The
distributions comprising the integrand of equation (27) are precisely
those described in Section 3.2, which we determine analytically or
learn from a simulated string map. To compute the overall likelihood
of the data, for speed of processing we assume each wavelet coef-
ficient is independent, in which case the overall likelihood reads:

P(Wd | Gμ) =
∏
j,ρ

P(Wd
jρ | Gμ). (28)

For numerical purposes, we compute the log-likelihood, given by

ln P(Wd | Gμ) =
∑
j,ρ

ln P(Wd
jρ | Gμ). (29)

The assumption of independence of wavelet coefficients is ap-
proximate. Nevertheless, the covariance of wavelet coefficients de-
cays rapidly with spatial separation (relative to the spatial size of
the wavelet considered) and is zero for non-adjacent scales (i.e. for
scales j and j′ such that |j − j′| ≥ 2). We readdress the assumption
of independence later and introduce measures to account for this
approximation.

In practice, to compute the posterior distribution, it is necessary to
first evaluate the likelihood for each individual wavelet coefficient
by equation (27), before combining these terms to compute the
overall likelihood for the data by equation (28) or (29). In order
to avoid recalculating integrals for identical (or similar) values of
Wd

jρ , we pre-compute look-up tables (LUTs) for equation (27),
storing the mapping from Wd

jρ to P(Wd
jρ | Gμ) for each j. When

evaluating the likelihood of a given data set, we linearly interpolate
the wavelet coefficients on to the LUT grid. These LUTs are plotted
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Figure 7. Distribution of the cosmic string-induced CMB component in wavelet space, for each wavelet scale j (for parameters �max = 2048, N = 4 and
λ = 2). The GGD distribution fitted to the training map is shown by the solid red curve, while the raw distribution of the testing map is shown by the solid blue
histogram. The fitted GGD distribution of the training map matches the histogram of the testing map well for small scales (low j), indicating that the learnt
GGD accurately models the general statistical properties of cosmic string included CMB maps. As the scale becomes larger (higher j), the match becomes less
accurate due to cosmic variance. The distributions are also highly leptokurtic for small scales (low j), indicating that the string map is indeed sparse in wavelet
space, as expected. As the scale increases, the distribution becomes less leptokurtic, also as expected. For these reasons, we consider wavelet coefficients up to
and including scale j = 7 only in the subsequent analysis.

in Fig. 9. Since the distributions Pg
j and Ps

j are properly normalized,
the likelihood P(Wd

jρ | Gμ) for a given Gμ is also a normalized
probability distribution and should integrate to unity. To ensure the
quadrature used to evaluate equation (27) is accurate, we check
that the pre-computed distributions P(Wd

jρ | Gμ) integrate to unity
(using the trapezium rule), which is indeed the case provided a
sufficient number of samples is used to evaluate the integral.

3.4 String model comparison

To ascertain the overall evidence for cosmic strings, we compare
the Bayesian evidence of the string mode Ms, which includes string-
and inflationary-induced CMB components, to the evidence of the
standard inflationary model Mc. The Bayesian evidence of the string
model is given by

Es = P(Wd | Ms) =
∫

R

d(Gμ) P(Wd | Gμ, Ms) P(Gμ | Ms),

(30)

where now we make the dependence on the model explicit. The
Bayesian evidence of the CMB model is given by

Ec = P(Wd | Mc) =
∏
j,ρ

Pg
j (Wd

jρ). (31)

For numerical purposes, we compute the log evidence, given by

ln Ec = ln P(Wd | Mc) =
∑
j,ρ

ln Pg
j (Wd

jρ). (32)

In the absence of any prior information favouring either model,
the ratio of the model posterior probabilities is given by the ratio of
the Bayesian evidences:

P(Ms | Wd )

P(Mc | Wd )
= Es

Ec
. (33)

We compute the ratio of evidences to determine the model favoured
by the data. In practice, we compute the difference in log evidence
(also called the Bayes factor):

� ln E = ln(Es/Ec) = ln Es − ln Ec. (34)
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Figure 8. Same as Fig. 7, but plotted on a log10 scale.

Table 1. GGD shape parameter ξ j fitted
to the testing string map. As expected the
fitted GGD distributions are highly lep-
tokurtic for small scales (low j), with GGD
shape parameter ξ j < 2, due to the sparse
representation of the string-induced CMB
component in wavelet space.

