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A sparse reconstruction framework for
Fourier-based plane wave imaging

Adrien Besson, Miaomiao Zhang, François Varray, Hervé Liebgott, Denis Friboulet, Yves Wiaux,
Jean-Philippe Thiran, Rafael E. Carrillo and Olivier Bernard

Abstract—Ultrafast imaging based on plane-wave (PW) in-
sonification is an active area of research due to its capability
of reaching high frame rates. Among PW imaging methods,
Fourier-based approaches have demonstrated to be competitive
compared to traditional delay and sum methods. Motivated by
the success of compressed sensing techniques in other Fourier
imaging modalities, like magnetic resonance imaging, we propose
a new sparse regularization framework to reconstruct high
quality ultrasound images. The framework takes advantage of
both the ability to formulate the imaging inverse problem in
the Fourier domain and the sparsity of ultrasound images in
a sparsifying domain. We show, by means of simulations, in
vitro and in vivo data, that the proposed framework significantly
reduces image artifacts, i.e. measurement noise and side lobes,
compared to classical methods, leading to an increase of the image
quality.

Index Terms—Ultrafast imaging, Fourier imaging, Sparse rep-
resentation, `1-minimzation.

I. INTRODUCTION

ULTRASOUND imaging (US) has become one of the most
used imaging modalities in the last 30 years. In the

conventional US systems, the number of transmitted waves
is usually equal to the number of scan lines, thus limiting the
frame rates to several tens of frames per seconds. Although this
frame rate is sufficient to perform most of the applications of
2D US imaging, a higher frame rate is required for the under-
standing of more complex dynamics such as echocardiography
for the heart motion analysis as well as for performing 3D or
4D imaging where thousands of scan lines are necessary. In
order to address these challenges, synthetic aperture methods
[1], [2] where few transducer elements are used to sequentially
insonify the whole medium as well as methods based on plane-
wave insonifications (PW) have thus been proposed. Methods
based on PW transmissions use PW to insonify the whole
medium with only few transmitted waves and backscattered
echoes are processed in parallel to reconstruct many scan
lines simultaneously. Using such modality, the frame rate is
no longer limited by the number of scan lines but only by the
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time of flight of the US wave, allowing US imaging systems
to reach thousands frames per seconds opening a whole range
of applications such as shear wave elastography [3], imaging
of pulse waves [4], ultrafast Doppler imaging [5], [6], ultrafast
vector flow imaging [7] and imaging of contrast agents [8].
For an exhaustive presentation of the applications, one may
refer to [9].

The development of ultrafast imaging has been intrinsically
linked to the possibility to achieve efficient beamforming
methods. When a PW reaches an inhomogeneity in the
medium (scatterer), part of its energy is backscattered and
the inhomogeneity becomes a secondary source. Assuming a
propagation in a homogeneous medium with a given speed
of sound, the propagation of the US wave from the secondary
source back to the surface has an hyperbolic travel-time curve.
The received echo signals thus consist in a set of hyperbolic
curves coming from all the inhomogeneities in the medium
and image reconstruction methods aim at inferring the position
of the scatterers from these hyperbolic profiles. In order to
do so, Montaldo et al. proposed a spatial-based approach in
which the backscattered echo signals are integrated over all the
possible hyperbolas. The value of the integral is then assigned
to the corresponding point in the desired image [10]. Another
approach has been proposed by Lu et al. in the 90s based
on the use of limited diffraction beam theory to perform high
frame rate imaging [11]–[14]. In their approach, a pulsed PW
is used in transmission to reconstruct the Fourier spectrum
of the desired image. They later extended their approach to
various transmission schemes such as steered PWs (SPW) al-
lowing an increase of the image quality [15]. Recently, Garcia
et al. introduced an alternative to the method of Lu et al.
based on a modification of the Stolt’s f-k migration technique
yielding image quality similar to the method of Lu et al. [16].
Recently, Bernard et al. proposed another alternative based on
sampling the Fourier space radially and exploiting the Fourier
slice theorem to retrieve the desired image spectrum, as in
other imaging modalities such as computed tomography [17].

The use of ultrafast methods with only one PW leads to an
image quality lower than conventional delay and sum (DAS)
method with focus transmitted beams [18]. This decrease
mainly comes from the fact that the transmitted energy, while
spread in the entire medium, is far lower than when it is
focused as in the conventional imaging configuration. To
address this problem, coherent compounding of PWs has thus
been introduced by Montaldo et al. [10]. Based on emitting
-PW with well chosen angles and adding them with different
delay strategies, this method enables creating a synthetic focus
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in the full image range and leads to a noticeable increase of the
image quality. However, PW compounding causes a decrease
of the frame rate, proportional to the number of compounded
PWs. Moreover, at large depth, this method becomes infeasible
since the overlap of the PW does not cover homogeneously
the distant regions relative to the probe size.

Compressed sensing (CS) has attracted much interest in
the medical imaging community because of the potential to
obtain high quality images from less data. By doing so, CS
enables faster acquisition while guaranteeing similar image
quality. The ability to apply CS framework to an imaging
problem mainly relies on two pillars, namely the ability to
relate the measurements to the desired image by a linear
measurement process and the prior knowledge that images
are sparse (or compressible) in a predefined model. Given
these two pillars, it appears that medical imaging has char-
acteristics that promote the use of CS. Firstly, the user can
control the acquisition scheme in order to make it suitable
to CS. Secondly, most of medical imaging modalities have
measurement models which can be described by projections.
In X-ray tomographic imaging (X-ray CT), the sinogram is
related to the attenuation coefficient by the Beer-Lambert law
(see [19] for detailed information) which, when discretized,
leads to a linear system, thus compliant with the CS model.
Moreover, gradient magnitude image sparsity is a powerful
prior leading to an extensive number of applications of CS to
X-ray CT based on total variation (TV) minimization [20]–
[22]. In magnetic resonance imaging (MRI), k-space samples
of the final image are acquired and the measurement model
is an inverse discrete Fourier transform (FT). In their pioneer
work, Lustig et al. proposed to retrieve the final image from
partial Fourier data enforcing a sparsity prior both in the
wavelet domain and under the TV transform [23] opening the
way to fast MRI image acquisition. There has also been much
work in applying CS reconstruction to more advanced MR
techniques such as spread spectrum MRI [24], quantitative
MR imaging [25], [26], diffusion MRI [27] and dynamic MRI
[28], [29].

