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Abstract

For the heat equation on a bounded subdomain Ω of Rd, we investigate
the optimal shape and location of the observation domain in observability
inequalities. A new decomposition of L2(Rd) into heat packets allows us
to remove the randomization procedure and assumptions on the geometry
of Ω in previous works. The explicit nature of the heat packets gives new
information about the observability constant in the inverse problem.

1 Introduction

This article considers an optimal design problem for the heat equation: What
is the optimal shape and location of a thermometer if we would like to recon-
struct the heat distribution in a domain? We aim to introduce techniques from
microlocal analysis, related to heat packet decompositions, in order to address
a rigorous formulation of this question. The explicit nature of the heat packets
sheds light on certain randomization assumptions and technical hypotheses in
previous works.

Optimal design problems for the placement of sensors have attracted much
interest in analysis and computational mathematics. Recent works include
[3, 5, 6, 8], which consider observability and optimal design problems for wave
and Schrödinger equations. For the heat equation, an observability estimate
goes back to [10], and [12] considers a simplified optimal design problem with
random initial conditions. The dissipativity of the heat equation makes the
reconstruction of high frequencies much less stable, one of the issues addressed
in this article.
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For a precise statement of a model problem, we consider a solution u(t, x)
to the heat equation ut = ∆u in a bounded smooth domain Ω ⊂ Rd, d ≥ 1,
with homogeneous Dirichlet boundary conditions and arbitrary initial condition
u(0, ·) ∈ C∞c (Ω), c.f Appendix Theorem 4.1 for well-posedness estimates. Given
T > 0 and a bounded measurable subset ω ⊂ Ω, we denote by CT (ω) the best
constant such that

CT (ω)

∫
Ω
|u(T, x)|2 dx ≤

∫ T

0

∫
ω
|u(t, x)|2 dt dx (1)

when u(0, ·) ∈ C∞c (Ω). CT (ω) gives an account for the well-posedness of the
inverse problem of reconstructing u from measurements over [0, T ] × ω. This
problem was first examined in [10], where it was proved that CT (ω) > 0 for
smooth compact Riemannian manifolds, under the conditions that the solution
intersects the observability set ω in a nontrivial manner.

This article studies for which subdomains the heat equation is observable,
and whether there are optimal ones. In the paper [9], a parametrix to the
linear Schrodinger equation is built. We build solutions to the heat equation
after their model, but we change the variable it 7→ t. We rescale their original
high frequency data to obtain information about L2(Ω) data. Thus, a key new
ingredient in our investigation is a decomposition of the initial data

u =
∑
n

cnφn , φn(t, x) =
( σ√

2π(σ2 + t)

)d/2
exp

(
ix·ξn−t|ξn|2−

|x+ 2iξnt|2

4(σ2 + t)

)
of u into heat packets following [9]. Here cn are constants, ξn belongs to a
lattice in Rd, and σ is a frequency parameter; we specify them later. While
this decomposition is valid in whole space, we may reduce to this case after
approximating the heat kernel on Ω. The heat packets replace the propagated
Dirichlet eigenfunctions of Ω, but still allow almost explicit calculations.

We exhibit a family of optimal design problems which accurately approxi-
mate the true optimal design problem when the initial data is not high frequency
and the time scale is of the same size as the frequency. We let CAT (ω) denote the
constant associated to this approximate optimal design problem. In particular,
we set:

CAT (ω) =

‖
∑
n
cnφn(t, x)‖2L2(ω×(0,T ))

‖
∑
n
cnφn(T, x)‖2

L2(Ω)

. (2)

We let 0 < ε � 1 be a small constant; the precise conditions on ε will be
specified in terms of a fixed positive constant η with η < 1 and the timescale T .
The parameter ε describes the number, N , of initial data points ξn we need in
our frame-based approximation. The parameter η describes the convergence of
the approximate observability constant CAT (ω) to CT (ω). In particular we show
that ε needs to increase with the timescale T , and ε may increase monotonously
with η.
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For computational clarity, we assume that ψ ∈ C∞c (Ω), with suppψ ⊂
[−1, 1]d. Our initial data u(0, x) we say is of the form

u(0, x) = ε
− d

2
0 ψ

(
x

ε0

)
,

with ε0 a number in (0, 1
2diam(Ω)) which is sufficiently small enough for suppu(0, x) ⊂

Ω. The data is at minimal distance δ from ∂Ω with δ ∈ (
√
ε0, 1). These as-

sumptions on the initial data are required for the decomposition of the initial
data into Gaussians and are only made for compuational simplicity. We search
for an optimal subdomain ω in the set

MM = {ω ⊂ Ω | ω is measurable and of Lebesgue measure |ω| = M |Ω| } .

It accounts for the fact that we measure the solutions on a subdomain of Ω
with a fixed volume.

The classical approach of [12] involves separation of variables using a basis of
eigenfunctions ∆Ψj = −λjΨj . Here one would decompose the solution into this
basis as u(t, x) =

∑∞
j=1 aje

−tλjΨj(x). If we define bj = aje
−Tλj , the question

becomes to examine

CT (ω) = inf∑∞
j=1 |bj |2=1

∫ T

0

∫
ω

∣∣∣∣∣∣
∞∑
j=1

bje
λjtΨj(x)

∣∣∣∣∣∣
2

dx dt

= inf σ

(
e(λj+λk)T − 1

λj + λk

∫
ω

Ψj(x)Ψk(x) dx

)
,

where σ denotes the spectrum of the matrix. This is a hard spectral problem
since little is known about

∫
ω Ψj(x)Ψk(x) dx even in the case of the disk: the

restriction of inner products of arbitrary Bessel functions to subsets ω ⊂ Ω
cannot be computed explicitly.

In order to avoid this problem, Privat, Trelat and Zuazua [12] replace aj by a
sequence of real-valued random variables {βνj aj}j∈N,ν∈X and thereby introduce
a random field uν(t, x). The βνj are independent identically distributed, of mean
0, variance 1 and fast decay (e.g. Bernoulli). They then study the case of an
averaged observability constant

CrandT (ω) = inf σ

(
e(λj+λk)T − 1

λj + λk
(Eβνj βνk )

∫
ω

Ψj(x)Ψk(x) dx

)

= inf σ

(
e2λjT − 1

2λj

∫
ω

Ψj(x)2 dx

)
= inf

j∈N

e2λjT − 1

2λj

∫
ω

Ψj(x)2 dx .

