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Abstract
A simplified model of a stochastic neural network is

considered, being a system of a large number of identi-
cal excitable FitzHugh-Nagumo oscillators coupled via
the mean field. The possibility to control the global dy-
namics of this network is investigated. The control tool
being probed is Pyrgas delayed feedback constructed
and applied through the mean field. It is shown that one
can to destroy or diminish stochastic synchronization
in a partially synchronized network by a weak delayed
feedback under the appropriate choice of delay.
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1 Introduction
We consider the collective behavior of a network of

excitable stochastic units coupled through the mean
field. Each network element is represented by the
FitzHugh-Nagumo system in the excitable regime un-
der the influence of noise, which is a paradigmatic
model of a single excitable unit (Lindner et al., 2004).
This system serves as a rough model of a neural net-
work. It has been earlier shown (Zaks et al., 2005)
that such a network is capable of demonstrating various
kinds of collective behavior: from non-synchronized
independently spiking units, through a few distinct
stages when spiking of different units is synchronized
only partially, to the perfectly synchronized network.
The detection of different stages of synchronization
is possible through the mean field, which demon-
strates periodic or chaotic small oscillations around
the only fixed point in the absence of synchroniza-
tion, or periodic or aperiodic spiking. The effect of
synchronization in a real neural network is two-fold.
On the one hand, synchronization is believed to help
better processing of information and is thus advanta-
geous (Samonds et al., 2004; Benucci et al., 2004).
On the other hand, synchronization is suggested to

be responsible for inducing a regular rhythmic activ-
ity in the brain, which is associated with Parkinson’s
disease, essential tremor and epilepsy (Dreifuss and
et al, 1981; Tass, 2002; Tass et al., 1998; Grosse et
al., 2002). With this, it remains an important clini-
cal challenge to develop an efficient control technique
with the ability to manipulate the neural synchrony. Re-
cently, a number of methods have been proposed for
the suppression of synchrony of the arrays of coupled
oscillators in which oscillations are self-sustained, i.e.
exist regardless of the applied noise (Rosenblum and
Pikovsky, 2004; Popovych et al., 2005). The purpose
of this paper is to demonstrate the possibility to ma-
nipulate the properties of the collective behavior of a
network of units in which there is no dynamics without
external perturbation, and any oscillations are induced
merely by external sources of random noise.

2 Stochastic excitable network with delayed feed-
back

The control technique being probed is the Pyragas de-
layed feedback (Pyragas, 1992; Pyragas, 1995). The
controlling signal is constructed from the macroscopic
mean field of the network, and the same signal is ap-
plied to all units. The model equations read (Patidar et
al., 2009):

εẋi = xi − x3
i

3
− yi + γ(MX − xi), (1)

ẏi = xi + a +
√

2Tξi(t) + K(MY (t− τ)−MY (t)),

MX =
1
N

N∑

i=1

xi, MY =
1
N

N∑

i=1

yi.

Here, N is the total number of units in the network;
parameters a = 1.05 and ε = 0.01 are fixed to en-
sure excitability of each unit; ξi(t) is Gaussian white
noise with zero mean and unity variance, and the
noise sources in different elements are uncorrelated, i.e.
ξi(t)ξj(t + s) = δijδ(s), where δij is Kronecker delta
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Figure 1. Phase portraits and realizations of the mean field of
Eqs. (1) without feedback at γ = 0.1: (a,b) non-synchronous spik-
ing with chaotic subthreshold mean field at T = 0.00027; (c,d)
partially synchronous spiking with chaotic superthreshold mean filed
at T = 0.00028.

and δ(s) is Dirac delta-function. T is the noise inten-
sity which is the same in all units. Coupling between
the units is realized through the mean field, when each
unit experiences the same averaged input MX(t) from
the rest of the network with the coupling strength γ. To
allow for direct comparison of the effects of coupling
and of the feedback with those in the earlier works,
the network is coupled through MX(t) in the first of
Eqs. (1) like in (Zaks et al., 2005), while the delayed
feedback K(MY (t−τ)−MY (t)) is applied in the sec-
ond of Eqs. (1) like in (Janson et al., 2004; Balanov et
al., 2004). In the above, τ is the feedback delay and K
is the feedback strength. There are two possible kinds
of chaotic behavior of the mean field: those related to
non-synchronous spiking in the network and those re-
lated to partially synchronized units. At γ = 0.1 these
regimes can be observed e.g. at T = 0.00027 and at
T = 0.00028, respectively (see Fig. 1).
We switch the delayed feedback on, fix its strength at