Wavelet scale j GGD shape ξ j

0 0.94
1 1.08
2 1.40
3 1.69
4 1.68
5 1.79
6 1.91
7 1.76
8 1.84
9 1.80
10 2.57

The Jeffreys scale (Jeffreys 1961) is often used as a rule of
thumb when comparing models via their Bayes factor. While we
caution against using the Jeffreys scale as a strict test to clas-
sify models (since the boundaries of the scale are somewhat ar-
bitrary), it can nevertheless be useful to gain some intuition for
those not familiar with Bayesian model selection. The log-Bayes

factor �ln E = ln (E(1)/E(2)) represents the degree by which model
M(1) is favoured over model M(2), assuming the models are equally
likely a priori. On the Jeffreys scale log-Bayes factors are given the
following interpretation: 0 ≤ �lnE < 1 is regarded as inconclusive;
1 ≤ �lnE < 2.5 as significant; 2.5 ≤ �lnE < 5 as strong and �lnE
≥ 5 as conclusive (without loss of generality we have assumed E1

≥ E2). For reference, a log-Bayes factor of 2.5 corresponds to odds
of approximately 1 in 12, while a factor of 5 corresponds to odds of
approximately 1 in 150.

4 ESTI MATI ON O F C OSMI C STRI NG MAPS

In addition to estimating the evidence for the cosmic string model
and the posterior distribution of the string tension, we also recover
a direct estimate of the string-induced CMB component itself. To
estimate the string contribution at the map level, we develop a
Bayesian estimation approach in wavelet space, generalizing the
technique described in Hammond et al. (2009) from a planar region
to the spherical full-sky setting. We first describe the string map
estimation technique, before examining its properties as a Bayesian
thresholding approach to denoise the inflationary CMB component
from the observed data.

4.1 String map estimation

Our inference of the wavelet coefficients of the underlying string
map, and equivalently the string map itself, is encoded in the
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Figure 9. LUTs to pre-compute the mapping Wd
jρ to P(Wd

jρ | Gμ) of equation (27) for each j. Pre-computing LUTs avoid recalculating integrals for identical

(or similar) values of Wd
jρ when computing the posterior distribution of the string tension. The distributions P(Wd

jρ | Gμ) are shown for different values of Gμ by
the light blue lines. For comparison, the Gaussian CMB distribution Pc

j (Wc
jρ ) is shown by the heavy red line. As Gμ is reduced towards zero, the distributions

P(Wd
jρ | Gμ) approach Pc

j (Wc
jρ ) (the light blue curves darken and approach the heavy red curve). The LUTs are normalized probability distributions and

integrate to unity. These plots are created using the testing string map and parameters �max = 2048, N = 4, J = 7 and λ = 2.

posterior probability distribution P(Ws
jρ | Wd ). Various estimators

can be considered to recover the wavelet coefficients of string map
from their posterior distribution. We estimate the wavelet coeffi-
cients of the string map from the mean of the posterior distribution,
which can be computed by

W
s

jρ =
∫

R

dWs
jρ Ws

jρ P(Ws
jρ | Wd ) (35)

=
∫

R

dWs
jρ Ws

jρ

∫
R

d(Gμ) P(Ws
jρ | Wd, Gμ) P(Gμ | Wd ) (36)

=
∫

R

d(Gμ) P(Gμ | d) W
s

jρ(Gμ), (37)

where

W
s

jρ(Gμ) =
∫

R

dWs
jρ Ws

jρ P(Ws
jρ | Wd

jρ, Gμ) (38)

=
∫

R
dWs

jρ Ws
jρ P(Wd

jρ | Ws
jρ, Gμ) P(Ws

jρ | Gμ)

P(Wd
jρ | Gμ)

(39)

=
∫

R
dWs

jρ Ws
jρ Pg

j (Wd
jρ − Ws

jρ | Gμ) Ps
j (Ws

jρ | Gμ)

P(Wd
jρ | Gμ)

. (40)

Note that we replace P(Gμ | Wd) with P(Gμ | d) in equation (37)
(since there is a one-to-one relationship between a map and its
wavelet coefficients) and appeal to Bayes theorem in equation (39).
To summarize, for each Gμ, we compute a denoised set of wavelet
coefficients W

s

jρ(Gμ) by equation (40). We then combine these,
taking the posterior distribution of the string tension P(Gμ | d) into
account, to compute the overall denoised set of wavelet coefficients
W

s

jρ by equation (37). The denominator of equation (40) is given
by equation (27) for which LUTs have been pre-computed already.