In the context of ultrasonic imaging, several studies have
already exploited the sparsity of backscattered echo signals in
the wave atom frame [30], as well as of radio frequency images
in specific frames such as 2D Fourier basis [31], wavelet basis
[32], or even learned dictionaries [33]. Schiffner et al. intro-
duced CS-based plane wave beamforming in the frequency
domain assuming sparsity in an orthonormal wavelet basis
[34] while Chernyakova et al. used a Xampling scheme and
a finite rate of innovation model to achieve CS-based Fourier
beamforming [35]. In a recent paper, David et al. introduced
CS-based time domain beamforming [36] in which the inverse
scattering problem is solved using Green’s function in an
homogeneous medium.

Motivated by the success of CS for MR imaging, we
introduce a sparse-based reconstruction of US images using
Fourier-based beamforming methods. Indeed, insonifying a
medium with a PW corresponds to populate the Fourier spec-
trum of the desired image with non-uniform Fourier samples
[14], [16], [17]. Thus, as for MRI, Fourier-based beamforming
methods aim at recovering an image from partial Fourier

measurements coming from the spectrum of the backscattered
echo signals. In order to apply a CS-based reconstruction, we
formulate the imaging problem as a linear inverse problem
relating the desired image to the spectrum of the echoes by a
non-uniform Fourier transform (NUFT) [37]. Then we study
several wavelet-based and Dirac-based models as sparsity
priors.

The paper is organized as follows. In Section II, the
CS framework is briefly summarized. Section III details the
three existing Fourier-based reconstruction approaches in US
imaging. In Section IV, the sparse reconstruction method
is introduced. Section V describes the different experiments
and simulations performed to evaluate the proposed methods.
Experimental results of the evaluation are presented in Section
VI and a discussion is followed in Section VII. Concluding
remarks are given in Section VIII.

II. COMPRESSED SENSING FRAMEWORK

The now famous theory of CS introduces a signal acqui-
sition framework that goes beyond the traditional Nyquist
sampling paradigm [38]–[40]. Let x ∈ CN be the signal
under scrutiny. The fundamental premise in CS is that certain
classes of signals, such as natural images, have a concise
representation in terms of a sparsity dictionary Ψ, such that
x = Ψα, where most of the coefficients α are zero, or small,
and only few are significant. CS demonstrates that such sparse
or compressible signals can be acquired using a small number
of linear measurements and then recovered by solving a non-
linear optimization problem [38]–[40].

Formally, the signal x is measured through the linear model
y = Φx+n, where y ∈ CM denotes the measurement vector,
Φ ∈ CM×N , M < N , is the sensing matrix and n ∈ CM
represents the observation noise (or model inaccuracies). Re-
covering x from y poses an ill-posed linear inverse problem
where the sparse prior on the signal regularizes the solution.
CS shows that the following convex problem can recover x
under certain conditions on the matrix Φ [41]:

min
x̄∈CN

‖Ψ†x̄‖1 subject to ‖y − Φx̄‖2 ≤ ε, (1)

where Ψ† denotes the adjoint operator of Ψ and ε is an
upper bound on the `2-norm of the noise. Recall that the
`p-norm of a complex-valued vector a ∈ CM is defined as
‖a‖p ≡ (

∑M
i=1 |ai|p)1/p, where | · | represents the modulus

of a complex number. The choice of the `1-norm instead of
the `0-norm (real measure of sparsity) is for convex relaxation
purpose. See [40] for a thorough review on the mathematical
principles of CS.

III. OVERVIEW OF THE FOURIER METHODS

When a PW is used to insonify a medium, the backscat-
tered echo signals can be beamformed in the Fourier domain
using Fourier-based beamforming methods [12], [16], [17]
which share the same general scheme. The first step, called
preprocessing, consists in applying a discrete 2D FT to the
backscattered echo signals. The intermediate image obtained
at this step is called preprocessed spectrum. The second step
consists in relating the preprocessed spectrum to the desired
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image by means of a NUFT, i.e. a FT on a non-uniform k-
space defined by each method.

In the following sections, we will briefly summarize the
different Fourier-based beamforming methods. As explained
above, while the general scheme remains the same, the meth-
ods differ in the non-uniform space on which the NUFT is
applied. Once this non-uniform space is defined, the desired
image can be obtained from the preprocessed spectrum by
taking the adjoint NUFT operator [37].

Fig. 1: Notations used in the remainder of the paper.

A. Lu method

Lu et al. derive X-waves relationship to theoretically model
the behaviour of the transducers array in transmit and receive
[14].

1) Preprocessing: The preprocessing step consists in taking
the 2D FT of the backscattered echo signals. Formally, let us
introduce r (xi, t) the backscattered echo signals. Then, the
preprocessing is denoted as

y (kx, k) =

∫∫
xi∈R,t∈R

r (xi, t) e
−j(kxxi+kt)dxidt (2)

= F(kx,k) (r) (3)

with F(kx,k)(.) the 2D FT on the frequency node (kx, k) and
k = 2π fc , with f the temporal frequency.

2) Frequency remapping: In a pulse echo configuration,
if we denote by (k′x, k

′
z), the k-space of the desired radio

frequency (RF) image, the following relationship holds:{
kx = k′x − k′z sin (θt) = gxL(k′x, k

′
z)

k =
k′2x +k′2z

2k′z cos(θt)+2k′x sin(θt)
= gzL(k′x, k

′
z),

(4)

where (kx, k) accounts for the k-space of the backscattered
echo signals.