From the above we see that removing the randomization hypothesis reduces to
a difficult spectral problem: To determine inner products on the subdomain ω
of eigenfunctions for the Dirichlet Laplacian on Ω. We instead introduce an
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approximate problem, denoted by A which consists of a finite number of inner
products of explicit functions. For the uniqueness results, we must randomize
the initial data. We also assume that u(t, x) intersects the observation domain
ω at some time t0 ∈ (0, T ) and this intersection is bounded below by m0. We
set m1 = m0‖ψ‖−1

C0(Ω)
η. This criterion is related to [3].

Our main result is:

Theorem 1.1. Let M ∈ (0, 1) and T < min{ε2+s
0 m1(Cs,d‖ψ(x)‖C2+s(Ω))

−1,m1δ
4},

s > d/2 an integer, and Ω ⊂ Rd, then
a) CT (ω) & CAT (ω) > 0 for all ω ∈MM .

b) There exists a unique ω∗ ∈ MM such that CA,randT (ω∗) ≥ CA,randT (ω) for all
ω ∈MM .
c) The subset ω∗ is open and semi–analytic. In particular, the Hausdorff mea-
sure of ∂ω∗ is 0.

The randomized initial condition required in [12], which also included strong
implicit assumptions on the geometry of Ω. In order to study the randomized
problem further, Privat, Trelat and Zuazua require strong assumptions on the
level sets of these eigenfunctions ( (H1) in [12]) and thereby on Ω. Here, we show
that removing randomization amounts to the computation of a finite number
of inner products of explicit functions, for which the assumptions on level sets
can be verified. We show that the problem can be modeled for arbitrary initial
data in L2(Ω) by Gaussians, suggesting that a deeper analysis of the heat kernel
could be useful in including the randomized terms for the uniqueness results. In
particular we prove one cannot ignore the non-randomized terms entirely in this
scenario. We provide quantitative upper and lower bounds on their contribution
to the observability constant. The smoothness assumption on Ω is needed for
the uniformity of the estimates in Kac’s principle to hold in Proposition 2.2. A
deeper analysis of the heat kernel could be used to remove this assumption and
will be the subject of future work.

The number of grid points required for the reconstruction of CAT (ω) in-
creases drastically at high frequencies. Of course, the initial data must be
in H1

0 (Ω) for the solution to even exist, so in some sense this phenomenon is
to be expected. The poor convergence for the high frequencies suggests that
the use of monochromatic waves, which is introduced by randomization intro-
duces a significant loss of information in the optimal design problem. In par-
ticular, the randomized observability constant only provides an upper bound
CrandT (ω) ≥ CT (ω), while we have

CT (ω) ≥ CAT (ω).

In essence, we are looking at the worst case scenarios for the behavior of ω.
The reason we cannot extend to infinite times, is that the errors in the approx-
imation argument dominate for large times. We also give an example of high
frequency data showing the difficulty of removing the randomization assump-
tion of [12].
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It should be noted that [12] is the first paper to construct an optimal observ-
ability domain ω in any sense, and we rely on their ideas extensively. It is an
earlier result of [10] that CT (ω) > 0 for compact connected smooth manifolds.

The heat packets lead to a numerical approximation scheme, where one
determines a subset ω∗N ∈ MM with the best constant in (1) among finite
linear combinations of heat packets

u =
∑
|n|≤N

cnφn .

A basic problem is the convergence of ω∗N to ω∗ as N → ∞ in Hausdorff
distance. There are well-known counterexamples due to spillover phenomena
[8] for hyperbolic equations. However, the penalization of high frequencies in
the heat equation allows to prove such a result, similar to [12] for randomized
initial conditions:

Theorem 1.2. a) ω∗N is uniquely determined, semi–analytic and open.
b) The sequence ω∗N converges to ω∗ as N →∞. In fact, ω∗N = ω∗ for large N .

Section 2 considers the auxiliary problem in the half-space, in which explicit
computations based on the Gaussian heat packets are possible. The model for
CAT (ω) and the proof of Theorem 1.1 a) is given Section 2. The proofs of The-
orems 1.1 b),c) and 1.2 are established together in Section 3. The construction
of the frame implies that we have precision over N . For us, the results indicate
N increases with an increase in T .

Notation: For z ∈ Cd we write ‖z‖2 = zT z for the square of its length and
|z|2 = zT z for the analytic extension of the absolute value on Rd.

2 Truncation to model problem in upper half plane

We consider our initial data to be a smooth compactly supported function, and
explain how this can be used to obtain information on optimal design problems
for more general L2(Rd) data later in the paper. For general conditions, the
evolution is approximated by a superposition of heat packets. We start with
the upper half plane as our model and use the Feynman-Kac principle to move
the problem to the bounded domain Ω.

We assume diam(Ω) � η, and |Ω| = 1. We extend ψ by 0 to a smooth
function on Rd and use the following lemma to decompose the function into
heat packets. For the computation using Kac’s principle it is convenient if the
origin, without loss of generality, has the maximal distance 1

2diam(Ω) to ∂Ω.
We decompose ψ as follows:

Lemma 2.1. [Generalization of Lemma 4.14 in [9]] Fix ψ ∈ C∞c (Rd) as above

and η ∈ (0, 1) and ε0 ∈ (0, 1
2diam(Ω)). We define ψε0(x) = ε

−d/2
0 ψ(x/ε0). Let

δ denote the distance of the center of ψε0(x) to the origin. Then there is a
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small 0 < ε � 1 depending on η, ε0 such that the following holds: For σ =√
ε0δ log(ε−1), L = σ log log(ε−1) there are coefficients {cn}n∈Zd and ξn = n

L
with:∥∥∥∥∥∥ψε0(x)−

∑
n∈Zd

cn

(2πσ2)d/4
exp

(
−|x|

2

4σ2
+ iξn · x

)∥∥∥∥∥∥
L2(ω)

≤ η‖ψε0(x)‖L2(ω) . (3)

Moreover,

|cn| .ψ,k Ck,ψ(σε0L
−2)d/2 min

{
1, (ε0|ξn|)−k

}
for all k ∈ N. One may choose cn = 0 unless

n ∈ S =
{
k ∈ Zd : 1

ε0 log log(ε−1)
≤ |ξk| ≤ log log(ε−1)

ε0

}
.

if we include all the vectors then η = 0.

