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Perceptually Motivated Image Features Using
Contours

Xinghui Don¢, andMike J. Chantle

Abstract—Dong et al. examined the ability of 51 computational
feature sets to estimatehuman perceptual texture similarity,
however, none performed well for this task. Whiletiis well-known
that the human visual system is extremely adept agxploiting
longer-range aperiodic (and periodic) “contour” characteristics in
images, none of the investigated feature sets exiplbigher order
statistics (HOS) over larger image regions (>19x1pixels). We
therefore hypothesise that long-range HOS, in theofm of contour
data, are useful for perceptual texture similarityestimation.

We present the results of a psychophysical experime that
shows that contour data are more important, than loal image
patches, or global 2nd-order data, to human observs for this
task.

Inspired by this finding, we propose a set of pergaually
motivated image features (PMIF) that encode the lagrrange HOS
computed from spatial and angular distributions of contour
segments. We use two perceptual texture similaritgstimation
tasks to compare PMIF against the 51 feature setseferred to
above and four commonly used contour representatian This new
feature set is also examined in the context of twardditional tasks:
sketch-based image retrieval and natural scene regoition. The
results show that the proposed feature set performisetter, or at
least comparably to, all the other feature sets. Wattribute this
promising performance to the fact that the proposedeature set
exploits both short-range and long-range HOS.

Index Terms—Contours, HOS, image features, perceptual

similarity, texture similarity, retrieval, recognit ion.

I. INTRODUCTION
IGHER resolution texture similarity estimation sedbk

estimate thedegreeto which pairs of textures appear.
similar to human observers. The performance of comm

texture features for this particular task doescuhpare well
with that obtained for tasks such as texture setatien [37]
and classification [41], [54] for which they wergpically
designed. However, the task of perceptual simyjla#timation
is important and can be used in a number of agits, from
measuring the perceived difference between theasppees of
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textures to simply rankinghe results of search engines.
Recently, Dong and Chantler [17] assessed 51 catipoal
feature sets and found that the highest agreenatatwith
human data (obtained using free-grouping experisngi])
was not greater than 61%, and that coincidentlpenof the
feature sets tested, exploited longer-range higtdar statistics
(i.e. HOS computed over areas >19x19 pixels).

It is well known that visual texture can be desedhising
spatial statistics, however, despite over fortyryeaf research,
there is still little agreement as to the type,eordr spatial
extent over which these statistics should be catedl First
order statistics are computed without referencéhéospatial
arrangement of pixels and so are rarely used tutexnalysis.
Second order statistics such as those calculatedy ube
autocorrelation function exploit information conciey
periodicities and are often obtained by applyinghlimear
functions (variance estimators) to bandpass (l)yndgers [36].
These statistics can be computed easily over wijnsiad
extent. However, higher order statistics are often
computationally expensive to acquire, and are thrsnally
computed within limited spatial exténHence “textons” and
other vector quantisation methods are typicallyitieh to
19x19 pixel neighbourhoods [17], [19].

Two types of data are therefore commonly utilised f
computing texture features: the first comprises-@rder data
calculated at different scales, while the seconalires the
estimation of shorter-range aperiodic informatiéde have
found few texture feature sets that capture lomgea(>19%19
pixels), aperiodic texture characteristics [17]9][1 1t is
well-known, however, that these characteristics ehan
important role in human visual perception [15],][482], [44],
[53], [65]. For example, human observers often ocann
recognise an aperiodic image when its phase spectsu
scrambled and its power spectrum is kept intac}, [@@t they
are able to exploit the long-range visual interawievident in
contour information [25], [44], [46-47], [53]. Degi of
perceptually inspired computer algorithms has tstadied in
the community [2] but, to our knowledge, no reshdras been
reported which utilises contour dafar texture analysis.

We therefore hypothesise that “contour” data isartgmt to
perceptual texture analysis and we examine thigecture
using two methods. First, we conduct a psychophysic

! However, pyramid decompositions [38] can be wiligo enhance the
spatial extent that computational features explbihe cost of blurring the data
used at the higher levels in the pyramid.

2 In this paper, contour data means the contouraeted from images rather
than the gradient magnitude and/or gradient oriemtalata.
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experiment to determine which of three differeqtety of data
(global 2nd-order statistics, local higher ordeatistics and
contour data) are more important for human peroapfecond,
we develop and test a novel feature set that esdlang-range
HOS by encoding spatial and angular distributiohsamtour

segments. We assess this feature set’s perfornsayadest (1)

the 51 feature sets that Doegal.[17], [19] examined and (2)
four additional feature sets based on shape repatsmn. We

also test the feature set in the context of tweogtopular tasks:
sketch-based image retrieval [21] and natural scecmgnition

[6].