K = 0.1 and examine the response of the network as
a function of τ in the original states at T = 0.00027
and at T = 0.00028 with γ = 0.1. Eqs. (1) are numer-
ically integrated with N = 10000 and the dynamics of
the ensemble averages MX and MY are studied. The
collective response is characterized by the average in-
terspike interval T and the amplitude A of the mean
field MX and is illustrated in Fig. 2.
One can see that where initially the network was

desynchronized (T = 0.00027 (a,b)), there is a range
of τ values at which the feedback is capable of induc-
ing synchronization. The latter is detected by the fi-
nite value of T , as opposed to the ifinitely large value
when the mean field does not spike, and by the large
amplitude A. The domains of synchronous spiking
are shown as patterned areas in Fig. 2. At the same
time, where the network was initially partially synchro-
nized, (T = 0.00028 (c,d)), there are ranges of τ at
which synchronization is suppressed (infinitely large
〈T 〉). One can see that inside the domains of synchro-
nization the time scale of the mean field oscillations
depend on the value of τ and thus can be controlled by
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Figure 2. Mean interspike intervals 〈T 〉 and mean spiking am-
plitudes A as functions of delay τ as the feedback is applied with
γ = 0.1 when the original states were as illustrated by Fig. 1: (a,b)
T = 0.00027 (c,d) T = 0.00028.
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Figure 3. Mean spiking frequency as a function of feedback
strength K and delay τ . Without feedback the system demon-
strated partial synchronization with chaotically spiking mean field
at T = 0.00028 and γ = 0.1.

the feedback.
It is interesting to examine to the effect of the feed-

back on the full range of the feedback strength K. Con-
sider a partially synchronized network at γ = 0.1 and
T = 0.00028 and apply the delayed feedback to it. In
Fig. 3 one can see the mean spiking frequency 1/〈T 〉 as
a function of K and τ shown by the tint of grey color.
Inside black regions the spiking frequency is zero, and
therefore there is no synchronization. Interestingly, the
synchrony suppression can be achieved here at the tiny
values of K if τ is close to 0.8. It is also worth noting
that outside the full suppression regions the spiking fre-
quency varies considerably, which provides the room
for the time scale manipulation in the system.

3 Cumulant equations with delay
Eqs. (1) without feedback (K = 0) were studied in de-

tail in (Zaks et al., 2005), and their behavior was qual-
itatively explained using the cumulant expansion of
the probability density distribution (PDD) of the units,
which was based on the assumption of the molecular
chaos. Gaussian approximation was used to truncate
the system of cumulant equations to five coupled cumu-
lant equations whose dynamical behavior was qualita-
tively similar to that of the original stochastic network.
In this work we provide a qualitative explanation of

the response of the stochastic network to delayed feed-



back control by deriving and analysing the cumulant
equations with delay using the same two approxima-
tions. Molecular chaos approximation assumes that
the oscillations in different units are uncorrelated, and
thus the joint 2N -dimensional PDD of the whole sys-
tem can be represented as a product of the identical 2-
dimensional PDDs of the individual units. Gaussian
approximation assumes that each of the 2-dimensional
PDDs is a Gaussian function of two variables, and
can therefore be characterized by only five non-zero
cumulants explained below. The cumulant equations
were derived using the method proposed in (Desai and
Zwanzig, 1978) and improved in (Rodriguez and Tuck-
well, 1996; Tanabe and Pakdaman, 2001), and read

ε
dmX

dt
= mX − mX

3

3
−mY −mXDX ,

dmY

dt
= mX + a + K(mY (t− τ)−mY ),

ε
dDX

dt
= 2

[
DX(1− γ −mX

2 −DX)−DXY

]
,

dDY

dt
= 2(DXY + T ), (2)

ε
dDXY

dt
= εDX + DXY (1−mX

2 −DX − γ)−DY .