The proof in [9] is for d = 3. We include it here to show that the smallness
condition on ε is compatible with later restrictions on ε in our paper. The
proof in [9] is for high frequency data only, which we rescaled to obtain our
result, since ε0 is arbitrary. The rescaling affects σ and L. This implies the
set of required vectors S becomes very large as ε0 → 0. The integer k reflects
the regularity of ψ, and it is possible to bound k by d provided ε is small,
and still produce an `2 sequence cn. The construction of the `2 bound requires
ε0 < δ ≤ 1, but it should still be possible to construct an `2 sequence as long
as δ > 0.

Proof. We define

cn = (2πσ)−d
∫

[−πL,πL]d

ψε0(x)(2πσ2)d/4 exp

(
|x|2

4σ2
− in · x

L

)
dx

and

φn(x) = (2πσ2)−d/4 exp

(
−|x|

2

4σ2
+ in · x

L

)
.

Note that ‖φn(x)‖L2(Rd) = 1. As the Fourier series of a smooth function con-
verges uniformly, we have by Plancherel’s theorem:

ψε0(x) =
∑
n∈Zd

cnφn(x) (4)

on [−πL, πL]d. If ε is sufficiently small, suppψε0 ⊂ [−πL
2 ,

πL
2 ]d. The series (4)

gives the result immediately if ω ⊂ Ω, which it is. The error comes from the
truncation, which we will prove a bound on using the estimates on the |cn|.

We now prove an upper bound on the coefficients. Let M1 be a constant
such that ‖ψ‖Cd(Ω) ≤M1. From the definition of cn we obtain

|cn| ≤
σd/2

Ld
‖ψε0(x) exp

(
|x|2
4σ2

)
‖L1(Rd) .

(σε0)
d
2

Ld
.

6



In order to derive the upper bound, we use integration by parts. Let D =
i Ln|n|2 ·∇. We see that Dk exp(−in · xL) = exp(−in · xL). The adjoint of D is given

by Dt = −i∇ · Ln|n|2 . We therefore obtain the following

|cn| = (2πL)−d

∣∣∣∣∣∣
∫
Rd

Dk exp
(
in · x

L

)
ψε0(x)(2πσ2)d/4 exp

(
|x|2

2σ2

)
dx

∣∣∣∣∣∣
= (2πL)−d

∣∣∣∣∣∣
∫
Rd

exp
(
−in · x

L

)
(Dt)k

[
ε
−d/2
0 ψε0(x)(2πσ2)d/4 exp

(
|x|2

2σ2

)]
dx

∣∣∣∣∣∣
. L−d

(
L

|n|

)k ( σ
ε0

)d/2 ∑
|α|≤k

‖∂α
[
ψ

(
x

ε0

)
exp

(
|x|2

4σ2

)]
‖L1(Rd)

.k
(ε0σ)d/2

Ld

(
L

ε0|n|

)k
M1 .

The claimed upper bound follows. For the remaining claim we notice that

γnm =

∫
Rd

φn(x)φm(x) dx = exp

(
− σ2

2L2
|n−m|2

)
.

Fix N ∈ N. If n ≤ N , we use the upper bound for cn to estimate

‖
∑
|n|≤N

cnφn(x)‖2L2(Rd) .
(σε0)d

L2d

∑
|n|,|m|≤N

exp

(
− σ2

2L2
|n−m|2

)
.

(
ε0N

L

)d
M1 .

For n ≥ N , we use the second upper bound for cn with k = d to obtain∣∣∣∣∣∣
∑
|n|≥N

cnφn

∣∣∣∣∣∣
L2(Rd)

.
(σε0)d

L2d

(
L

ε0

)2d ∑
|n|≥|m|≥N

1

|n|3
1

|m|3
exp

(
− σ2

2L2
|n−m|2

)

.

(
σ

ε0

)d ∑
|n|≥|m|≥N

1

|m|2d
.

(
L

ε0N

)d
M1 .

We conclude

‖
∑

|n|≤ L
ε0 log log(ε−1)

cnφn‖2L2(Rd) + ‖
∑

|n|≥ L
ε0

log log(ε−1)

cnφn‖2L2(Rd) . (log log(ε−1))−dM1 .

The assertion follows provided that

(log log(ε−1))−dM1 � η . (5)
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This observation of [9] gives a precise expansion of the initial condition into
Gaussian heat packets

φn,x0(x) =
1

(2πσ2)d/4
exp

(
−|x− x0|2

4σ2
+ iξn · (x− x0)

)
,

which evolve in Rd according to simple analytic formulas and are centered
around a suitable x0. In the decomposition we selected, x0 = 0, by our choice
of origin. Here x0 denotes the fact that we could have had more that one ψε0
in our decomposition for u(0, x). We leave x0 in to show that it is difficult to
do the Gramian computations when the centers are not suitably separated.

For simplicity we write

φn,x0(t, x) = [exp(t∆Rd)φn,x0 ](t, x) ,

where we have that

φn,x0(t, x) =

(
σ√

2π(σ2 + t)

)d/2
exp

(
−|x− x0 + 2iξnt|2

4(σ2 + t)
− t|ξn|2 + iξn · (x− x0)

)
.

We let

kR
d
(t, x, y) = (4πt)−d/2 exp(−|x− y|2/4t)

denote the heat kernel in Rd and kΩ the corresponding heat kernel in Ω. We
take Kac’s principle, Proposition 6.3.1 in [2], to approximate the evolution of
the heat packets in the upper half plane. Kac’s principle states:

Proposition 2.2. Assume that Ω ⊂ Rd is smooth, and let x ∈ Ω be fixed. For
every y ∈ Ω we let

t0(y) =
d(y,Γ)2

2d
.