Thus, the final RF image s (x, z) is related to the pre-
processed spectrum by a NUFT on (kx, k) defined by the
remapping (4) and the following relationship holds:

y (kx, k) = F(gxL (k′x,k
′
z),gzL (k′x,k

′
z)) {s (x, z)} . (5)

B. Garcia method

Garcia et al. propose a different approach for PW imaging
based on Stolt’s migration technique [16]. The main assump-
tion is called exploding reflector model (ERM) and states that
the scatterers in the medium all explode at the same time and
become emitting sources. Considering the ERM wave field
coming from a PW with angle θt, the objective is to retrieve
the value of the field at t = 0 knowing the value of the field at
the surface. Garcia et al. demonstrate that, as for Lu method,
the 2D FT of the backscattered echo signals is linked to the 2D
FT of the desired RF image by the remapping defined below.

1) Preprocessing: The preprocessing step, just like in Lu’s
method, consists in taking the 2D FT of the backscattered
echo signals and the preprocessed spectrum y (kx, k) is given
by (2).

2) Frequency remapping: The following relationship holds
between the k-space representation of the desired RF image
at (k′x, k

′
z) and the preprocessed spectrum:{
kx = k′x = gxG(k′x, k

′
z)

k = ĉ
csign (k′z)

√
k′2z + k′2x = gzG(k′x, k

′
z)

(6)

with ĉ = c√
1+cos(θt)+sin2(θt)

.

The RF image s (x, z) is related to the preprocessed spec-
trum by applying a NUFT on the k-space defined in equation
(6) and we have the following relationship:

y (kx, k) = F(gxG (k′x,k
′
z),gzG (k′x,k

′
z)) {s (x, z)} . (7)

with gxG(k′x, k
′
z) and gzG(k′x, k

′
z) defined in (6).

C. Ultrasound Fourier slice theory

Bernard et al. demonstrate, using the Fourier slice theorem,
that the temporal FT of a received PW steered with a given
angle is a radial line in the k-space of the desired image [17].
Thus, by simulating several steering angles θr at reception
for a given angle at emission, it is possible to populate the
spectrum of the desired RF image to recover it.

1) Preprocessing: The preprocessing step is slightly dif-
ferent than the two other methods and consists in three main
steps for each steered angle θr [42]:

1. Apply a linear delay law Pθr on the backscattered echo
signals: y1 (xi, t, θr) = Pθr {r (xi, t)}.

2. Sum the resulting signals on the lateral direction:
y2 (z, θr) =

∑
xi

y1 (xi, t, θr).

3. Compute the 1D temporal FT of the resulting signal:
y (k, θr) = Fk (y2) with k = f

c .
2) Frequency remapping: Given the preprocessed spectrum

y (k, θr) defined in III-C1 and a steering angle θt at transmis-
sion, Bernard et al. show that the following relationship holds:

k =
k′2x + k′2z

2 (k′x sin(θt) + k′z cos(θt))

θr = arctan
(

2 k′x k
′
z cos(θt)+(k′2x −k

′2
z ) sin(θt)

2 k′x k
′
z sin(θt)+(k′2z −k′2x ) cos(θt)

) . (8)

The region of the spectrum corresponding to a fixed value
of θr is a line of angle ξr = fθt(θr) with fθt(.) =
arctan((sin(θt) + sin(.))/(cos(θt) + cos(.))). Thus, for a
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range of values of θr, the spectrum of the desired im-
age is populated with lines of different angles. In the
same way as Lu and Garcia methods, the final image is
then related to the preprocessed spectrum by a NUFT on
(gxB (k′x, k

′
z) = k sin θr, gzB (k′x, k

′
z) = k cos θr) with k and θr

given by (8). We thus have:

y (kx, k) = F(gxB (k′x,k
′
z),gzB (k′x,k

′
z)) {s (x, z)} . (9)

D. Image reconstruction

Given the relationship between the desired RF image
s (x, z) and the preprocessed spectrum y (kx, k), the classical
way to retrieve the image from the preprocessed spectrum
consists in performing an inverse NUFT. However, y (kx, k)
does not have complete information on the spectrum of s (x, z)
thus recovering s from y is an ill-posed problem as it will be
described in the following section. In classical beamforming
approaches, the inverse NUFT is approximated by the adjoint
NUFT, also known as the filtered back projection method,
inducing measurement inaccuracies and image artifacts.

IV. SPARSE-BASED BEAMFORMING

A. Motivation

1) Fourier-based beamforming is an ill-posed problem:
When a wave is emitted from a source with limited aper-
ture, Lu has demonstrated that it generates so-called limited
diffraction array beams [13]. Plane waves have been described
as part of these limited diffraction array beams [13]. It has
also been demonstrated that the k-space of the backscattered
echo signals corresponding to plane wave insonification is
limited by evanescence properties of the waves [14]. In the
particular case of a plane wave with normal incidence, it
may be ascertained that k ≥ |kx| [15] with kx a function
of the aperture size. The k-space of the backscattered echo
signals is then related to the k-space of the desired image
through the remapping described in Section III. Thus, due to
the evanescence properties, only part of the desired image k-
space may be recovered as illustrated in Fig. 2 in [15]. Since
the entire image spectrum cannot be retrieved, the problem is
stated as ill-posed.

2) Interpolation schemes in the NUFT: Since the fast
Fourier transform (FFT) algorithm cannot be applied on non-
uniform grids, NUFT implies an interpolation process during
the frequency remapping, in which the non-uniform space is
projected on a uniform grid. This interpolation may create
artifacts and loss of signals [37]. Usual ways to address this
problem consists of zero-padding strategies or optimized in-
terpolation schemes [37]. However, it implies a non-negligible
additional computational cost and the quality improvement
remains limited.

3) The proposed approach: The idea behind the proposed
approach is to come up with an alternative to classical ap-
proaches in which the ill-posed problem is regularized by
exploiting sparsity of the US images in an appropriate model.
The desired image is then retrieved by solving a problem
similar to (1).