Similarly, LUTs for the numerator are pre-computed for each j.
Since we consider zero-mean signals, these LUTs should integrate
to zero, which indeed they do provided a sufficient number of sam-
ples is used to evaluate the integrals. As we assume independence
of the wavelet coefficients, wavelet coefficients are denoised point-
wise.

Once we have recovered the denoised wavelet coefficients, a
string map can be recovered through an inverse wavelet transform:

s = W−1
(
W

s
)
. (41)

Alternatively, string maps could also be estimated for each Gμ

through an inverse wavelet transform:

s(Gμ) = W−1
(
W

s
(Gμ)

)
. (42)

Since the wavelet transform is linear, the overall string map could
then be recovered by

s =
∫

R

d(Gμ) P(Gμ | d) s(Gμ). (43)

While we use the string tension posterior distribution P(Gμ | d)
estimated in wavelet space by the approach outlined in Section 3.3,
one is free to substitute a posterior distribution estimated by al-
ternative methods. The resulting recovered string maps could be
considered as a pre-processed input to other map-based methods
for estimating the string tension from the non-Gaussian structure of
the string-induced CMB component, such as edge detection (e.g.
Lo & Wright 2005; Amsel et al. 2008; Stewart & Branden-
berger 2009; Danos & Brandenberger 2010). The enhanced string
component and reduced background is likely to boost the effective-
ness of subsequent string tension estimation.

An estimate of the variance of wavelet coefficients of the string
component could also be performed in order to provide a measure of
the accuracy of the recovered string-induced component. For this to
be most useful, it would be necessary to express the variance in map
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Figure 10. Bayesian thresholding functions for each wavelet scale j. Each curve in a given panel shows a different value of Gμ, with Gμ approaching zero as
the shade of the curve darkens. As Gμ is reduced the amplitude of the string contribution is reduced relative to the inflationary component and the thresholding
curves approach zero, as expected. As the wavelet scale j increases, larger scale features are probed by the wavelet and the thresholding functions become more
linear, since the statistical distributions of the string and inflationary CMB components become more similar (see the text for further discussion).

space, which could be computed by an inverse wavelet transform
with �jρ and �ω′ substituted by |�jρ |2 and |�ω′ |2, respectively (for
a related discussion see Rogers et al. 2016a). We leave this to future
work.

4.2 Bayesian thresholding

The hybrid wavelet-Bayesian string map estimation technique out-
lined in Section 4.1 can be viewed as a Bayesian thresholding ap-
proach to denoise the observed data. The estimation of the wavelet
coefficients of the string signal by equation (40) can be viewed as a
mapping from the wavelet coefficients of the data Wd

jρ to the esti-

mated string signal W
s

jρ(Gμ) for a given Gμ. One then marginalizes
over the prior distribution for Gμ by equation (37). The thresholding
mapping functions defined by equation (40) are plotted in Fig. 10.

As the wavelet scale j increases larger scale features are probed,
for which the string distribution in wavelet space becomes less lep-
tokurtic (as shown in Table 1), i.e. more Gaussian. Consequently,
the thresholding functions become more linear as it becomes more
difficult to distinguish the string and inflationary CMB distribu-
tions. For the small scales, corresponding to low j, the thresholding
functions are less linear, with the energy in large coefficients more
likely to be retained, since these are more likely due to the string
component, while the energy of small coefficients is more likely to
be curtailed.

For each wavelet scale j, curves are plotted for different values of
Gμ, with Gμ approaching zero as the shade of the curve darkens.
As Gμ is reduced, the amplitude of the string component is reduced
relative to the inflationary component and the thresholding curves
approach zero, as expected.

5 SI M U L ATI O N S A N D R E S U LTS

In this section, we demonstrate the application of our wavelet-
Bayesian framework for cosmic string inference to simulated Planck

observations. We do not optimize the parameters of the analysis and
consider the standard dyadic wavelet scaling (i.e. λ = 2). Alternative
wavelet scalings, like that considered in Rogers et al. (2016a,b), are
likely to improve performance. The application to Planck data and
the optimization of the parameters of the method is left to future
work. We first describe the CMB simulations performed, before
presenting results from applying the framework outlined previously
to these simulations for differing values of Gμ. We show results
estimating the posterior distribution of the string tension, comparing
the string model Ms with the standard inflationary model Mc, and
recovering maps of the string-induced CMB component.