It follows that

0 ≤ kRd(t, x, y)− kΩ(t, x, y) ≤


(4πt)−

d
2 exp(−d(y,Γ)2/4t) if t ≤ t0(y),

(4πt0(y))−
d
2 exp(−d/2) if t > t0(y).

(6)

A short computation using Kac’s principle shows that:

Lemma 2.3. We have for 0 < t < η0δ
4, and ‖ψ‖C0(Ω) < M0,

‖ exp(t∆Ω)ψε0(x)− exp(t∆Rd)ψε0(x)‖C([0,T ]×Ω) ≤
η0

2
M0

whenever ε0 < δ2 < 1.
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Proof. We would like an estimate on

sup
t,x
|
∫
Rd

(kR
d
(t, x, y)− kΩ(t, x, y))ψε0(y) dy | . (7)

We divide Ω into a region I, defined by d(y, ∂Ω) > t1/4, and its complement,
region II. Using Kac’s principle we can bound (7) from above by

sup
t,x

∫
I

(4πt)−d/2 exp

(
−d(y, ∂Ω)2

4t

)
|ψε0(y)| dy

+ sup
t,x

∫
II

(
2π

d

)−d/2
(d(y, ∂Ω))−d exp(−d/2)|ψε0(y)| dy .

We introduce coordinates near the boundary ∂Ω with y1 = d(y, ∂Ω) and y′ =
(y2, . . . , yd). For the integral in region I, we have after change of variables

diam(Ω)/ε0∫
t1/4/ε0

∫
y′/ε0

εd0(4πt)−d/2 exp

(
−y2

1ε
2
0

4t

)
|ψ(y1, y

′)| dy′ dy1 ≤ ε
d
2
0

exp
(
− 1

4t1/2

)
(4πt)

d
2

M0|∂Ω| .

In region II the integral can be estimated by

t1/4∫
δ

(
2π

d

)−d/2
exp(−d/2)y−d1

∫
y′
|ψε0(y1, y

′)| dy′ dy1

= ε
d
2
0

(
2π

d

)−d/2
exp(−d/2)

t1/4/ε0∫
δ/ε0

y−d1

∫
y′/ε0

|ψ(y1, y
′)| dy′ dy1

= ε
d
2
0

(
2π

d

)−d/2
exp(−d/2)

M0ε
d−1
0

d− 1
|∂Ω| (δ1−d − t

1−d
4 ) .

and the integral is empty if t1/4 ≤ δ. If we impose this condition, then quick
inspection of the second integral gives the desired result.

Initial data closer to the boundary would result in the construction of
a reflected heat packet, which we leave as an area of improvement in our
analysis. For the construction of the parametrix, we impose the condition
|ω|M0η0 < η‖u(t0, x)‖L2(ω) for some t0 ∈ (0, T ). Because we are dividing by
the measure of the set |ω|, for η0 to exist, we impose the condition similar to
[3]:
(•) The support of the solution u(t, x) must intersect the observation set ω at
a point x0 for at least one time t0, and |u(t0, x0)| > m0.

The condition implies η0 <
m0
M0
η, as m(ω)M0η0 < η‖u(0, x)‖L2(ω).
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Lemma 2.4 (Analogue of Proposition 4.7 in [9]). The evolution near the bound-
ary is given by

exp(t∆Ω)ψε0(x) =
∑
n

cnφn,x0(t, x) + v(t, x) ,

where

‖v(t, x)‖C0([0,T ];L2(ω)) ≤ η‖ψε0(x)‖L2(ω) .

Proof. This estimate requires two steps. For the first step we have:

‖ exp(t∆Rd)ψε0 − exp(t∆Ω)ψε0‖L2(ω) ≤
η

2
‖ψε0(x)‖L2(ω)

by Kac’s principle and (•). For the second step by inequality (3) and the
parabolic maximal principle∥∥∥∥∥exp(t∆Rd)ψε0 −

∑
n

cnφn,x0(t, x)

∥∥∥∥∥
L2(ω)

=

∥∥∥∥∥exp(t∆Rd)

(
ψε0 −

∑
n

cnφn,x0(x)

)∥∥∥∥∥
L2(ω)

≤ ‖ exp(t∆Rd)‖L2(ω)→L2(ω)‖ψε0 −
∑
n

cnφn,x0(x)‖L2(ω)

≤ η

2
‖ψε0(x)‖L2(ω) ,

c.f. [7], Theorem 1.3.3.

In particular, we notice that away from this regime we can approximate
the evolution of the heat packets by the evolution in Rd. This approximation
simplifies the analysis considerably, so we choose to focus on this regime as our
model case.

The key ingredient will be precise estimates for the inner products of heat
packets on Rd, which follow from the explicit Gaussian shape of φn,x0 . Analo-
gously to [12], we consider the Gramian matrix G corresponding to the evolved
heat packets:

Gnm(x0, y0, ω) =

∫ T

0

∫
ω
φn,x0(t, x)φm,y0(t, x) dx dt .

Inspired by techniques used for Gaussian frames in [16], we would like to show
that the largest contribution to the observability constant comes from the di-
agonal terms, and that the largest contributions are due to low–frequency heat
packets. In [12] a randomization assumption was required to remove the off-
diagonal terms.

To simplify the notation, set

A(t, n) = exp

(
−2tσ2|ξn|2

σ2 + t

)
.

We define B(x0,
√
σ2 + t) as

B(x0,
√
σ2 + t) = {x : |x− x0| ≤ 2(t+ σ2)1/2} . (8)
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Proposition 2.5. Let ε1 < 1 and T = ε1σ
2. We assume ε in Lemma 2.1 is

small enough such that Ω ⊂ [−σ2, σ2]d. We let Cd be a fixed constant depending
on the dimension only. We have the following estimates:

a) Lower bound for the diagonal terms:

Gnn(x0, x0, ω) ≥ Cd(exp(−1))σd
∫ T

0

|ω ∩B(x0,
√
σ2 + t)|

|B(x0,
√
σ2 + t)|

A(t, n) dt . (9)

b) Upper bound for the diagonal terms:

Gnn(x0, x0, ω) ≤ Cdσd(1 + erfc(1))(erf(1))−1

∫ T

0

|ω ∩B(x0,
√
σ2 + t)|

|B(x0,
√
σ2 + t)|

A(t, n) dt

(10)

c) An upper bound for the off-diagonal terms:

Cd|ω|
∫ T

0

(
σ2

σ2 + t

)d/2
A1/2(t, n)A1/2(t,m) exp

(
− (x0 − y0)2

4(σ2 + t)

)
dt (11)

d) An equality for the off–diagonal terms when |n|, |m| < L, σ2 + t < 1, ω is
radially symmetric with suppω ⊂ [−R,R]d:

|Gnm(x0, x0, ω)| (12)

= Cd|ω|erfR

∫ T

0

(
σ2

σ2 + t

)d/2(
1 +

(
o(1)(σ2 + t)

) d
2

)
(A1/2(t, n)A1/2(t,m)) dt .

