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Abstract 8 

Microfluidic fuel cells and flow batteries are free from the static physical barrier that separated 9 

the anodic and cathodic compartments, introducing the advantages of low cost and feasible 10 

miniaturized application. Recently, the concept of dual electrolyte stream proves itself an 11 

effective strategy to enhance the reactor performance by pairing catholyte and anolyte with 12 

thermodynamically favored pHs. Being able to be implemented in both fuel cell and electrolyzer 13 

modes, the dual electrolyte strategy demonstrates superior peak power density, low 14 

overpotentials, high reactivity, and high efficiency. However, keeping the characteristics of 15 

laminar flow requires continuous electrolyte flowing in the microchannel. Besides, neutralization 16 

reaction would occur within the mixing layer between the catholyte and the anolyte, requiring 17 

higher flow rate to control the layer thickness. These lead to considerable electrolyte wastage 18 

that will significantly weaken the economical aspect and electrolyte utilization efficiency. To 19 

tackle this issue, this study investigated the electrolyte degradation process and proposed an 20 

operation scheme for electrolyte recycling. Key parameters of electrolytes were tracked and 21 

monitored by mimicking different reactor situations. Results indicated that with appropriately 22 

adjusted operating conditions, electrolyte recycling would be feasible in a microfluidic pH-23 
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differential network. Accordingly, an pH indicator for electrolyte recycling was proposed for 24 

potential practical application. 25 

Keywords 26 

Dual electrolyte, Electrochemistry, Microfluidics, Electrolyte recycling, pH/conductivity 27 

degradation 28 

1. Introduction 29 

Notwithstanding the merits of low cost, high interphasial contact area, and controlled flooding 30 

problem, low electrolyte utilization efficiency has long been a problem of flow batteries and 31 

microfluidic fuel cells. To drive the electrolyte streams and retain them within laminar 32 

characteristics, considerable amount of electrolytes is used, which, in most cases, is disposed. 33 

Many researchers have conceived the renewal or reuse of electrolytes. In the research of a 34 

quinone-bromide flow battery based on metal-free materials, Huskinson et al. proposed that the 35 

economical hydroxy-substituted anthraquinones could be utilized to regenerate anthraquinone-36 

based electrolyte solutions for reuse[1]. The undesired cross contamination of anolyte and 37 

catholyte through the cell separator always occurs in a flow battery. With four different oxidation 38 

states, vanadium redox flow batteries could be used to tackle this issue as they enabled the fuel 39 

and oxidant regeneration[2]. Qiu et al. established a model that could help investigate and 40 

characterize the key parameters of electrolyte utilization, aiming at figuring out the electrode 41 

structures and conditions for an optimized operation[3]. However, although reducing agents 42 

could be added to recover the electrolyte, vanadium redox based flow batteries still suffered from 43 

various losses, especially electrode transport losses and electrolyte wastage. To our best 44 

knowledge, no concrete literatures could be found to firmly address this issue. 45 
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Currently, most researches on electrochemical reduction of CO2 are based on a proton-46 

exchange membrane, which conducts protons whilst insulates electrons and separates reactants. 47 

The high membrane cost, water management, and degradation problems, have hindered its 48 

further advancement and miniaturization. In this study, a microfluidic design was implemented, 49 

where two fluids flow co-laminarly in a micro-scale channel and perform distinctive behaviors 50 

with high surface-to-volume ratios and super-fast mass transfer rates. Microfluidics is a powerful 51 

technique to enhance the performance of reaction systems and offers a virtual but effective layer 52 

to replace conventional membrane, providing an ultimate solution towards some of the 53 

limitations of macroscale devices. The function of this virtual layer has not been fully explored 54 

until the concept of dual electrolyte was raised[4]. By coupling electrodes with corresponding 55 

thermodynamically favored pHs, not only the fuel cell performance (that is, output power 56 

density), but also the electrolysis process (that is, on-set voltage, efficiency, reactivity) could be 57 

enhanced significantly. This technique can be, and has been validated in multiple applications by 58 

many research groups[5], including the present research team[6]. Yet, the co-laminar flows of 59 

acid and alkaline would bring up an unavoidable problem, neutralization losses. The acid-60 