5.1 Simulations

Our simulations model idealized observations of combined string-
induced and inflationary CMB skies by the Planck satellite’s
143 GHz detectors, making heavy use of the S2 code. As high-
resolution, full-sky string simulations are computationally chal-
lenging to produce (see Section 3.2.3), we base all string simu-
lations on the single testing string simulation (Fig. 6b), smoothing
with a 7.3 arcmin Gaussian beam and rescaling by the appropri-
ate T0Gμ (assuming the mean CMB temperature of T0 = 2.725 K,
Mather et al. 1999). We do not touch the training string simulation
(Fig. 6a), since this was used to fit the GGD distributions mod-
elling string-induced CMB components. We model the CMB and
noise as pure Gaussian random fields and hence draw realizations
directly from their combined power spectrum, using a bandlimit
of �max = 2500. We calculate the CMB power spectrum using
CAMB10 (Lewis, Challinor & Lasenby 2000), assuming the best-
fitting cosmology from Planck’s analysis of a compilation of CMB,
lensing, baryon acoustic oscillation, supernova and expansion data
sets (Planck Collaboration XIII 2016). To create the final power

10 http://camb.info
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Figure 11. Simulated CMB maps with and without a string-induced com-
ponent. Panel (a) includes an inflationary CMB contribution only, whereas
panel (b) includes an inflationary contribution and the string-induced con-
tribution shown in Fig. 6(b), scaled to Gμ = 5 × 10−7. It is not possible to
determine the presence of the string-induced component by eye.

spectrum, we multiply the CMB power spectrum by the instrumen-
tal beam and HEALPIX window function, and then add white noise
at 4.3 μK per beam-sized pixel (the final sensitivity of Planck’s
143 GHz channel). The resulting power spectra are shown in Fig. 1.
All maps are simulated at HEALPIX resolution Nside = 2048.

Examples of simulated CMB maps, with and without a string-
induced component, are plotted in Fig. 11 for a string tension of
Gμ = 5 × 10−7. It is not possible to determine the presence cosmic
strings by eye.

5.2 String tension estimation

We perform the analysis outlined in Section 3.3 on a number of
simulations with embedded string contributions of varying string
tension Gμ to estimate the posterior distribution of the string ten-
sion.

In the framework presented in Section 3.3, we assume wavelet
coefficients are independent. In practice, wavelet coefficients are
not independent, but the covariance of wavelet coefficients does
decay rapidly with spatial separation (relative to the spatial size
of the wavelet considered) and is identically zero for non-adjacent
scales (i.e. for scales j and j′ such that |j − j′| ≥ 2). To better ac-
count for the covariance of wavelet coefficients, we fold into the
analysis only those wavelet coefficients that are essentially uncor-
related. To achieve this, we compute a correlation length for each
wavelet scale, which we define by the fifth zero crossing of the the-
oretical wavelet covariance when assuming an inflationary CMB

power spectrum (for the derivation of the theoretical wavelet co-
variance, see McEwen et al. 2016). We then downsample wavelet
coefficients to the resolution defined by the correlation length and
use the resulting downsampled maps of wavelet coefficients, for
non-adjacent wavelet scales j only, when computing the full log
posterior by equation (29).

Here and subsequently we consider a dyadic wavelet scaling with
λ = 2, as discussed previously. We consider a maximum wavelet
scale of J = 7, as also discussed previously, since for these wavelet
scales the GGD modelling the string component is highly leptokur-
tic (see Section 3.2.3). For the string tension Gμ, we assume a
uniform prior over the domain (1 × 10−10 and 4 × 10−6), sam-
pled with 200 uniformly spaced gridpoints. When constructing the
LUTs, we evaluate tables sampled over a domain of 1000 uniformly
spaced gridpoints for the wavelet coefficients of the data and use
9000 uniformly spaced gridpoints for the string wavelet coefficients
when computing integrals (by the trapezium rule). The limits of the
coefficient ranges are specified by the minimum and maximum val-
ues of the wavelet coefficients of the data. As discussed, we perform
a number of tests to ensure the LUTs are evaluated accurately.

Since the string tension is a scaling parameter, an uninformative
(Jeffreys) prior for the string tension would be a log-uniform prior.
However, for this first work, we instead choose to adopt a uniform
prior so that the string tension posterior and likelihoods correspond,
which can be useful for gaining further intuition regarding the ef-
fectiveness of the method. By using a uniform prior, the impact
of alternative priors can be approximately inferred by a kind of
‘posterior-by-eye’ approach. In future, for applications to data, a
log-uniform prior or indeed other priors can be considered.