Proof. The estimates follow from the explicit formula:∫ T

0

∫
Rd
φn,x0(t, x)φm,x0(t, x) dx dt = (13)∫ T

0

∫
Rd

exp

(
− x2

2(σ2 + t)
+ ix ·

(
(ξn − ξm)

σ2

σ2 + t

))
exp

(
−(ξ2

n + ξ2
m)

tσ2

σ2 + t

)
dx dt

In a) we integrate the Gaussian over the intersection of ω over the standard–
deviation part of the integrand around x0. We recall the following definitions
of the error and complementary error functions:

2√
π

∞∫
b

exp(−x2) dx = erfc(b) ,
2√
π

b∫
0

exp(−x2) dx = erf(b).

The error function has the following asymptotic behavior [1]:

erfc(b) ∼ 1

(1 + a1 + a2b2 + a3b3 + a4b4)4
∀b ≥ 0 (14)

with a1 = 0.278393, a2 = 0.230389, a3 = 0.000972, a4 = 0.078108.
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For part a), we start by integrating

Gnn(x0, x0,Rd)

in x, and notice that

2√
π

∫
B

exp
(
− x2√

σ2+t

)
√
σ2 + t

' erf(1) .

Then we may replace the limits of integration in the inner product over Rd
to those of the ball B(x0,

√
σ2 + t), with small error as dictated by (14). The

desired result follows by a change of variables in x and using

inf
B

exp(−x2) = exp(−1);

here the limit is over the rescaled ball. The result in part b) follows similarly.
For the result in part c) we see∣∣∣∣∫ T

0

∫
Rd
φn,x0(t, x)φm,y0(t, x) dx dt

∣∣∣∣ ≤ ∫ T

0

(
σ2

σ2 + t

)d/2
× · · ·

× exp
( t2(|ξn|2 + |ξm|2)

σ2 + t
− (x0 − y0)2

8(σ2 + t)
−K(ξn − ξm)2 − . . .

− t(|ξn|2 + |ξm|2
)
dt . (15)

We notice that exp(−K(ξn − ξm)2) is decaying for short times. Unfortunately,
we cannot easily exploit the decay in K. In particular, when integrating with
respect to x in (13), this amounts to an estimate on∣∣∣∣∣∣

∫
ω

exp(ik · x) exp(−ax2) dx

∣∣∣∣∣∣ (16)

for some k, a constants without losing information on the oscillatory part. By
Hardy’s uncertainly principle, c.f. [15] Theorem 1, the only way a Gaussian will
Fourier transform to another Gaussian is if the initial data is Gaussian, and we
are integrating over all of Rd. Otherwise, we obtain a larger rate of decay. We
define a smooth cut-off function χω, which is 1 on the support of ω. We see
that

|〈χω, exp(−ax2) exp(ikx)〉L2(Rd)| ≤

‖χω‖2L2(Ba)‖ exp(−ax2) exp(ikx)‖2L2(Rd) ≤ Cdm(ω)a−d/2

with C independent of a and k, while(π
a

) d
2

exp

(
−π

2k2

a

)
=

∫
Rd

exp(−ax2) exp(ikx) dx.

12



Thus, we can bound |Gnm(x0, x0, ω)| with a loss of exponential decay. It follows
that (15) is bounded by

Cdm(ω)

∫ T

0

(
σ2

σ2 + t

)d/2
exp

(
−(ξ2

n + ξ2
m)

tσ2

σ2 + t

)
exp

(
− (x0 − y0)2

4(σ2 + t)

)
dt .

Recall as a modification of Lemma 3 in [15]:

Lemma 2.6. Suppose |f(x)| ≤ exp(−ax2) for all x in {x : |x| ≤ R} and some
a > 0. Then f̂(ξ) is smooth and one has the bound for ξ ∈ I:

f̂(ξ) =
Cd|R|erfR√

a

(
1 + o(1)

|ξ|2

a

)
(17)

for any interval I, such that |I| < 1.

Proof. The Fourier transform has the Taylor series expansion

f̂(ξ) = f̂(0) + ξ∂ξ f̂(0) +
ξ2

2
∂2
ξ f̂(0) +O(|ξ|3) . (18)

We can then calculate

∂ξ f̂(ξ)|ξ=0 =

∫
|x|<R

(2πix)k exp(−ax2) dx. (19)

Our function which is the integrand in (13) satisfies the criterion of Lemma
2.6 in 1d. We apply the Lemma which generalizes easily to Rd. It follows from
the equality (12) the off-diagonal terms contribute substantially to the matrix
norm of a Gramian if σ2 < 1 and |n|, |m| ≤ L. Examining the leading order
term part of the contribution in (12), and the upper bound in c) we see

erfR inf
t

((A−1/2(t, n)A1/2(t,m)))‖φn,x0(t, x)‖2L2((0,T )×Rd) ≤

Cd

∫ T

0

(
σ2

σ2 + t

)d/2
(A1/2(t, n)A1/2(t,m)) dt ≤

sup
t

((A−1/2(t, n)A1/2(t,m)))‖φn,x0(t, x)‖2L2((0,T )×Rd)

Both prefactors inf
t

((A−1/2(t, n)A1/2(t,m))) and sup
t

((A−1/2(t, n)A1/2(t,m)))

can contribute substantially when summing over n 6= m.

We need the following short time estimate.