A. Related Work

1) Perceptual Texture Similarity Estimation

above can be directly used to represent the spayialit of the
dense contour maps typically found in textures.

Note that although recent deep learning based rdetf33],
[51] have shown outstanding performance for manypmater
vision tasks, we do not consider these here, asw€l)are
primarily interested in developing feature setg] §2) higher
resolution perceptual texture similarity data axpemsive to
acquire, which limits the amount of the trainingad¢hat it is
practical to acquire.

B. Contributions

This study investigates the importance of thredecght
types of image property for the human percepticiexture and
develops a set of image features based on the impsttant

Donget al [17], [19] introduced two evaluation methods forproperty. In comparison with conference paper [fld} paper

assessing the ability of computational featuresestimate
perceptual texture similarity: a pair-of-pairs caripon and a
texture retrieval task. The two methods used twis &
human-derived data. The resolutions of both datasedtre
greater than that of the binary similarity datani®#&Different
Class) commonly used in either texture classifazatior
retrieval assessments [19]. They tested 51 feattssbut found
that none performed well when compared to humaivekr
perceptual similarity. Their analysis also showeat bf the 51
feature sets assessed none used higher ordeticiafisOS)
derived from local neighbourhoods larger than 19pib&ls
[17], [19]. Additionally, they performed two psygbioysical
experiments that showed that these types of longea
interactions provide humans with important cues foe
perception of texture similarity.
2) Human Perception of Object Outlines

The identification of objects based on outlines tresn well

(1) describes the psychophysical experiment thatstigates
the importance of the three image properties in hmomore
detail; (2) revises the original algorithm by ba#ducing the
feature dimensionality and incorporating shorteigecontour
characteristics; and (3) generalises the assessrgnt
incorporating two additional popular use cases. Ti&n
contributions can be identified as: (1) the confition of the
importance of contour maps to the human perceptioexture,
compared with either local image patches or gl@uval-order
data, and (2) the development of a set of new panedy
motivated image features which exploit longer-raRigs.

C. Overview

We describe the psychophysical experiment and taher
results in Section Il. In Section Il we introdute new feature
set and in Section IV we assess this feature safg usvo
perceptual texture similarity estimation tasks. \ést the

studied [15], [55]. Paniet al.[44] for instance used outlines to 9enerality of the proposed feature set using tvebitiahal tasks

investigate whether or not curved contour segmearts
important to shape perception. It was found thagrents
located at salient points did not necessarily yibletter
identification performance compared with using fregts
placed equidistantly. In addition, sketches, canigj outlines,
have commonly been used as image retrieval querigs|21].
Many of these studies above have shown the impoatar
outlines and sketches to human perception.
3) Computational Shape Recognition Approaches
Contour representation approaches can be dividedhivo
classes: structural and global [57]. Structural tocon
representation approaches divide a contour intoeta of
segments that are normally referred to as prinstiji, [9],
[32], [35], [39]. In comparison, global methods iderfeature
vectors directly from whole contours [3], [4], [13#9], [52].
However, the discriminatory power of point-basedamh
representation methods [13], [32], [35], [49], [53&]normally
affected by noise sensitivity. Furthermore, theppre@aches
have been largely developed to encode individualaros [5],
[9], [13], [35], [39]. Hence, none are designecctonpute the
spatial distribution of the large numbers of comsotypically
found in textures in a computationally efficientywa

and report the results in Section V. Finally, weawdrour
conclusions in Section VI.

Il. THEIMPORTANCE OFTHREE TYPES OFDATA TO TEXTURE
PERCEPTION

The image properties that texture features commexpjoit
normally fall into two categories. The first conges the type
of 2nd-order statistics encoded in power spectnayTre often
used by filter-based features [11], [17], [19] antode both
long-range and short-range periodicities. The séaategory
concerns the HOS available from local image patdheghose
used in vector quantisation or alphabet approa&hgstextons
[54] or other local neighbourhood based featurgq3¥], [40].
They exploit short-range, aperiodic (and periodsgpatial
relationships. However, it has been shown that ‘amge,
aperiodic image characteristics, such as contawesgritical to
human perception of imagery [15], [25], [42], [4f83], [55].
The key hypothesis of this paper is therefore, thatours are
important to the human perception of texture anat,tln
particular, they are more important than the tweotypes of
image property described above. It should be ntdtatiwe do
not consider phase spectra because the applicafigmase