B. Proposed sparse-based beamforming method

Since the method is based on the CS framework described
in Section II, it relies on two pillars:
• The ability to pose the Fourier-based beamforming as an

inverse problem.
• The sparsity of the ultrasound images in an appropriate

model.
1) Problem formulation: The first pillar of the proposed

method consists in deriving a measurement operator from
the acquisition model. Formally, if y denotes the discretized
preprocessed spectrum defined in Section III for the different
methods, and s denotes the desired image, the objective is to
identify Φ such that y = Φs+n, where n accounts for noise
and model perturbations.

2) Measurement operator: Notice that s is related to y
by a 2D FT on a non-uniform space defined by the different
remappings described in Section III.

Let us first consider the discretization of the preprocessing
step. We define a regular grid for the backscattered echo
signals, denoted as r, and the corresponding k-space grid in
the following equations:{

xi =
{
jp, ∀j ∈

{−Nt
2 , ..., Nt2 − 1

}}
t =

{
l
fs
, ∀l ∈ {0, ..., Nr − 1}

} (10)

and kx =
{

2πm
p×Nt , ∀m ∈

{−Nt
2 , ..., Nt2 − 1

}}
k =

{
2πlfs
c×Nr , ∀l ∈ {0, ..., Nr − 1}

} , (11)

where p is the pitch, Nt is the number of transducer elements,
fs denotes the sampling frequency, c is the speed of sound
and Nr is the number of samples in the axial direction. The
discretized preprocessed spectrum is obtained by discretizing
the different continuous operations defined in Section III for all
the methods. For Lu and Garcia methods, the preprocessing
step amounts to compute y = FRr, where FR denotes the
discrete 2D FT on the k-space defined in (11). For UFSB, the
preprocessing step to obtain y from r is described in Section
III-C for each steering angle θr.

Let us also define a discrete uniform grid for the desired RF
image space, not necessarily the same grid as the backscattered
echo signals: x =

{
mL
NX

, ∀m ∈
{
−NX2 , ..., NX2 − 1

}}
z =

{
lZmax
NZ

, ∀l ∈ {0, ..., NZ − 1}
} (12)

with L the width of the probe, NX the number of image
samples in the lateral direction, NZ the number of image
samples in the axial direction and Zmax the maximum depth.
The following grid of the corresponding image k-space can be
deduced from (12):{

k′x =
{

2πm
L , ∀m ∈

{−NX
2 , ..., NX2 − 1

}}
k′z =

{
2πl
Zmax

, ∀l ∈ {0, ..., NZ − 1}
}
.

(13)

In order to take advantage of the FFT we use the non-
uniform fast Fourier transform (NUFFT) to implement the 2D
NUFT. The NUFFT operator can be modelled as Φ = GFS,
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where FS denotes the 2D FFT operator that computes the FT
of s in the discrete k-space (k′x,k

′
z) and G ∈ RNrNt×NXNZ

is a sparse matrix implementing a convolutional interpolation
operator that models the map from the discrete frequency
grid onto the continuous values (kx,k) according to the
different remappings described in Section III. We thus have
the following linear model:

y = GFSs+ n = Φs+ n, (14)

where n accounts for the measurement noise and model
inaccuracies induced by the interpolation.

3) The sparsifying model: The second pillar of the pro-
posed method resides in the existence of a sparsifying model
Ψ, i.e. a model in which the US images are compressible
meaning that their representation in this model contains many
zeroes. In the literature, various models have already been
proposed mainly relying on wavelet-based models [32], [34],
[36], [43]. However, the choice of the best model is a hard
task since it is highly dependent on the content of the image,
unknown a priori. In this paper, we propose to investigate
different sparsifying models described below:
• Dirac basis: In this very simple model, the operator Ψ

is the identity. This model is suited to images made of
few sparse sources.

• Orthogonal wavelet transform: In this model, the oper-
ator Ψ is the wavelet transform. This model is suited for
images with textural information.

• Undecimated wavelet transform: In this model, the
operator Ψ is a slight variation of the wavelet transform
where each decomposition has the same size as the
original image [44].

• Sparsity averaging model (SA): The operator for the SA
model is composed of the concatenation of Daubechies
wavelet transforms with different wavelet mother func-
tions ranging from Daubechies 1 (Db1) to Daubechies 8
(Db8) as it has already been proposed in previous studies
[42], [45]. Thus,

Ψ =
1
√
q

[Ψ1, ...,Ψq] (15)

where q = 8 and Ψi denotes i-th Daubechies wavelet.
Db1 is the Haar basis promoting piece-wise smooth
signals while Db2 to Db8 provide smoother sparse de-
compositions.

4) The `1-minimization algorithm: The proposed imaging
method is based on solving the convex problem:

min
s̄∈CN

‖Ψ†s̄‖1 subject to ‖y − Φs̄‖2 ≤ ε, (16)

where Ψ† denotes the adjoint operator of Ψ and Φ is the
NUFT operator. The alternating direction method of multi-
pliers (ADMM) [46] is chosen to solve (16). The detailed
implementation of ADMM can be found in Appendix.

One important aspect in solving problem (16) is the ability
to identify the value of ε that maximizes the quality of the re-
construction. In the presence of Gaussian noise, a closed-form
formulation of the best threshold exists based on the bound
of a X 2 distribution [47]. When the noise is not Gaussian,

other methods such as least angle regression (LARS) [48],
Pareto-curve-based `1- algorithms [49] and Stein unbiased risk
estimator (SURE) [50] may be used.

In the case of US imaging, the noise is unknown which
makes the use of the above methods very hard. Thus, the
choice of the best values is, in most of the studies, based
either on cross-validation techniques or manually tuned.

The impact of the choice of ε on the quality of the
reconstruction will be studied in Section VI-B.

C. Compounding scheme for sparse-based beamforming

A common way to increase the contrast of PW imaging
methods is by performing compounding of PWs with various
steering angles [10], [16]. Since speckle in the images coming
from PWs with different angles is decorrelated, averaging the
images obtained with several PWs leads to an increase of the
contrast. In the special case of Fourier-based methods, using
compounding also allows to populate more densely the image
spectrum and thus to reduce the interpolation error. It has
also been described that the resolution slightly increases with
compounding [16].