Lemma 2.7. Assume that the C2+s norm of ψ is bounded by M2 with s > d/2
an integer. Then for all 0 ≤ t < C−1

s,dM
−1
2 η0ε

2+s
0 we have

|u(t, x)− ψε0(x)| ≤ η0.

with Cs,d a constant depending on d and s only.
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Proof. The mean value theorem states that ∃t0 ∈ (0, 1) such that

|u(t, x)− ψε0(x)| ≤ |∂tu(t0, x)|t . (20)

We know by definition ∂tu = ∆u, and by Sobolev embedding with s > d/2,

‖∆u‖C0(Ω) ≤ Cs,d‖u(t, x)‖H2+s(Ω) ≤ Cs,d‖u(0, x)‖H2+s(Ω).

The last line follows from standard energy estimates (Appendix, Theorem 4.1)
and the finite expansion from Lemma 2.1. Our choice of timescale clearly works
by scaling.

We conclude from the precise values of the upper and lower bounds in
Proposition 2.5 that:

Corollary 2.8. Let T < ε and ε sufficiently small. We have the following
bound

η

2

∫ T
0

∫
Ω χω(x)|u(t, x)|2dx dt∫

Ω |u(T, x)|2dx
≤
‖
∑
n
cnφn,x0(t, x)‖2L2(ω×(0,T ))

‖
∑
n
cnφn,x0(T, x)‖2

L2(Ω)

≤ 2

η

∫ T
0

∫
Ω χω(x)|u(t, x)|2dx dt∫

Ω |u(T, x)|2dx
, (21)

with CAT (ω) . CT (ω), and CAT (ω) > 0. The replacement is possible even if we
consider a finite number N of φn,x0(t, x) with |n| ≤ N as dictated by Lemma
2.1.

Proof of Theorem 1.1 a) and Corrollary 2.8. . We recall that ‖φn.x0(0, x)‖2
L2(Rd)

=

1. Recall that η is the small frame parameter given to us by (3). We make the
natural assumption which we call the bootstrap assumption,

|u(t, x)− u(0, x)| < η0 ⇒ ‖u(t, x)‖L2(ω) ≥ 2η‖u(0, x)‖L2(ω) ,

which is valid for short times and small η0 such that |ω|η0 < η‖u(t0, x)‖L2(ω)

for some t0 ∈ (0, T ). Because we are dividing by the measure of the set |ω|,
for η0 to exist, we must have the criterion (•) hold. The question of validity of
this assumption for arbitrary ε0 is given by Lemma 2.7, which fails as ε0 → 0
because the timescale shrinks with ε0. We also know

‖u(t, x)‖L2(ω) ≤ ‖ exp(t∆Ω)(u(0, x)−
∑
n

cnφn,x0(0, x))‖L2(ω) + ‖
∑
n

cnφn,x0(t, x)‖L2(ω)

≤ η‖u(0, x)‖L2(ω) + ‖
∑
n

cnφn,x0(t, x)‖L2(ω) .

By the bootstrap assumption and the energy estimates in the Appendix, we
have

‖u(t, x)‖L2(ω) − η‖u(0, x)‖L2(ω) ≥ η‖u(0, x)‖L2(ω) ≥ η‖u(t, x)‖L2(ω).
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We see also that

‖
∑
n

cnφn,x0(T, x)‖L2(Ω) ≤ ‖u(T, x)‖L2(Ω) + η‖u(0, x)‖L2(Ω) ≤ 2‖u(T, x)‖L2(Ω) ,

again by the bootstrap assumption and the energy estimates. The desired result
(21) follows. We know from [10] that the left hand side of (21) is nonzero, so
CAT (ω) is nonzero.

Therefore we have made only the following assumptions on ε in terms of the
parameter η:

0 < (log log(ε−1))−dM1 � η .

This was used in Lemma 2.1 on the condition (3) precisely dictated by (5). We
also made the short time assumption in Lemma 2.7 and condition (•):

t < C−1
s,dη0ε

2+s
0 M−1

2 , |ω|η0m0 < M0η‖u(t0, x)‖L2(ω) for some t0 ∈ (0, T )

and the assumption Ω ⊂ [−σ2, σ2]d for the bounds a,b) in Prop 2.5 to hold.
We notice that the short timescale is only necessary for the bounds on little
ω. For longer timescales, the parametrix itself is valid on Ω. The timescale
for the parametrix to be valid is largely dictated by Kac’s principle and can be
improved by including reflections at ∂Ω.

Remark 2.9. For an arbitrary collection of data that there is no interaction,
e.g. Gnn(x0, y0) can be not that much different from Gnn(x0, x0) unless there
are some strong hypotheses on the separation of x0, y0. Also, the frequency
scales of the relative Gramians change as L and σ scale with the respective
distance to the origin. We leave this as an area for improvement in our analysis.

3 Proof of Theorems 1.1 and 1.2

We re-label where it is understood so that we are now studying the randomized
initial field, e.g. cn 7→ βνncn. We drop the subscript x0 where it is under-
stood. The estimates on the randomized field are for arbitrary bounded times
T < σ2, and we only need the short time assumption for the approximation to
randomized observability constant.

From the previous section, we conclude that our appoximate randomized
obervability constant with heat packets can replace the observability constant
with uν a randomized field as in the Introduction. However, we cannot obtain an
appoximation of the true observability constant because the off diagonal terms
contribute substantially to the matrices required, by Proposition 2.5 c,d). In a
deterministic problem, because the heat packets are not orthogonal, one obtains
a generalized eigenvalue problem Gc = λHc, which only becomes an honest
eigenvalue problem if one discards that H is not diagonal, i.e. if one neglects
the L2-inner products between different φn and assumes they are orthogonal:
Hnm =

∫
Ω φn(T, x)φm(T, x) dx ∼ Cn(T )δnm. All the analysis below is only

possible if Hnm =
∫

Ω φn(T, x)φm(T, x) dx ∼ Cn(T )δnm, whence the need for
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randomization. Without this assumption, one is forced to deal with Gc = λHc,
and an analysis of both G and H is required: The relevant matrix is then G
in the basis eigenvectors of H, and one needs that this is dominated by the
diagonal. In the previous section, we were able to reduce the question to a
finite matrix optimiztation with a lower bound on the observability constant.
One could obtain an poor upper bound in terms of only the diagonal entries,
but this bound is not very sharp.