alkaline neutralization reaction is a superfast reaction with a rate constant of ~1011 M-1 s-1 and 61 

would intensify the electrolyte crossover contamination phenomenon. Therefore, identifying the 62 

degradation mechanism is the key to facilitate electrolyte recycling in the multi-dimensional 63 

electrochemistry scenario. Recently, our research group has developed a membraneless dual 64 

electrolyte reactor as a regenerative H2/O2 fuel cell[6] and a CO2 conversion system[7]. By 65 

pairing electrodes with electrolytes at different pHs, the thermodynamic limitations of water 66 

window was relieved and the electrochemical performance was significantly enhanced with high 67 

output power density, round-trip efficiency and low on-set voltage. Electrode potentials were 68 
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closer to corresponding equilibrium status and hence less Joule heat loss was dissipated, 69 

facilitating the possibility of an efficient zero-carbon energy storage platform. The catholyte-70 

anolyte interface and its associated reactant loss have also been demonstrated[8]. The impact of 71 

micro-channel thicknesses (that is, inter-electrode distances) and fluid supply rates on the fluid 72 

properties have been revealed. The electrochemical performance of the reactor dropped gradually 73 

with increasing channel thickness and the drop became significant at the channel thicknesses 74 

beyond 1000 μm. It turns out that lowering the micro-channel thickness would shorten the 75 

pathway traveled by protons, hence limiting the resistance and potential loss. The fluid supply 76 

rate has similar influence as the channel thickness. The higher the fluid supply rate is, the 77 

narrower the catholyte-anolyte interface would be. This would lead to less cross-electrolyte 78 

contamination and enhance the reactor performance. However, experimental observations 79 

suggested that when the flow rates are beyond 500 μL/min, the mixing layer perturbation could 80 

lead to instability and the excessive waste electrolytes would cause uneconomical operations. 81 

Microfluidic electrochemistry is not only applicable for energy conversion, but also widely 82 

implemented in various fields. For instance, Fang et al. has proposed a high-sensitivity 83 

electrochemistry-based in situ detection methods by a microfluidic flow-through device[9]. 84 

Scialdone et al. has also achieved significant improvement of COD abatement in a 85 

microdevice[10], while Marken group has reported clean organic electrosynthetic processes 86 

based on microflow electrolysis reactions[11]. These progresses have all been benefited from the 87 

elimination of membrane constraint in a microfluidic network.  88 

With the advantageous microfluidic technology, this study aims at improving the electrolyte 89 

utilization rate and enhancing the economical aspect by an electrolyte recycling scheme. 90 

Experimental observations and quantitative analysis implied good controllability of interface 91 
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thickness and high possibility of electrolyte reuse. With appropriate conditions, the portion of 92 

neutralized acid/alkaline, as can be quantitated and monitored by the mixing layer thickness, 93 

could be well suppressed, so does pH and conductivity as key indicators. Technically and 94 

economically, electrolyte renewal and regeneration strategy could be developed to revert the exit 95 

electrolyte streams to a qualified level for recycling operation. A prediction model was also 96 

established based on the pH degradation rate for future practical applications. 97 

2. Methodology 98 

2.1 Catalyst preparation 99 

Electrodes were commercially available catalysts (Johnson Matthey) binded with carbon paper 100 

by Nafion (DuPont) solution. Pb and Pt black were used as the cathode catalyst and anode 101 

catalyst, respectively, with catalyst to Nafion ratio as 30:1. The catalyst loading was 5 mg/cm2. 102 

2.2 Cell fabrication 103 

The electrodes were mounted at the bottom of the flow channels where co-laminar anolyte and 104 

catholyte flow. The sizes of the channels were 0.2 cm (W) ×7.5 cm (L), between which another 105 

0.01-cm-thick PVC sheet with a 0.2 cm (W) ×0.5 cm (L) window was sandwiched to form the 106 

electrolyte contact area. The final distance between electrode surfaces was ~0.05 cm, which is an 107 

optimized value as reported in our previous parametric study[8]. A 5 cm (L) × 1 cm (W) × 0.5 108 

cm (H) chamber was machined to be the CO2 reservoir for the cathode side. All layered 109 

components were fabricated using a CO2 laser ablation system (VLS 2.30, Universal Laser 110 