Formally, let us introduce a set of T emitting angles
(θti)i∈{1,..,T} and the corresponding backscattered echo sig-
nals (ri)i∈{1,..,T}. The proposed method consists in consid-
ering the new measurement vector which concatenates the
different preprocessed spectra for all the emitting angles
yC = [y1,y2, ...,yT ]

T and the new measurement operator
which corresponds to the concatenation of the measurement
operators for each emitting angle ΦC = [Φ1,Φ2, ...,ΦT ]

T .
Then, the following problem, close to problem (16), is solved:

min
s̄∈CN

‖Ψ†s̄‖1 subject to ‖yC − ΦCs̄‖2 ≤ ε, (17)

This problem is solved using the same algorithm as problem
(16).

V. EXPERIMENTS

A. Settings

1) Experimental settings: All the measurements have been
made with a standard linear-probe whose settings are given
in Table I. Several PWs are emitted in order to perform PW

Parameter Value
Number of elements (Nt) 128
Center frequency (f0) 5 MHz
Wavelength (λ) 0.31 mm
Sampling frequency (fs) 31.2 MHz
Pitch (p) 0.193 mm
Kerf 0.05 mm

TABLE I: Probe characteristics.

compounding. For a desired number of PWs, the compounding
scheme used is based on steering the PW by +0.5◦ or −0.5◦

starting from normal incidence. For instance, if we consider a 3
PWs configuration, the angles are (−0.5◦, 0◦, 0.5◦). Constant
speed of sound is assumed (1540 m.s−1). No apodization
is used neither in transmit nor in receive. The desired RF
image is reconstructed from the backscattered echo signals
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using classical Fourier-based and delay-and-sum approaches
as well as using the proposed approach. The envelope image
is extracted from the RF image through the Hilbert transform,
gamma-compressed using γ = 0.3 and finally converted to
8-bit gray scale to get the B-mode image.

2) Image reconstruction: For the classical approaches, a
zero-padding of a factor 2 in the axial direction and of a factor
1.5 in the lateral direction is performed for the Fourier-based
approaches in order to increase the image quality [37]. The
frequency remapping is performed using a linear interpolation.

For the proposed approach, no-zero padding is performed.
Four different sparsifying models are tested namely, the
Dirac model, the orthogonal wavelet transform (Daubechies
4 wavelets), the undecimated wavelet transform (Daubechies
4 wavelet) and the SA model (Daubechies 1 to Daubechies
8 wavelets). Different values of the sparsifying promoting
parameter ε are tested ranging between 0 and ||y||2.

B. Numerical simulation

We firstly simulate the system described above using CRE-
ANUIS [51], [52]. We use a cyst composed of a 8-mm
diameter anechoic occlusion centered at 4 cm depth embedded
in a medium with high density of scatterers (30 scatterers per
resolution cell) whose amplitudes are distributed according to
a standard normal distribution.

C. In vitro and in vivo experiments

The measurements are performed using a Verasonics ultra-
sound scanner (Redmond, WA, USA) with a L12-5 50mm
probe with the same settings as the simulated probe (given
in Table I). Two types of experiments are made using this
setup. Firstly, a CIRS ultrasound phantom (Model 54GS, Com-
puterized Imaging Reference Systems Inc., Norfolk, USA)
is imaged. Figure 2 displays the schematic diagram of the
corresponding phantom along with the imaging plane used in
the experiment. Secondly, in vivo carotids are imaged.

Fig. 2: Schematic diagram of the CIRS phantom with the
considered imaging plane (orange region).

VI. RESULTS

A. Choice of the sparsifying model

In order to study the effect of the sparsifying model on
the quality of reconstruction, the RF image of the simulated
phantom is reconstructed with the four sparsifying models
described in Section IV-B3, with ε = 0.3||y||2 and for 1

PW insonification. The contrast [53] is calculated on the
normalized envelope image using the following formula:

CR = 20 log10

|µt − µb|√
σ2
t+σ2

b

2

(18)

where µt and µb (σ2
t , σ

2
b ) are the means (variances) of respec-

tively the target and the background.
The contrast values, corresponding to the proposed recon-

struction coupled with the UFSB method, for the different
sparsifying models, are reported on Table II. They indicate
that the contrast is higher with the wavelet-based models than
with the Dirac basis. This result has been expected since US
images are sparser in the wavelet-based models than in the
Dirac basis. Among the wavelet-based models, SA performs
slightly better than the other models since it preserves a wider
range of variations of the signals [42], [45].

Dirac Orth. Wavelet Und. Wavelet SA
CR (dB) 7.18 8.05 8.30 8.72

TABLE II: Contrast values in dB obtained with 1 PW insonifi-
cation on the simulated anechoic phantom. The reconstruction
is performed with the proposed approach (UFSB method) and
four different sparsifying models.

It is known that the envelope image of diffusive speckle
follows a Rayleigh distribution [54], [55]. In order to evaluate
the reconstruction of the textured area, where diffusive speckle
should be present, the goodness-of-fit against the Rayleigh
distribution is tested. The envelope image is divided into non-
overlapping blocks of 10×10 pixels. In each block, a one-
sample Kolmogorov-Smirnov (KS) test is performed. This
test is a widely used statistical hypothesis test that can be
used to verify the equality between a sample and a reference
continuous probability density function (pdf). In our study,
the null hypothesis states that the envelope image follows a
Rayleigh distribution with significance level α = 0.05. For a
random variable r, the pdf of the Rayleigh distribution is given

by p (r) = r
σ2 e
−
(
r2

2σ2

)
and thus requires the estimation of the

variance σ2. The parameter is estimated using the maximum
likelihood method which solution has the following closed-

form: σML =
E(r2)

2 with E (r) the mean of the random
variable r [56]. The blocks that pass the KS test are included
in the speckle region.