Here mX and mY are the mean values of the distribu-
tions of the variables x and y, respectively, DX and DY

are their variances, and DXY is their cross-variance
which is the second moment of their joint distribution.
As indicated in (Zaks et al., 2005), the Gaussian ap-
proximation only provides a qualitative description of
the eects in the network, while there is no quantitative
agreement. With this, to compare the eects induced by
the feedback in cumulant and in stochastic equations,
we had to apply the feedback to topologically equiv-
alent regimes. To do so, in Eqs. (2) with K = 0 we
chose such parameters T and γ with which they had the
regimes similar to those of stochastic Eqs. (1). Namely,
at γ = 0.1 and T = 0.001585 Eqs. (2) demonstrated
subthreshold chaos similar to that in Fig. 1 (a,b), while
at T = 0.001586 they exhibited chaotic spiking.
It is known that the skeleton of a chaotic attractor is

formed by the infinite number of unstable periodic or-
bits. Pyragas delayed feedback can stabilize such or-
bits if τ is equal to the orbit period and K is chosen
appropriately. In addition, in (Balanov et al., 2005) the
eects of delayed feedback on a typical chaotic system
were revealed for a large range of values of τ and K.
It was found that in the plane (τ, K) domains can be
found within which there are no stable oscillations at
all, i.e. the fixed point is stabilized. Also, a range of
bifurcations occurs which arise as a result of feedback
application.
In Fig. 4 the bifurcation diagrams of Eqs. (2) in the

plane (τ, K) are shown, which were obtained with
the help of continuation technique using the free soft-
ware DDEBIFTOOL (Engelborghs et al., 2001) and
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Figure 4. Maps of regimes of cumulant equations with delayed
feedback Eqs. (2) on the plane τ and K as the feedback is applied
when the original states of the cumulant equations were: (a) sub-
threshold chaotic oscillations at T = 0.001585; (b) chaotic spik-
ing at T = 0.001586. Light grey areas inside parabolas indicate
the regions of stability of the only fixed point; patterned green areas
indicate spiking of cumulants; white areas indicate the absence of
spiking in the cumulants.

also numerical simulation of oscillating solutions. The
common feature of the diagrams is the large parabola-
like curves of Andronov-Hopf bifurcation of the fixed
point, above which the fixed point is stable. In the
white areas below these curves the oscillations of the
cumulants are subthreshold, either periodic or chaotic.
Patterned green areas denote the regimes of spiking
which can be periodic or chaotic. These regimes were
found by numerical integration of the cumulant equa-
tions rather than by means of continuation technique.
When comparing Figs. 3 and 4, one can notice that in
both figures along the lines of fixed K there are do-
mains in which all spiking of the mean field is sup-
pressed, and those where spiking occurs. However, the
agreement between the maps of regimes is only qual-
itative because Gaussian approximation does not give
an accurate description of the stochastic network, and
also because the initial regimes without the feedback
were similar only in their nature but not in the dynami-
cal detail.

4 Summary and Conclusions
A simplified model of a stochastic neural network

was considered in the form of a large number of ex-
citable FitzHugh-Nagumo units subjected to uncorre-
lated sources of noise and coupled through the mean
field. As it was known from an earlier work, such a
network could demonstrate a range of forms of collec-



tive behavior, from non-synchronously spiking units,
through the units synchronous only partially, to the
fully synchronized network. Distinct regimes could
be characterized and detected by the behavior of the
mean field, which would spike in partly of fully syn-
chronous cases, or demonstrate subthreshold oscilla-
tions or no oscillations at all in the absence of synchro-
nization. The purpose of the work was to find out if it
was possible to manipulate the properties of the collec-
tive spiking of the network by using some macroscopic
feedback. As a candidate for the control technique
Pyragas delayed feedback was probed, which was con-
structed from, and applied through the mean field. It
is demonstrated that the delayed feedback is capable of
destroying synchronization in a partially synchronized
network, such that with the appropriately chosen delay
time the strength of the feedback is very small. The
feedback can also shift the mean spiking frequency of
the mean field.
The action of the delayed feedback control on the

large stochastic network is explained on a qualitative
level by considering cumulant equations. Two main
approximations were used for their derivation: molec-
ular chaos and Gaussian approximation. The system of
five cumulant equations with delay have reproduced the
main feature of the delayed feedback effect on the net-
work: the possibility to stabilize the originally unstable
fixed point related to the mean field. The shapes of the
stability domains in stochastic and in cumulant equa-
tions were qualitatively similar. However, Gaussian ap-
proximation has proved quite crude since the maps of
regimes differed in quantitative detail.
The delayed feedback applied macroscopically to a

stochastic network could be a promising technique for
the control of synchronization in real neural networks
in various medical conditions believed to be related to
synchronization: epilepsy, Parkinson disease, and es-
sential tremor. This method could be particularly at-
tractive in view of the weakness of the feedback signal
that is necessary to desynchronize the system, under
the suitable choice of time delay.
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