System) and clamped together by binder clips (Highmark). 111 

2.3 Electrochemistry 112 

An electrochemical station (CHI600E, CHInstruments, Inc) with a sampling frequency of 250 113 

Hz was used to hold the cell at constant potentials. Polarization curves were obtained by 114 
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averaging the integration of a 100-second steady-state data to eliminate transient artifacts. 115 

Electrolytes were fed at a controlled flow rate, for example 500 μL/min, by syringe pumps 116 

(LSP02-1B, Longer Pump). Polarization curves of anode and cathode were recorded with digital 117 

multi-meters connected between each electrode and an external Ag/AgCl reference electrode, 118 

which was dipped in a beaker collecting the exit electrolytes. Current and power densities were 119 

normalized by the active electrode area (that is, 0.1 cm2) and with compensated iR drop. It 120 

should be noted that unlike a typical 3-electrode system, the reference electrode for the 121 

microfluidic reactor is placed in an exit electrolyte collection beaker, which is apart from the 122 

main body. The reference electrode is linked with the working and counter electrodes by a 123 

central electrochemical station. Repetitiveness test suggested a highly repeatable experiment as 124 

has been mentioned in our previous publication[8], where the variation of measured current 125 

densities was within 10% and the range of peak Faradaic efficiencies was within 0.7%. 126 

During the experiment of catholyte pH = 2 and anolyte pH = 14, on top of the above-127 

mentioned experimental conditions, gaseous CO2 (≥ 99.5% purity, Linde) was supplied at a 128 

constant flow rate of 50 sccm controlled by a mass flow controller (GFC17, Aalborg).  129 

2.4 Formic acid determination method 130 

To determine the concentration of the formic acid generated, the measurement method adopted a 131 

non-enzymatic allochroic reaction upon the mixture of formate and several chemicals[12]. The 132 

absorption maximum of the destination color is at 510 nm, which could be obtained by a 133 

spectrophotometer (6105 U.V./Vis. Jenway) to determine the formate concentration. 0.25 mL of 134 

collected exit electrolyte sample was extracted and diluted by 0.25 mL deionized water and 0.05 135 

g citric acid was mixed with 1 g acetamide. Ultrasonic dispersion was then conducted in 10 mL 136 

2-propanol, 0.5 mL of which was dissolved in a mixture of 0.5 mL of the sample, including 137 
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0.025mL 30% w/v sodium acetate and 1.75mL acetic anhydride for 1.5 hr. Before each set of 138 

experiment, standard formate solutions were prepared at concentrations of 2.5, 5, 7.5, 10, 12.5, 139 

15, 17.5 and 20 mmol/L, whose corresponding color absorption was quantitatively determined as 140 

benchmarks by a correlative equation: 141 

0.0588 × Concentration	of	HCOO� + 0.0562 = Absorbance ····························· Equ. ( 1 ) 142 

2.5 pH & conductivity measurement 143 

The measurement of pH/conductivity was conducted by a pH/conductivity meter (Orion Star 144 

A215, Thermo Scientific). Before each set of measurements, calibration was done by dipping the 145 

pH probe into buffering solutions with pH=4.01, 7, 10.01 and conductivity probe into solutions 146 

of 12.9 mS ∙ cm�! and 1413 μS ∙ cm�!. The pH/conductivity probe was dipped into the collected 147 

sample solutions until the readings stabilized and recorded.  148 

2.6 Efficiency calculation 149 

Under appropriate conditions where the electrochemical reduction reaction of CO2 occurs, 150 

Faradaic efficiencies would be calculated to reveal the fraction of the electrons transferred for 151 

formic acid production. The measured current indicates the total electrons passing through the 152 

reaction sites and the electrons used for generating formic acid is obtained by the 153 

spectrophotometer detection. Denote the flow rate as M L/s, the applied current as N ampere, and 154 

HCOO�  concentration as Y mol/L. The amount of electrons used for forming formic acid is 155 

2 × Y × # mol/s. On the other hand, the total number of electrons passing through the electrode 156 

surface is N × K  mol/s, where K = 1.04 × 10�(	mol/A  stands for the mole of electrons per 157 

ampere, concluding the equation for Faradaic efficiency as shown below:  158 

FE =
,×-×.