To summarise, none of the shape recognition appesac unwrapping to this type of task is an open probj&&j.
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We therefore used three sets of stimuli (propergges) in
our experiment with human observers. Samples ofi eae
shown in Fig. 1. Set 1 are phase-randomised (powig)-
images, that is they only contain 2nd-order siag442] but no
HOS. Set 2 comprises randomised, blocked imaggdsTheése
images are divided into blocks which are randonhiyfged.
They are therefore unlikely to contain any of tbeder-range
interactions evident in the original images, but dmtain
short-range 1st-order statistics, 2nd-order stesisind HOS.
Set 3 consists of contour maps of the original iesaghich
emphasise longer-range HOS interactions, shouldetkist.

In order to determine which image property is mos

important to texture perception, a two-alternafmeed choice
(2AFC) experiment was conducted. In each trial dbserver
was shown a quarter image of an original textuagwith a
non-overlapping quarter image derived from Sets TH& task
of the observer was to decide whether the quaeevet from
Sets 1-3 represented the original texture or nbesg& stimuli
and procedure are described in greater detail below

A. Experimental Design
1) Stimuli

We used thePertex database [29] of 334 textures, as
provides texture images together with higher reswiu
similarity data derived from a human grouping eis&¢10].

Phase-Randomised ImagesThese images were derived|

using the method introduced by Oppenheim and Li#j. [4
Randomised Blocked Image3hese images were generate

by first blocking the image with a green grid aren
randomising the position of the blocks in the did]. The
reasons for using green rather than the other psygical
primary colours are that (1) it is more comfortabtethe eye
and impairs human perception less; and (2) it makesgrid
easy to distinguish from the grey texture. Thekhéss of the
grid was set as three pixels. In addition, the sizéhe block
was set to 19x19 pixels which is the largest neiginhood
exploited by the 51 feature sets (excluding filigrbased
features) examined by Doreg al.[17], [19].

3

l

I

I

Fig. 1. Each of the three columns shows four ireatgrived from the same
texture (although not the same physical textur@)arf€ach of the four rows
shows the original image, phase-randomised imagegamised blocked
image and contour map in turn.

selection of half of all trials we presented argiml texture
image next to one of its property images, while tfeg other
half of the trials the property image and the arigimage were
derived from different textures. (2) The ten obsesvwere
divided into two equal-sized teams. The sequentkeiise of
the trials was reversed in the second team. Irtiaddieach of

Contour Maps The Canny edge detector [7] was used tthe teams performed the trails in three sessioa$ were
extract edge information from thHeertextextures. These edge conducted at an interval of no less than seven. d&fih the
data were in turn used to construct individual oars (see help of these strategies, the learning effect veaiiced. (3)
Section IlI-A) and the contours aggregated to mtewhat we Each original or property image was divided intourfo

refer to in this paper as a “contour map”.
2) Procedure
The experiment

was divided into

equal-sized 512x512 quarters. Throughout the thessions,
the top-left quarters of original images and thétdoo-right

three sessionguarters of property images were employed in ai@aroid, or

Phase-randomised images, contour maps and randbmisé least inhibit, observers from comparing the ioaf and

blocked images were utilised in the three sessiorgrn. In
each session, an observer conducted 334 triaéadn trial, the
observer was required to compare one original texitmage
and its, or another texture’s, property image agaidke whether
or not the property image represented the origihaRAFC
experimental design was employed. If the obsenlese
“yes”, they pressed the left key&”; otherwise, they pressed

property images pixel-by-pixel.
4) Observers

Throughout the three sessions of this experiment,RhD
students with normal or corrected-to-normal visizere used.
All ten observers signed a consent form before ttasted the
experiment. Each observer was given a 15 GBP Amazon
voucher after they completed the experiment.

the right key “>”. The system exited after all 334 trials were5) Experimental Setup

performed.
3) Reducing Bias
We used three processes to reduce bias. (1) Bodamised

Equipment All stimuli were displayed on a calibrated NEC
LCD2090UXi monitor at a resolution of 512x512 pixeThe
monitor has a resolution of 1600x1200 pixels angelpi
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dimensions are 0.255mmx0.255mm (i.e. 100 dpi). Thlls

stimuli were 130.56mmx130.56mm when displayed oa th

monitor. In addition, the monitor was linearly tahted to

unity gamma, using a Gretag-MacBeth Eye-One, with |
maximum luminance of 12d/m?. In this case the stimulus

images appear as if they are lit by lighting cadi similar to
those obtained in a bright room.