In order to quantify the reconstruction of the textural infor-
mation, we reconstruct the simulated cyst with the proposed
approach (and UFSB) for 1 PW insonification and for the
four sparsifying models. We segment the reconstructed images
into two area, namely the anechoic area (pixels inside the
occlusion) and the fully developed speckle area, by considering
that the anechoic area is composed of the pixels inside the
circle centered in (0, 40) (mm) with a radius of 4 mm. Then,
we calculate the number of non-overlapping blocks of 10×10
pixels of the fully developed speckle area which pass the KS
test for the four different sparsifying models. We divide the
obtained values by the number of non-overlapping blocks of
10×10 pixels present in the fully developed speckle area. The
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S-Lu: CR = 6.41
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Fig. 3: B-mode images of the hyperechoic CIRS phantom using the proposed method coupled with Lu method for different
values of ε and for 1 PW insonification.

results, expressed in % and given in Table III, show that
wavelet-based models allow to recover more accurately the
speckle texture than the Dirac basis. Among the three wavelet-
based models, the SA model preserves best the speckle texture.

Dirac Orth. Wavelet Und. Wavelet SA
% of diffusive area 38 % 43 % 48 % 50 %

TABLE III: Percentage of diffusive speckle accurately recon-
structed by the proposed approach (UFSB method) and four
different sparsifying models.

In the next sections, the SA model has been chosen as the
sparsifying model since it enables a slightly better reconstruc-
tion than other wavelet-based models.

B. Study of the optimization parameter

In this section, the impact of the optimization parameter on
the image quality is investigated. The parameter of interest
is ε of equation (1) which corresponds to a higher bound of
the distance (given by the `2-norm) between the data and the
desired solution. In this sense, the value of ε quantifies the
relative weight between the data fidelity constraint and the
sparsity prior applied on the desired image.

In order to analyse the effect of ε on the image quality,
B-mode images of the hyperechoic occlusion of the CIRS
phantom, present in the image plane 1, are displayed for
different values of ε ranging from 0.1||y||2 to 0.9||y||2. The
images, reported on Figure 3 show that when the value of
ε increases, the speckle density tends to decrease until the
speckle totally disappears (Fig. 3d). In this case, while the CR
is maximized, it is clear that the image is over-regularized.

To illustrate what we mentioned before, Figure 4 displays
the evolution of both the contrast and the percentage of
recovered diffuse speckle area, calculated with the same
process as in Section VI-A, for an increasing value of the
sparsity promoting parameter. It can be observed that, while
the contrast keeps increasing, the speckle density tends to
decrease when sparsity in the SA model is promoted in the
reconstruction.
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Fig. 4: Evolution of the contrast ratio (red) and the per-
centage of recovered speckle density for increasing values
of the sparsity promoting parameter. The metrics have been
calculated on the images obtained with 1 PW insonification
and reconstructed using the sparse-based approach with Lu
method.

The study shows that part of the diffusive speckle is not
sparse enough in the proposed model and then considered as
noise. It is clear that the choice of the right parameter highly
depends on both the image content and the user needs. If
speckle is considered as noise, then it can be removed by
forcing sparsity in a wavelet-based model. If both speckle
and texture have to be preserved, a low value of ε (between
0.1||y||2 and 0.3||y||2 for Figure 3) seems to be a good
trade-off between an increase of the contrast and a reasonable
speckle density.

C. Comparison against classical approaches

1) Contrast: Figure 5 displays the CR values for the
proposed method and for the state of the art methods for each
compounding experiment, with ε = 0.3||y||2. It shows that the
proposed method leads to an increase of the contrast of more
than 2.5 dB for 1 PW. This gap decreases with compounding
since the CR increases far faster for the classical methods than
for the proposed method. This can be explained by the fact
that compounding decreases the noise level by decorrelating
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Fig. 5: Contrast ratio as a function of the number of PWs
for the different reconstruction methods. The dashed lines
represent the classical methods and the solid lines represent
the sparse-based method.

the random speckle [10]. The proposed method also removes
the measurement noise by enforcing sparsity in the SA model.
Thus, the two methods inducing the same consequence, the
impact of the compounding in terms of noise removal is less
important. However, it is interesting to note that the proposed
method, with 1 PW, leads to higher contrasts than classical
methods with 15PWs, thus achieving a noticeable reduction
of the measurements needed to reach a given image quality.

Figure 6 confirms what we deduced from the contrast
measurement. The proposed method removes the noise inside
the inclusion which appears with the classical methods. It can
also be observed that the speckle density slightly decreases
in the far field for the proposed method. This aspect will be
discussed in Section VI-C3.

Since the contrast is measured in the anechoic area, it is
directly linked to the amount of noise in the image and since
the simulation is noiseless, the only source of noise in the
experiment is induced by the approximation of the measure-
ment model. The proposed approach leads to an increase of
the contrast thus to a decrease of the noise created by the
measurement model, which means that the proposed measure-
ment process is more accurate than the classical filtered back
projection.

2) Resolution: The lateral resolution is calculated on the B-
mode image as the width at -6 dB of the point spread function
(PSF) of the two points at 2cm and 4cm of the CIRS phantom
which corresponds to the full width at half maximum [53].
Figure 7 displays the evolution of the lateral resolution with
the number of PWs for the different reconstruction methods.

From Figure 7, it can be observed that the proposed method
leads to a slight increase of the image resolution. This may
be justified by the fact that the proposed method significantly
decreases the magnitude of the side lobes of the PSF.

From Figure 7a, it can be noticed that the proposed approach
gives results similar to the classical approach except for Lu
method in which the resolution is better with the proposed
approach.

From Figure 7b, it can be noticed that the proposed method
leads to a slight increase of the resolution for UFSB. For

Garcia and Lu methods, the resolution is rather similar. For
Garcia method, it can also be observed that the resolution
decreases when the number of PWs increases. While being
counter-intuitive, this result is in accordance with what Garcia
et al. observed [16].