/×0
× 100% ··············································································· Equ. ( 2 ) 159 

 160 
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3. Results and discussion 161 

3.1 Working principle 162 

A microfluidic reactor with electrolyte recycling was designed as shown in Figure 1. The ion 163 

concentration gradient across the microchannel, as marked and visualized by fluorescent dye, 164 

was also demonstrated. The microfluidic structure could effectively control the catholyte-anolyte 165 

interface and suppress the cross-contamination. When in need, the gaseous feed was supplied 166 

into the gas reservoir chamber on the cathode side and migrated through the gas diffusion layers 167 

(GDLs) to the catalyst surfaces. Catholyte and anolyte solutions were driven into corresponding 168 

channels by individual syringe pump, followed by collection and recirculation. As predicted, exit 169 

catholyte and anolyte were evenly distributed, validating the effective reactor design and 170 

fabrication. 171 

 172 

Figure 1 Schematic diagram of the microfluidic reactor with electrolyte recycling. 173 

3.2 Benchmarks 174 

Single electrolyte modes were regarded as benchmarks. To identity their characteristics, both 175 

single acid (catholyte pH = anolyte pH = 0) and single alkaline (catholyte pH = anolyte pH = 14) 176 

modes were established and tested as shown in Figure S1 and Figure S2, respectively.  177 
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As can be seen in Table 1, Figure S1a and Figure S2a, beyond the on-set electrolysis voltages, 178 

that is, ~2 V, the reactivity was statistically multiplied for several times in either single acid or 179 

single alkaline, and the former one increased faster. This could be explained by the fact that the 180 

acidic electrolyte conductivity was twice as much as that of its alkaline counterpart (see Table 181 

S1), enhancing the chemical kinetics.  182 

Table 1 Comparison of reactor reactivity between single acid and single alkaline modes. 183 

Cell voltage 

(V) 

Current density 

in single acid 

(mA/cm2) 

Current density 

in single alkaline 

(mA/cm2) 

 
Catholyte pH = Anolyte pH = 0 

Electrolyte flow rate = 500 μL/min 

Catholyte pH = Anolyte pH= 14 

Electrolyte flow rate = 500 μL/min 

4.0 694.2 354.8 

3.7 452.3 253.3 

3.4 283.4 167.1 

3.1 187.8 72.2 

2.8 130.0 27.7 

2.5 72.4 12.1 

 184 

Table S1, Figure S1d and Figure S2d suggested that during the 10-cycle operation, the 185 

electrolyte conductivity remained highly stable in single electrolyte mode, with coefficient of 186 

variation (CV) no more than 0.03. On top of the high steadiness, the small fluctuations of 187 

electrolyte conductivity were still observable, due to the balance between the ion consumption of 188 

electrochemical reactions and the productions of new species. Another key factor to evaluate the 189 
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electrolyte properties during long-term operation is the change in pH values. As shown in Table 190 

S2, Figure S1c and Figure S2c, the pH variation remained small with a CV less than 0.09, 191 

implying its high stability and low degradation rate. The low degradation of pHs and 192 

conductivity demonstrated the high feasibility of electrolyte recycling in practical applications, 193 

where not only electrolyte production and disposal costs are crucial, the number of recycling 194 

cycles is also important.  195 

The variation of current density, however, was considerably large as can be seen from both the 196 

graphic plots (Figure S1e and Figure S2e) and the statistical results (Table 2). Comparison of CV 197 

indicated that current densities in single alkaline mode appeared relatively steady than those in 198 

single acid mode, which is due to the suppressive nature of hydroxy radical towards formate 199 

generation. 200 

Table 2 Statistical results of current densities during the 10-cycle operation in single acid and 201 

single alkaline modes at applied potentials of 2.8, 3.4 and 4 V. 202 

Catholyte pH = Anolyte pH = 0 

Electrolyte flow rate = 500 μL/min 

Applied potential 

(V) 

µ 

(mA/cm2) 

σ 

(mA/cm2) 
CV 

4.0 735.3 82.5 0.11 

3.4 232.5 36.6 0.16 

2.8 72.9 19.3 0.26 

Catholyte pH = Anolyte pH = 14 

Electrolyte flow rate = 500 μL/min 

Applied potential µ σ CV 
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(V) (mA/cm2) (mA/cm2) 