We need the following proposition to aid in the computations. Let UM =
{χω : ω ∈ MM} the set of characteristic functions supported on sets in MM .
We study the optimal observability constant as a functional on UL:

CT (χω) = inf

∫ T
0

∫
Ω χω(x)|u(t, x)|2dx dt∫

Ω |u(T, x)|2dx
, (22)

where the infimum extends over all solutions u ∈ C∞(Ω) of the initial–boundary
problem for the heat equation with homogeneous Dirichlet boundary conditions
and initial condition u(0, ·) ∈ C∞c (Ω).

To assure existence of minimizers, it will be useful to study a relaxed prob-
lem, in which we extend CT (χω) from UM to its closure in L∞ with respect to
the weak∗ topology,

UM = {a ∈ L∞(Ω; [0, 1]) :

∫
Ω

a(x) dx = M |Ω|} .

We set:

CT (a) = inf

∫ T
0

∫
Ω a(x)|u(t, x)|2dx dt∫

Ω |u(T, x)|2dx
. (23)

In order to understand the existence and properties of χω which maximize
CT , we would like to replace u(0, ·) by a superposition

∑
n cnφn of heat packets

as in Lemma 2.1. Then we define CT (χω) as the infimum over all admissible
choices of cn.

From the discussion above we focus on the analysis in the upper half plane.
As in [12], we may write this as an eigenvalue problem, i.e. with constraint∑

n

|cn|2 = 1.

However, here the time–dependence is not entirely trivial. From Corollary
2.8a) and b) we may then conclude that CT (χω) > 0, i.e. part a) of Theorem
1.1. Our proof of Theorem 1.1 and Theorem 1.2 will now follow closely along
the lines of [12]. The basic hypotheses on the spectral decompositions there
can be proven for our heat packets, but we retain the ordering (H1) and (H2)
from [12]. These seemingly natural hypotheses imply strong assumptions on
the level sets of the eigenfunctions for the Dirichlet Laplacian which are never
actually proved in [12].

The following Lemma will be used to show that minimizers of the relaxed
problem are characteristic functions:
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Lemma 3.1 (H1). Assume that there exist a subset E ⊂ Ω with |E| > 0, an
integer N ∈ N∗, coefficients αj ∈ R+, |j| ≤ N and C ≥ 0 such that

∑
|j|≤N

αj

T∫
0

|φj(t, x)|2 dt = C

a.e. on E. Then C = 0 and αj = 0 for all j.

Proof. The functions

|φj(t, x)|2 =

(
σ√

2π(σ2 + t)

)d
exp

(
−|x− x0|2 − 4|ξj |2t2

2(σ2 + t)

)
exp

(
−2|ξj |2t

)
extend from Rd to holomorphic functions of x on Cd. Integrating in t, also∑
|j|≤N

αj
T∫
0

|φj(t, x)|2 dt admits a holomorphic extension and is constant on E.

Because |E| > 0, E contains an accumulation point in Ω, and therefore

∑
|j|≤N

αj

T∫
0

|φj(t, x)|2 dt = C

is constant for all x ∈ Cd. We integrate both sides of this identity over x ∈ Rd
to conclude that

∑
|j|≤N

αj

T∫
0

(
σ2

σ2 + t

)d/2
exp

(
−2tσ2|ξj |2

σ2 + t

)
dt

is infinite, whenever C > 0, a contradiction. Therefore C = 0, and therefore

∑
|j|≤N

αj

T∫
0

(
σ2

σ2 + t

)d/2
exp

(
−2tσ2|ξj |2

σ2 + t

)
dt = 0.

As all summands are nonnegative, and the t–integrals positive, we conclude
αj = 0 for all j.

Let

dj =

∫
Ω

|φj(x, T )|2 dx

−1

.

In order to assure the existence of a solution, we use the relaxation as defined in
[4]. Because the set UM is not weak-* compact, we consider the convex closure
of UM in the weak-* topology of L∞, which is then

UM = {a ∈ L∞(Ω; [0, 1])|
∫
Ω

a(x) dx = M |Ω|}.
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This relaxation was used in [11, 12]. If we replace χω ∈ UM with a ∈ UM , we
define a relaxed formulation of the optimal shape design problem, by

sup
a∈UM

J(a),

where the functional J naturally extends to UM as

J(a) = inf
j∈N

dj

∫
Ω

a(x)|φj(x)|2 dx.

We show the following:

Lemma 3.2 (H2). For all a ∈ UM one has

lim inf
|n|→∞

∫ T

0

∫
Ω
a(x)dn|φn(t, x)|2 dx dt > γ1(T ) . (24)

Here γ1(T ) is the “appropriately renormalized,” first–frequency heat packet

γ1(T ) =

∫ T
0

∫
ω |φ1(t, x)|2 dx dt∫

Ω

|φ1(T, x)|2 dx
.

Proof. It suffices to prove the estimate for χω ∈ UM , because a is in the weak-*
closure of UM . The estimate (24) is equivalent to∫ T

0

∫
ω |φ1(t, x)|2 dx dt∫

Ω |φ1(T, x)|2 dx
< lim
|n|→∞

∫ T
0

∫
ω |φn(t, x)|2 dx dt∫

Ω

|φn(T, x)|2 dx

We use the shorthand Bt for the ball defined by (8). Let mω
t = |ω∩Bt|

|Bt| and

CB = exp(−1)(erf(1)) as in Proposition 2.5 a,b). The left hand side has the
upper bound

(mΩ
t )−1Cd

(sup
t
mt)

T∫
0

A(t, 1) dt

CBA(T, 1)
< (mΩ

t )−1CdC
−1
B |ω|

exp(2|ξ1|2T )− 1

2|ξ1|2
<∞

(25)

and the right hand side has the lower bound

(mΩ
t )−1CdCB

(inf
t
mt)

T∫
0

A(t, n) dt

A(T, n)
> (mΩ

t )−1CdCB
|ω|
|BT |

exp(2|ξn|2T )− exp(3/2|ξn|2T )

3/2|ξn|2
(26)

where we used the fact

sup
t
mω
t = |ω| inf

t
mω
t =

|ω|
|Bt|

The right hand side of (26) goes to∞ as n→∞ and the claim is verified. This
computation can also be used to show CAT (ω) > 0 directly, provided we recall
the denominator in the randomized observability constant is bounded below by∑
n
|cn|2 by energy estimates in the Appendix.
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Standard variational arguments assure the existence of a unique relaxed
solution:

Lemma 3.3. The optimal design problem admits a unique solution a∗ ∈ UM .