The estimated posterior distributions are shown in Fig. 12 for a
representative subset of the ground truth string tension values used
in generating the simulated data. The full set of string tension values
considered is shown in the first column of Table 2. An estimate of
Gμ and the corresponding error, for each simulation, is recovered
from the mean and the standard deviation of the posterior distri-
bution and also shown in Table 2. The ground truth string tension
values used to embed the string-induced CMB component in the
simulated data are recovered accurately above ∼5 × 10−7. Below
this approximate transition value, the recovered estimates are biased
high, likely due to unmodelled residual correlations, indicating the
limit of the sensitivity of this unoptimized method.

5.3 String model comparison

For the same set of simulations, we compute the Bayesian evidence
ratio of the string model Ms and standard inflationary model Mc,
performing the calculation outlined in Section 3.4. Again, we fold
into the analysis only those wavelet coefficients that are essentially
uncorrelated, following the approach outlined in Section 5.2.

The computed evidence ratios are shown in Table 2, where a
positive value favours the string model Ms over the standard in-
flationary model Mc. For values of the string tension Gμ greater
than ∼5 × 10−7, the string model is preferred. Interestingly, this
is the same approximate transition value of Gμ as found for the
estimation of the string tension in Section 5.2, further confirming
the sensitivity of the (unoptimized) method for statistical inference.

5.4 String map recovery

While we have examined the effectiveness of our wavelet-Bayesian
method for statistical inference in the previous subsections, a sig-
nificant advantage of our approach is the ability to also recover
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Figure 12. Posterior distributions of the string tension Gμ recovered from simulations. Each panel shows the recovered posterior distribution for a different
ground truth value of Gμ as a solid blue curve; the ground truth value of Gμ is indicated by a vertical red dashed line. The ground truth value of Gμ is estimated
accurately above ∼5 × 10−7. For lower string tensions, the posterior distribution is biased high, illustrating the sensitivity of the (unoptimized) method.

Table 2. String tension values considered in simulations, with re-
covered estimates and corresponding Bayesian evidence ratio (pos-
itive evidence favours the string model Ms). The ground truth string
tension is recovered accurately above ∼5 × 10−7, but is biased high
below this transition region. The Bayesian evidence ratio favours
the string model also above ∼5 × 10−7, but favours the standard
inflationary model below this transition, illustrating the sensitivity
of the (unoptimized) method.

Gμ truth/10−7 Gμ estimate/10−7 Evidence ratio (loge)

30.0 29.58 ± 0.45 2 020
20.0 19.60 ± 0.47 563
10.0 9.90 ± 0.58 51.4
9.00 8.97 ± 0.61 34.6
8.00 8.06 ± 0.65 21.9
7.00 7.18 ± 0.69 12.5
6.00 6.36 ± 0.73 5.88
5.00 5.63 ± 0.75 1.19
4.00 5.06 ± 0.75 −1.86
3.00 4.66 ± 0.73 −3.87

estimates of any embedded string-induced CMB component at the
map level. For the same set of simulations, we recover estimated
string maps following the calculations outlined in Section 4.

Maps of the recovered string-induced CMB component are illus-
trated in Fig. 13. String maps are recovered well for large values of
Gμ. As Gμ is reduced, the fidelity of the recovered maps is reduced
as small-scale features are washed out.

To assess the performance of the recovery of string maps quanti-
tatively we plot in Fig. 14 the root-mean-squared (rms) error and the
signal-to-noise ratio (S/N) to quantify the error between the recov-

ered string map and the ground truth string map. The S/N is defined
as the ratio of the rms value of the ground truth string map to the rms
error. We compute these error metrics for the simulations performed
with varying values of the string tension Gμ. For comparison, re-
sults are also shown when not directly estimating the string-induced
component. In this case, we simply consider the residuals between
the observed data and the ground truth string maps. The rms error
is then simply given by the rms of the inflationary CMB component
and noise, hence the constant dashed blue curve in Fig. 14(a). As
Gμ is reduced, though it is difficult to recover small-scale string
features (as shown in Fig. 13), the rms error of the estimated string
components is nevertheless reduced: by greater than 200 μK for the
lowest values of Gμ considered. From the S/N plotted in Fig. 14(b),
it is clear that the relative improvement provided by the string es-
timation approach is reasonably constant over much of the domain
considered.

Recall that, as discussed in Section 4.1, in order to recover the
string-induced CMB component a posterior distribution for the
string tension is required. Here, we adopt the posterior distribu-
tions recovered in Section 5.2 and shown in Fig. 12; however, if an
alternative method provides a better estimate of the posterior distri-
bution, then the alternative posterior distribution can be substituted.