4.0 364.3 15.6 0.04 

3.4 168.3 16.9 0.10 

2.8 34.0 10.5 0.31 

 203 

3.3 Effects of flow rate 204 

With single electrolyte as the benchmark, dual electrolyte modes were tested. The catholyte and 205 

anolyte were prepared by 1 mol/L sulfuric acid and 1 mol/L potassium hydroxide, respectively. 206 

The neutralization reaction that occurred in the acid-base mixing layer brought in more 207 

complexity to the system. As shown in Figure S3a and Figure S3b, while the catholyte pHs 208 

gradually increased, cliff falls could be observed on the anolyte pHs. Afterwards, the alkaline 209 

anolyte was completely acidified. This could be explained by the fact that a sulfuric acid 210 

molecule possesses two ionizable hydrogen with a low second ionization rate[13, 14]. Upon the 211 

depletion of the first ionizable hydrogen ion, the second would be released to dominate the 212 

electrolyte solution.  213 

Nevertheless, behind the superficial ‘cliff drop’, there actually existed a linear decrease trend 214 

in the concentration of ions (see Table 3) as could be deduced from the pH results in Table S3 by 215 

the equation pH = −lg	[H6O7]. The degradation rate dropped from 0.16 to 0.089 and then 0.06 216 

mol/L per cycle when increasing the flow rate from 200 to 300 to 400 µL/min. The degradation 217 

rate finally stabilized at around 0.035 mol/L per cycle at flow rates of 500 µL/min and above. In 218 

terms of number of cycles before complete acidification, it increased from 4 cycles at 200 219 

µL/min to 9 cycles at ≥500 µL/min. This statistical observation implied that 500 µL/min was the 220 

threshold of the electrolyte flow rate. At the same time, it was experimentally observed that 221 
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further increasing the flow rate would disturb the acid-alkaline interface, hence lowering the 222 

reactor performance and stability. 223 

In Table 3, the threshold pH values, after which the anolyte pHs would drop to acid range, 224 

were extracted from Table S3 as underlined. With the CV as low as 0.005, the mean value of 225 

13.8 could be regarded as the threshold value, upon which the electrolyte recovery should be 226 

conducted in potential practical applications. 227 

Table 3 Statistical results of OH� concentration degradation rate during the 10-cycle operation 228 

and threshold  pH values before complete neutralization in dual electrolyte modes at flow rates 229 

from 200 to 700 µL/min. Initial catholyte pH=0 and anolyte pH=14 under zero applied voltage. 230 

Flow rate 

(µL/min) 

Degradation rate of OH� concentration 

(mol/L per cycle) 

Threshold pH before  

complete neutralization 

200 0.160 13.71 

300 0.089 13.74 

400 0.060 13.74 

500 0.040 13.89 

600 0.037 13.85 

700 0.035 13.84 

 

μ = 13.80 

σ = 0.07 

CV = 0.005 

 231 

Meanwhile, Figure S3b indicated that the electrolyte conductivity would experience a sudden 232 

change before the neutralization reaction was completed. This phenomenon was caused by two 233 
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mechanisms. Firstly, no more ions were sunk in neutralization reaction and both electrolytes 234 

were acidified. Secondly, the second ionization of sulfuric acid was massively triggered upon the 235 

threshold, supplying plenty of hydrogen ions and boosting the catholyte conductivity.  236 

3.4 Effect of applied potential 237 

Figure S4 demonstrated the degradation mechanism at applied potentials of 2.8, 3.4 and 4 V. The 238 

numbers of cycles which the cliff falls of pHs occurred are different for different applied 239 

potentials. The anolyte pH was acidified after 8 cycles at 4 V and 9 cycles at lower voltages. The 240 

crossover of acid-base was fiercer at elevated potentials because more ions and gaseous side 241 

products were generated, interfering the interface and accelerating the neutralization reaction. 242 

This phenomenon could be corroborated statistically. Deduced from the pHs (see Table S4), the 243 

degradation of ion concentrations (see Table 4) was observed to be linear and the degradation 244 

rate descended from 0.078 mol/L per cycle at 4 V to 0.05 mol/L per cycle at 2.8 V. The threshold 245 

pH values, as underlined in Table S4 and extracted in Table 4, were at a mean of 13.69 with a 246 