On Figure 8, the effect of the proposed method on the
PSF is investigated. It can be observed that the proposed
method drastically decreases the magnitude of the side lobes.
This observation is in accordance with the results observed in
Section VI-C.

3) Speckle density: On Figure 6, it can be noticed that the
speckle density seems to be lower for the proposed approach
than for the classical methods. In order to quantify the impact
of the proposed approach on the texture, the same procedure
as for the texture experiment in Section VI-A is followed for
both the proposed approach and the classical methods. The
percentages of the total diffusive speckle area recovered with
the classical methods are 66% for Lu method, 59% for UFSB
and 62% for Garcia method. These results are around 10%
higher than the ones obtained with the proposed approach
(Table III). The difference is justified by the fact that speckle
has a very complex behaviour, which is different at each depth.
This complex structure is very hard to preserve and fully
developed speckle is not sufficiently sparse even in complex
wavelet-based models. This aspect will be discussed in Section
VII-B.

D. In vivo experiments

The proposed approach is finally evaluated on in vivo carotid
images. Since the ground truth is not known, the use of the
metrics defined in Section VI-A is not anymore possible.

In the experiments, the images are reconstructed with only
1 PW insonification. The sparsity promoting parameters have
been manually tuned based on visual evaluation of the re-
constructed image. From Figure 9, it can be seen that part
of the noise in the carotid artery and between 5 mm and
15 mm have been removed. Moreover, the proposed method
reduces the side lobes as it can be seen particularly close to
the upper carotid wall. However, as expected from the study
of Section VII-B, the speckle density in the far field (farther
than 20mm) is lower with the proposed approach than with
classical methods.

As a reference, Figure 10 displays the B-mode image of the
DAS reconstruction obtained with 15 PWs. It can be seen that
the proposed reconstruction leads to a visual quality closer to
the one of Figure 10 than the classical methods.

VII. DISCUSSION

A. The use of sparse regularization to solve the problem

The use of sparse regularization to solve the ill-posed prob-
lem mainly comes from CS framework and the assumption that
US images are compressible in well chosen models. One can
question the use of sparsity prior as an appropriate regularizer
for the problem. Another alternative may be to use `2-norm
and perform an inversion similar to Wiener filtering [57].
The main advantage of this approach resides in its simple
implementation since a closed form formula exists for the
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Fig. 6: B-mode images of the simulated occlusion using the proposed method with (a) UFSB, (b) Garcia and (c) Lu and using
the classical method with (d) UFSB, (e) Garcia and (f) Lu for 1 PW insonification.
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Fig. 7: Lateral resolution measured on the points of the CIRS phantom located at a depth of (a) 2 cm and (b) 4 cm for different
compounding experiments.
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Fig. 8: Lateral point spread function measured on the point of the CIRS phantom located at a depth of 2 cm, for 1 PW
insonification, and reconstructed with (a) UFSB, (b) Garcia and (c) Lu. The red dashed line represents the proposed method
and the blue line corresponds to the classical method.

`2-regularization problem. Nonetheless, the perfect recovery
condition that holds for `1-regularization does not remain valid
for `2-regularization. Additionally, in practice, the quality of
the reconstruction (in terms of contrast and resolution) is lower
with `2-regularization than with `1-regularization methods
since Wiener filtering tends to smooth the information in the
ultrasound images [58], [59] .

The `1-norm is used in the optimization problem as sparsity
promoting norm. The choice of such norm against `p-norm
with p < 1 is justified firstly by the convexity of the optimiza-
tion problem, leading to a unique solution and secondly by the

availability of an extensive number of methods to solve such
problem. One can suggest the use of reweighted `1-algorithms
[45], [60] as an alternative to the proposed approach. While
being a better approximate of the `0-norm, it requires many
iterations of the optimization algorithm. Our main motivation
of using `1- algorithms instead of reweighting `1-algorithms
is convergence time.

Several studies have used `p-norm with p ∈ ]1, 2] instead
of `1-norm due to the statistical behaviour of scatterers map,
closer to Generalized Gaussian model than to Laplacian model
[32], [57]. In the proposed approach, the choice of the `1-norm
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Fig. 9: B-mode images of the carotid phantom using the proposed method with (a) UFSB, (b) Garcia and (c) Lu and using
the classical method with (d) UFSB, (e) Garcia and (f) Lu for 1 PW insonification.
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Fig. 10: B-mode image of the DAS reconstruction with 15
PWs.

in a given model is motivated by geometrical considerations
more than statistical prior. In the above mentioned approaches,
the US image is deconvolved and statistical priors are assumed
on the deconvolved image, usually called tissue reflectivity
function (TRF) or scatterers map. In the proposed approach,
the unknown image is the RF image which does not neces-
sarily exhibit the same statistical behaviour. This difference
is described by Chen et al. [32] who present a compressed
deconvolution framework in which a sparsity prior in the
wavelet domain is used for the RF image and Generalized
Gaussian Distribution prior is used for the TRF.

With the current implementation of the inverse problem, the
resolution is not improved. However, the proposed approach is

compatible with the state-of-the-art deconvolution frameworks
such as the compressive deconvolution framework [32]. By
combining the two approaches, it would be possible to improve
the resolution.

B. Speckle density

While it has been demonstrated that a wavelet-based model
enables better capturing textural information of images than
a Dirac basis, part of the speckle remains being considered
as measurement noise, showing that fully developed speckle
is not entirely sparse in wavelet-based models. This is a
limitation of the proposed approach and we can think about
two ways to overcome these drawback. The first one is to
perform region-based optimization. The idea would be to
segment US images in different regions either in a very simple
way (by dividing the image into blocks of fixed size) or
with more elaborated segmentation methods based on struc-
tural information inside regions [61]. Then, the optimization
problems are solved on each region independently allowing
to adapt the reconstruction to the content of each region.
The main drawback of such optimization is the computational
complexity as well as the need for a stitching method to
reconstruct the full image from the different regions. The other
alternative resides in performing dictionary learning [33]. With
such approach, the analysis model is learnt on a training set
and a sparser representation of the speckle may be found. This
would very probably leads to better results. Nonetheless, this
approach requires an extensive number of ultrasound images
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in the training set in order to cover all the possible cases
of diffusive speckle and the related analysis model is very
complex.