Proof. As a result of Corollary 2.8 it suffices to examine the minimization prob-
lem for the functional J on UM ,

J (a) = inf
c∈`2(Nd)

∫ T
0

∫
Ω a(x)|

∑
n
cnφn(t, x)|2dx dt∫

Ω

∑
n
| cnφn(T, x)|2dx

.

If we consider the normalization
∫

Ω

∑
n
| cnφn(T, x)|2dx = 1, then it follows that

we may equivalently consider

inf

∫ T

0

∫
Ω
a(x)

∑
n

dn|φn(t, x)|2dx dt .

For a ∈ UM , the mapping

a 7→ dn

∫ T

0

∫
Ω

a(x)|φn(t, x)|2 dx dt

is linear and continuous in the weak–∗ topology of L∞. Therefore J is upper
semicontinous as the infimum of continuous linear functionals. Because UM is
compact in the weak–∗ topology, the result follows.

Proof of Theorem 1.1 b), c). We now define the truncated functional

JN (a) = inf
|n|≤N

dn

∫ T

0

∫
Ω
a(x)|φn(t, x)|2 dx dt

for all a ∈ UM and consider the problem

sup
UL

JN (a) .

The above problem has at least one solution aN ∈ UL, by the arguments
that proved Lemma 3.3, because UL is weak–∗ compact and JN upper semi–
continuous. Using (H1) and (H2), we are going to show that the solution aN is
actually a characteristic function of a set ωN , aN = χωN ∈ UM . Namely, if we
denote

SN = {α = (αn)|n|≤N :
∑
|n|≤N

αn = 1} ,

the Sion minimax theorem implies

sup
a∈UM

min
1≤n≤N

dn

∫ T

0

∫
Ω
a(x)|φn(t, x)|2 dx dt

= max
a∈UM

min
α∈SN

∫
Ω
a(x)ϕN (x) dx

= min
α∈SN

max
a∈UM

∫
Ω
a(x)ϕN (x) dx .
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Here we have defined

ϕN (x) =
∑
|n|≤N

dnαn

T∫
0

|φn(t, x)|2 dt .

As a result, there exists αN ∈ SN such that (aN , αN ) is a saddle point of the
functional. This then implies that aN is a solution to the problem

max
a∈UM

∫
Ω

a(x)ϕN (x) dx .

By (H1), the functional ϕN cannot be constant on a subset of Ω of positive
measure. This implies the existence of λN such that aN (x) = 1 when ϕN (x) >
λN and aN (x) = 0 otherwise. As JN is concave, the set of maximizers is
convex. Since every maximizer is a characteristic function, aN ∈ UM must be
the unique maximizer. We note that ϕN is analytic and therefore ωN is open
and semi-analytic.

Proof of Theorem 1.2. It remains to compare the maximizers aN ∈ UM of JN
with the maximizer a∗ ∈ UM of J from Lemma 3.3. First,

JN0(a∗) ≤ γ1(T ) ,

and (H2) applied to a∗ shows that

inf
|n|>N0

dn

∫
Ω

a∗(x)

T∫
0

|φn(t, x)|2 dx dt > γ1(T ) (27)

for some N0 ∈ N. From (27) we have that

J(a∗) = min

{
JN0(a∗), inf

|n|>N0

dj

∫ T

0

∫
Ω
a∗(x)|φn(t, x)|2 dx dt

}
= JN0(a∗) .

If aN0 ∈ UM is the maximizer of JN0 , we show that J(a∗) = JN0(aN0) as in [12]:
Indeed, because aN0 maximizes JN0 over UM , we have that J(a∗) = JN0(a∗) ≤
JN0(aN0). We assume

JN0(a∗) < JN0(aN0) (28)

and obtain a contradiction: As JN0 is concave, for every t ∈ (0, 1] the assump-
tion (28) implies

JN0(a∗ + t(aN0 − a∗)) ≥ (1− t)JN0(a∗) + tJN0(aN0) > JN0(a∗) = J(a∗) .

By the choice of N0, one concludes that

JN0(a∗ + t(aN0 − a∗)) = J(a∗ + t(aN0 − a∗)) > J(a∗) ,

in contradiction to a∗ being a maximizer of J . So indeed, JN0(a∗) = J(a∗) =
JN0(aN0), or a∗ = aN0 .

Remark 3.4. Even though we are finding our optimal set over all indices n, we
remark that the truncation of the admissible indices in Lemma 2.1 implies a
bound on N For the case of high frequency data where ε0 → 0, N increases
enormously.
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4 Appendix: Well-posedness Estimates for the Heat
Equation

We consider the Dirichlet problem as stated in the Introduction:

∂tu = ∆u

u(t, x)|x∈∂Ω ≡ 0 (29)

u(0, x) = g(x)

with g(x) ∈ Ckc (Ω), such that Ω is a bounded subdomain of Rd with d ≥ 1. We
claim:

Theorem 4.1. Let k ∈ N0. Problem (29) admits the following well-posedness
estimate:

‖u‖L∞(0,T );Hk(Ω)) + ‖u‖L2(0,T );Hk+1(Ω)) ≤ C‖g‖Hk(Ω) . (30)

Proof. We multiply (29) by u and integrate over Ω while applying the divergence
theorem. We note that the boundary condition gives us:

1

2

d

dt

∫
Ω

u2(t, x) dx+

∫
Ω

|Du(t, x)|2 dx = 0 .

Integrating this equation with respect to time and using the initial condition
we obtain

1

2

∫
Ω

u2(t, x) dx+

t∫
0

∫
Ω

|Du(s, x)|2 dx ds =
1

2

∫
Ω

g2(x) dx .

Taking the supremum over T gives the desired result for k = 0. The result for
k > 0 follows by differentiating the heat equation and choosing ∇ku as a test
function.
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