CV of 0.004. 247 

Similar to those single electrolyte modes, sudden changes of catholyte conductivity could also 248 

be found beyond the threshold. On top of the two rationales mentioned in Section 3.3, one more 249 

ion source should not be neglected, that is, ongoing formate generation reaction at applied 250 

potentials above the on-set voltage.  251 

Table 4 Statistical results of OH� concentration degradation rate during the 10-cycle operation 252 

and threshold  pH values before complete neutralization in dual electrolyte modes at applied 253 

potentials of 2.8, 3.4 and 4 V. Initial catholyte pH=0 and anolyte pH=14, both supplied at a flow 254 

rate of 500 μL/min. 255 

Applied potential Degradation rate of OH� concentration Threshold pH before  
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(V) (mol/L per cycle) complete neutralization 

2.8 0.050 13.76 

3.4 0.062 13.68 

4.0 0.078 13.63 

 

μ = 13.69 

σ = 0.06 

CV = 0.004 

 256 

As shown in Figure S4c, the influence of voltages on pH variation was insignificant, but 257 

current densities were deeply affected. With the cliff falls of pHs, anolyte was acidified and the 258 

dual electrolyte mode was transformed into single acid mode. The depletion of the affiliated 259 

thermodynamic dividend of dual electrolyte mode caused sudden drops of current densities (see 260 

Figure S4e). The CV of current densities at 2.8, 3.4 and 4 V were low and close to one another 261 

(see Table 5), validating the previous finding of their corresponding threshold pHs.  262 

Table 5 Statistical results of current densities during the 10-cycle operation at applied potentials 263 

of 2.8, 3.4 and 4 V. Initial catholyte pH=0 and anolyte pH=14, both were supplied at a flow rate 264 

of 500 μL/min. 265 

Catholyte pH = 0 & Anolyte pH = 14 

Applied potential 

(V) 

µ 

(mA/cm2) 

σ 

(mA/cm2) 
CV 

4.0 1010.1 202.8 0.20 

3.4 643.6 138.2 0.21 

2.8 429.8 141.2 0.33 
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3.5 Effect of electrolyte ion concentration 266 

As the thermodynamic properties of an electrochemical reactor could be adjusted by altering 267 

variables in the Nernst equation, tuning the OH�/H7  concentrations, that is, pHs, inevitably 268 

becomes an important strategy. In order to investigate the impact and feasibility in practical 269 

applications, three representative combinations were tested, that is, H2SO4 solution as catholyte 270 

and KOH solution as anolyte at the same concentrations of 1, 2, and 3 mol/L. It could be 271 

observed from Figure S5b that the limiting current density was raised from ~1000 mA/cm2 at 1 272 

mol/L to ~1600 mA/cm2 at 3 mol/L and the reactivity was the highest at 2 mol/L (Figure S5a). 273 

The reason that 3 mol/L did not show superior reactivity was that the enhanced thermodynamic 274 

properties would promote allied side reactions and products at the same time, which were 275 

disruptive to the laminar nature of the acid-base layer. 276 

Cliff falls of pHs appeared earlier in higher electrolyte concentration (see Figure S5c) because 277 

the neutralization reaction was much fiercer at elevated thermodynamic activity. The 278 

neutralization reaction was completed at the 6th cycle at 3 mol/L, 7th cycle at 2 mol/L and 9th 279 

cycle at 1 mol/L, followed by homogenization towards single acid mode. Higher electrolyte 280 

concentrations would quicken the ion concentration degradation and intensify the catholyte-281 

anolyte crossover. Statistically, 1 mol/L electrolyte concentration showed significantly lower 282 

degradation rate, that is, 0.05 mol/L per cycle, compared with 2 and 3 mol/L, whose rates are 283 

0.27 and 0.29 mol/L per cycle (see Table 6). 284 

Different from the impact of flow rates or applied potentials, threshold pH values before 285 

complete neutralization varied with different ion concentrations, that is, 13.76 at 1 mol/L, 12.96 286 

at 2 mol/L, and 14.18 at 3 mol/L, at a relatively high CV, that is, 0.005 (see Table 6 and S5). The 287 

reason behind was that the intrinsic nature of the electrolyte was changed and the critical points 288 
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where the OH�  would be completely depleted by H7  were shifted as well. However, as the 289 

variation was still within the acceptable range, the mean value of the threshold pHs, that is, 13.63, 290 

was applicable as the criterion of electrolyte recovery.  291 

Summarizing all the threshold pH values in the above-mentioned scenarios, a value of 13.7 292 

was determined as a general threshold pH to identify the kickoff of electrolyte recovery. 293 