6 C O N C L U S I O N S

Cosmic strings are a well-motivated extension to the standard
cosmological model and could induce a subdominant component
in the anisotropies of the CMB. Detecting such a component
would provide a direct probe of corresponding symmetry-breaking
phase transitions in the early Universe at very high-energy scales.
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Figure 13. Recovered string-induced CMB maps for various ground truth values of the string tension Gμ. Ground truth maps are shown on the left and
recovered maps on the right. String-induced CMB contributions are recovered well for large values of Gμ. As Gμ is reduced, the fidelity of the recovered maps
is reduced as small-scale features are washed out.
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Figure 14. Error metrics quantifying the difference between the recov-
ered string-induced CMB component and the ground truth map (solid red
curve). For comparison, differences without estimating the string-induced
component are also shown (dashed blue curve).

However, due to the weak nature of any string component its detec-
tion presents a significant observational challenge.

We present a hybrid wavelet-Bayesian framework for cosmic
string inference, constructing a Bayesian analysis in wavelet space
where the string-induced CMB component has very different statis-
tical properties to the inflationary component. We learn and exploit
the complex non-Gaussian structure of string-induced CMB con-
tributions, rather than considering (insufficient) summary statistics
like many alternative methods (e.g. the kurtosis), for which the
origin of any non-Gaussian component cannot be rigorously de-
termined. Our approach allows the full posterior distribution of
the string tension to be estimated, from which a best estimate of
the string tension and an associated error can be computed. The
Bayesian evidence ratio comparing the string model, including an
inflationary component and a subdominant string-induced compo-
nent, and the standard inflationary model can also be computed.
Moreover, it is also possible to recover an estimate of the string-
induced component in the CMB at the map level.

We demonstrate the application of our wavelet-Bayesian frame-
work and evaluate its performance using idealized simulations of
CMB observations made by the Planck satellite, where a string
component is embedded for a range of values of the string tension
Gμ. For values of the string tension Gμ above ∼5 × 10−7, we
recover accurate estimates of its posterior distribution, which can
be used to provide accurate point estimates of the string tension
and associated error. The Bayesian evidence values computed also
correctly favour the string model for values of the string tension Gμ

above ∼5 × 10−7, further highlighting the sensitivity of the method.
The performance of our approach compares favourably with current

constraints obtained using the same string simulations (that obtain
the constraint Gμ < 7.8 × 10−7; Planck Collaboration XXV 2014)
and, moreover, is based on a principled statistical framework. A
more robust and principled analysis is inevitably more conservative
than less well-motivated alternatives but, nevertheless, we find our
method generally compares favourable with other map-based tech-
niques. While we consider slightly idealized Planck simulations, we
have not yet optimized the parameters of the analysis (alternative
wavelet scalings, for example are likely to improve performance;
cf. Rogers et al. 2016a,b).

We find that the embedded string maps are recovered accurately
for large values of the string tension Gμ. As Gμ is reduced, small-
scale features in the recovered string maps are washed out, but the
rms error of the recovered maps is nevertheless reduced consid-
erably. While maps of the string-induced CMB component are of
interest in their own right, they can also be used as pre-processed
inputs for alternative techniques to estimate the string tension from
the non-Gaussian structure of the string-induced CMB component,
such as computing the gradient. We leave post-processing of the
recovered string maps for further work.

This is one of many areas to be considered in future work. First,
more realistic Planck simulations will be considered, along with a
mask to remove foreground emission (masking can be integrated
in the wavelet analysis in a straightforward manner, following the
approach of, e.g., McEwen et al. 2005, 2007b; Leistedt et al. 2017).
Second, the parameters of the analysis will be optimized for Planck
observations (cf. Rogers et al. 2016a,b). Third, the steerability of
scale-discretized wavelets will be exploited to provide more ac-
curate inference when computing the posterior distribution of the
string tension and the Bayesian evidence (cf. Planck Collaboration
XXV 2014). Fourth, an estimate of the standard deviation of the re-
covered string map will be developed to characterize its accuracy, as
outlined in Section 4.1. Fifth, techniques will be developed to better
model the full covariance structure of signals in wavelet space.

Our framework will in future be applied to observational data
from Planck and other CMB experiments to provide constraints on
the string tension that are based on a principled statistical analysis
of the non-Gaussian structure of string-induced CMB contributions.
While we focus in this article on cosmic strings, the framework
can also be adapted to other settings, such as other components
embedded in the CMB.
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McEwen J. D., Büttner M., Leistedt B., Peiris H. V., Wiaux Y., 2015a, IEEE
Signal Process. Lett., 22, 2425
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