C. Computational complexity

Solving `1-regularized problems to reconstruct the desired
image usually involves non-linear iterative algorithms. Thus,
computational complexity is a problem to take into account
when using these methods. Indeed, considering the scheme
of the ADMM algorithm in appendix, it can be seen that
the algorithm is composed of a gradient descent and a soft-
thresholding in the analysis domain. This implies two matrix
products with Φ and Φ† for the gradient descent and two
matrix products with Ψ† and Ψ, respectively, for the soft-
thresholding operation. Since the matrix Ψ is made of a
concatenation of wavelet bases, its size is several times the
size of the image, depending on the number of wavelet bases
considered. Doing the matrix product is then costly. A way to
address such problem is by considering parallel implemen-
tation of wavelets on GPU and to exploit fast algorithms
to implement the wavelet decomposition with O(N logN)
complexity.

Regarding the matrix Φ, the NUFFT algorithm proposed
by Fessler and Sutton [62] consists in a zero padded 2D
FFT followed by an interpolation step to compute the values
outside the regular grid. The operator can be modelled as
Φ = GFZ, where Z denotes the zero padding operator, F
denotes the 2D FFT operator (in the upsampled size) and G is
a sparse matrix implementing the convolutional interpolation
operator. Considering that the desired image is composed of
N pixels, that the number of resampled frequency locations is
K = 2N (typical value), that M is the number of non-uniform
frequencies and that the interpolation neighbourhood is J , it
has been demonstrated that the computational complexity of
the NUFFT is O(K logN +JM) [37]. Since it depends both
on the number of non-uniform frequency samples and on the
number of points in the final image, it is far more complex
than the FFT and becomes extremely slow when used in a
compounding scheme where the total number of frequencies,
M , is large.

One alternative to speed up the reconstruction algorithm is
to grid the measured data onto a regular grid, i.e. y′ = GTy,
and approximate the NUFFT by an FFT followed by mask on
the sensed discrete frequencies, i.e. Φ = MF, where F denotes
the 2D FFT of size N and M is a Q × N diagonal binary
matrix that selects the sensed discrete frequencies. Indeed, the
later model approximates the holographic matrix GTG, that
grids the continuous frequency samples back to the uniform
grid, by the diagonal binary matrix M. This simplified model
allows us to drastically decrease the complexity of the operator
Φ while preserving the reconstruction quality almost intact.

D. Fourier-based beamforming methods

To the best of our knowledge, Fourier-based beamforming
methods have been investigated by Chernyakova et al. [35]. In
their work, they introduced the beamforming in the frequency
domain as an alternative to the classical DAS beamforming.

The objective is to exploit the band-limited properties of US
signals in order to drastically reduce the data rate compared
to classical approach.

In a second step, they suggest to use CS in order to
further decrease the data rate. In this case, the Fourier series
coefficients of the beamformed signal are expressed as a
sum of phase-shifted pulse shapes, with a given amplitude,
through a finite rate of innovation model. CS framework is
used to retrieve the pulse amplitudes from the Fourier series
coefficients.

Thus, the work proposed by Chernyakova et al. is, by
essence, different from the proposed approach. First, the objec-
tive is different since the proposed work focuses on improving
the results of the plane wave reconstruction while the work
of Chernyakova et al. emphasizes the data rate reduction.
Moreover, while the work of Chernyakova et al. exploits CS
in order to retrieve pulses amplitudes later used to reconstruct
the RF image, the proposed work uses CS as a way to recover
the RF image coefficients directly.

VIII. CONCLUSION

In this paper, a novel framework for Fourier-based recon-
struction of signals obtained with several PW insonifications
has been proposed. The framework relies on the ability to
pose the Fourier reconstruction problem as an ill-posed inverse
problem and and on the sparsity of the US images in an
analysis domain. The reconstruction is achieved by solving
an `1-minimization problem. Different sparsifying transforms
have been studied and the SA model exhibits better recon-
struction results than other wavelet-based models. Simulations
and experiments enlighten a better image quality (contrast) for
the proposed approach than for the state-of-the-art methods
with a slight decrease of the speckle density. This decrease
comes from the fact that fully developed speckle is not entirely
sparse in the proposed analysis models. However, the proposed
framework opens the door to a variety of promising applica-
tions such as compressed beamforming and deconvolution.
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APPENDIX: ADMM ALGORITHM

The pseudo-code of the ADMM algorithm used in the
proposed method is given below. The general problem we
solve is the following one:

min
x∈CN ,z∈CM

f (x) + h (z) subject to Φx+ z = y, (19)
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given the assumption that f : CN → R and h : CM → R are
lower semicontinuous convex functions.

The key mathematical tool used in ADMM is the proximity
operator of a convex function defined as:

proxf (x) = arg min
y∈CM

f (y) +
1

2
||y − x||22. (20)

In the proposed `1-minimization problem f(x) = ‖Ψ†x‖1
and h(z) = iB(z), where iB is the indicator function of the
convex set B defined as B = {z ∈ CM |‖z‖2 ≤ ε}.

The general structure of the algorithm is detailed in Algo-
rithm 1. The parameters µ > 0 and β > 0 are step sizes
chosen such that µL + β < 2, where L is the spectral norm
of the matrix Φ, and γ > 0 is a thresholding constant that
controls the convergence speed.

Algorithm 1 ADMM algorithm

Require: t = 0, choose x0, z0, λ0, γ, µ and β.
repeat
z(t+1) = proxγh(y − Φx(t) − λ(t))

s(t+1) = x(t) − µΦH
(
λ(t) + Φx(t) − y + z(t+1)

)
x(t+1) = proxµγf

(
s(t+1)

)
λ(t+1) = λ(t) + β

(
Φx(t+1) − y + z(t+1)

)
until A stopping criterion is met
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