Table 6 Statistical results of OH� concentration degradation rate during the 10-cycle operation 294 

and threshold pH values before complete neutralization in dual electrolyte modes at different 295 

concentrations. Both anolyte and catholyte were supplied at a flow rate of 500 μL/min at an 296 

applied voltage of 2.8 V. 297 

Electrolyte pH Degradation rate of OH� concentration 

(mol/L per cycle) 

Threshold pH before  

complete neutralization Catholyte Anolyte 

0.00 14.00 0.050 13.76 

-0.30 14.30 0.270 12.96 

-0.47 14.47 0.290 14.18 

 

μ =13.63 

σ = 0.62 

CV = 0.005 

 298 

Surprisingly, the reactivity did not increase with more favorable thermodynamic settings as 299 

shown in Figure S5e and Table 7. The mean current densities and their affiliated standard 300 

deviations even dropped at high electrolyte concentrations. This was cause by the fact that more 301 

side products were generated to disturb the microfluidic characteristics as explained earlier in 302 

this section. 303 
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Table 7 Statistical results of current densities during the 10-cycle operation at different 304 

electrolyte concentrations. Both anolyte and catholyte were supplied at a flow rate of 500 305 

μL/min at an applied voltage of 2.8 V. 306 

Catholyte pH Anolyte pH 
µ 

(mA/cm2) 

σ 

(mA/cm2) 
CV 

0.00 14.00 429.8 141.2 0.33 

-0.30 14.30 346.1 180.6 0.52 

-0.47 14.47 368.7 121.0 0.33 

 307 

Our previous parametric study has reported that for a CO2 electrochemical reduction reactor, a 308 

catholyte pH = 2 and anolyte pH=14 gave the optimal performance, including reactivity and 309 

conversion efficiency[7]. The electrode potentials were closer to the equilibrium status because 310 

of the reduced electrode overpotentials. Connected to CO2 supply, experiment was conducted on 311 

the feasibility of electrolyte recycling for this type of pH combinations, that is, unbalanced acid-312 

base concentration. 313 

As shown in Figure S6a and Figure S6b, with an on-set voltage reduced to ~1.8 V, the peak 314 

Faradaic and energetic efficiencies were recorded as high as 95.6% at 143 mA/cm2 and 48.5% at 315 

62 mA/cm2, respectively. Although the reactor performance was raised, the pH degradation rate 316 

precluded the possibility of electrolyte recycling because the relatively weak acid catholyte was 317 

rapidly alkalinized after the first cycle as indicated by the electrolyte pHs shown in Table S6. 318 

The catholye and anolyte pHs gradually approached each other from the 2nd cycle and are 319 

completely neutralized at the end of the 10th cycle. The whole cell was then transformed into a 320 

single alkaline mode, where the current densities and Faradaic efficiencies tended to be smooth 321 
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(see Figure S6e and Table 8). In this work, five operation scenarios, including single acid, single 322 

alkaline, dual-pH at different flow rates, dual-pH at different applied potentials and dual-pH at 323 

different ion concentrations, were tested. The electrolyte recycling scheme was successfully 324 

realized in four of them at acid-base equilibrium states, which could be used for regenerative fuel 325 

cell applications. The last scenario, that is, acid-base imbalance for CO2 electrolysis, indicated its 326 

incompatibility with electrolyte reutilization due to the dominant ion crossover. The final formic 327 

acid concentration was recorded as 30 mmol/L, below the practical throughput requirements. 328 

On the other hand, the trend of conductivity was smooth. Catholyte conductivity gradually 329 

increased from 82.81 to 137.5 mS/cm and that of anolyte dropped from 214.6 to 178 mS/cm. 330 

Different from other dual electrolyte modes as reported above, no sudden changes were observed 331 

because of their different dominant ion transfer mechanisms, that is, diffusion vs. neutralization. 332 

It should be noted that during the process, the CO2 formed dissolved into the electrolytes and the 333 

generation of CO2 conversion products would result in small fluctuations of pH and conductivity.  334 

Table 8 Statistical results of current densities during the 10-cycle operation. Initial catholyte pH 335 

= 2 and anolyte pH = 14. Both anolyte and catholyte were supplied at a flow rate of 500 μL/min 336 

at an applied voltage of 2.8 V. 337 

  Current density Faradaic efficiency 
 

  (mA/cm2) (%) 
 

µ 29.8 89.3 
 

σ 9.8 4.9 
 

CV 0.33 0.06  

 338 

 339 
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3.6 Summary and discussion 340 

Single electrolyte mode demonstrated superior recyclability with low pH/conductivity 341 

degradation. At the same time, single acid mode illustrated higher ion transfer rate because of its 342 

higher conductivity compared with single alkaline mode. Phenomena in dual electrolyte modes, 343 

where neutralization reaction dominated, were different and the electrolyte degradation 344 

mechanism became essential. Flow rates played a major role in influencing the pH/conductivity 345 

degradation rate and the electrolyte could be recycled for 9 times at or above 500 μL/min. 346 

Another key factor was the electrolyte concentration, which could raise the neutralization rate 347 

and decrease recycling cycles. The impact of applied potentials was not significant at a voltage 348 

of 3.4 V or below, which would not quicken the electrolyte crossover. A threshold pH value of 349 

13.7 was recommended to trigger the electrolyte recovery. It was also observed that the 350 

prerequisite of electrolyte recycling was to create an acid-base equilibrium state and the 351 

imbalance would lead to instant electrolyte cross-contamination.  352 

4. Conclusions 353 

Microfluidics provided a useful matrix for electrochemical devices and revealed a low cost 354 

solution towards membrane-based architecture. Exploiting the function of the virtual layer 355 

created by the microfluidic network, the pHs of electrolytes could be altered to adjust their 356 

affiliated electrode thermodynamic positions, hence improving the reactor performance. 357 

However, maintaining the laminar flow nature and controlling the virtual layer thickness 358 

required high electrolyte flow rates, leading to considerable electrolyte wastage.  359 

This study is the first systematic investigation and demonstration of enhancing the economical 360 

aspect of a microfluidic reactor by recycling electrolytes. A deeper understanding of the reactor 361 

performance and fluid dynamic behavior was obtained, as well as the electrolyte degradation 362 
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mechanism under different operation conditions. It was observed that in a single electrolyte 363 

modes where no neutralization loss existed, electrolyte recycling was feasible and durable. In 364 

dual electrolyte modes, ion concentrations were found to degrade linearly with time and pHs 365 

would experience sudden changes. The rationale was revealed as the synergistic effects of ion 366 

sink into acid-base neutralization, ion generation from electrochemical reactions, and the second 367 

ionization of the sulfuric acid.  368 

Higher flow rates showed positive impact on the duration of electrolyte recycling operation; 369 

yet, there existed a threshold value of 500 µL/min and its operation duration of 27,000 seconds, 370 

beyond which the virtual layer stabilization would be disturbed. On the contrary, lower applied 371 

potentials were preferable to slow down the electrolyte cross-contamination because of the 372 

suppression of side reactions. An ion concentration degradation rate of 0.05 mol/L per cycle was 373 

observed at 2.8 V. Similar trend occurred on the initial concentrations of electrolytes. Not only 374 

the operation durations were lowered at higher electrolyte concentrations, the reactivity was also 375 

sacrificed because of the accelerated electrolyte crossover and subsequent mixing layer 376 

disruption. A threshold pH value of 13.7 was recommended as the indicator for followed-up 377 

processes, that is, electrolyte recovery. On the other hand, electrolyte recycling under the optimal 378 

pH combination for CO2 reduction, that is, catholyte pH =2 and anolyte pH = 14, appeared to be 379 

infeasible because of the species unbalance and consequent alkalization.  380 
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• Electrolyte recycling feasible on dual electrolyte microfluidic networks 

• Key operation conditions optimized for better recycling operation 

• pH degradation predictable for practical applications 

• Reactor performance can be controlled within a stable range 

 