Environment The distance between the monitor and the

observers was set to approximately 50cm, providimgngular
resolution of around 17 cycles per degree. Thusstimulus
images subtended an angle of 14.89° in the verdicattion.
The eyes of the observers were located approxignatehg the
axis of the centre of the screen. The experimesteaaried out
in a dark room with opaque, matte, black curtaind matte
walls without apparent specular reflections.

B. Experimental Results and Analysis

1) Results

A voting process was used with each texture toestioe
property types. For each texture, if (1) the ordimage and
property image are derived from the same textund, (2) at
least four out of the team of five observers indicthat the
property image represents the original, then wentdhat
texture as being well represented by its propenigge and the
score of that type of image property is incremenibgdl;
otherwise it is assumed that the texture is not regresented
by its property image. The experiment was perforinethree
sessions, with each session using a different tfpgroperty
image as described in Section II-A-1. Table | réptie scores

TABLE |

THE SCORES OF TEXTUREGROM 334PERTEX TEXTURES THAT CAN BE
RECOGNISED USING THREE DIFFERENT TYPES OF PROPERWMAGES

Subset Score
Contour Maps 247
Phase-Randomised Images 207
Randomised Blocked Images 157

for each of the image properties.
2) Analysis
We use “Image Comparison Accuracy” (%) to meashiee

Image Comparison Accuracy (%)

Randomised Blocked Phase-Randomised

Fig. 2. Means and 95% confidence intervals (errarsp of the mnage
Comparison Accuracies (%) obtained using threestygbgoroperty images.

Contour Map

using randomised blocked images and phase-randdmise

images were significantly different from that obid using
contour mapsp < 0.05. However, there is no significant
difference between randomised blocked and phasisnaised
imagesp > 0.05.

C. Comparison with Perceptual Groups

In order to provide insight as to the ability ofetlthree
different types of image property to representeddhttypesor

perceptualroupsof texture we break down each subset shown

in Table | into 14 subgroups according to the drsg
provided by Donget al. [19]. They clustered the 33ertex
textures into 14 perceptual groups by applying mpte
hierarchical clustering analysis [26] to the hundamnived
similarity matrix [10]. We normalise the size ofthasubgroup
using the size of the corresponding perceptualghowrder to
derive a “Group Image Comparison Accuracy” (%) fbe
subgroup. These are provided in the bar chart shoviig. 3
which also shows representative textures of eacbeptual
group.

It can be seen that (1) the contour map can repiresé only
periodic textures (see Cluster 3) but also aperitektures (see
Clusters 9, 10 and 12); (2) phase-randomised images
generally able to represent periodic and aperiodid
well-ordered textures (Clusters 5 and 6); and (Bg t
randomised blocked images can represent both peratl
aperiodic textures (see Clusters 6, 8 and 14) tautte least
representative type of property image.

The most important point however, is that contowps

importance of image properties. We define this ke t Provided significantly more relevant information abservers

percentage of the textures that are chosen byltbereer as the
texture that can be represented by its propertgécampared
with random chance (i.e. 167 textures or half of 834

textures). Fig. 2 shows the average Image Compariso

Accuracies and 95% confidence intervals obtainedguthe
three sets of property images across the ten oliserv

than the other two types of property image, whitdhwaed them
to correctly identify 247 out of the 334 textures.

I1l.  PERCEPTUALLY MOTIVATED IMAGE FEATURES

Section Il has shown that contour maps are impbiffian
human perception of texture. This section therefoi®duces

A one-way repeated-measures ANOVA (Analysis o0& novel set of contour-based image features tlaesplicitly

Variance) [24] was conducted in order to test figai§cance
of the effect of the image property on the Imagenfarison
Accuracy. The results of Mauchly's test [24] indidghat the
assumption of sphericity was satisfigé(2) = 2.90,p > 0.05.
The results of the ANOVA show that the Image Coriguar
Accuracy was significantly affected by the type iofage

designed to make use of longer-range HOS as wetittzer
shorter-range data. Essentially, the features angpated by
extracting and encoding each contour as a set latetk
segments. We use these data in three ways aseaalithinFig.
4(d). First we encode the average shape of theoamusing
joint segment orientation/distance histograms. €hgovide

property,F(2, 18) = 11.84p < 0.05. Furthermore, the results ofdata on the long-range HOS (of segments). Secomty,

the post hoc tests performed using the Bonferroniection
[24] reveal that the Image Comparison Accuraciesiobd

encode the spatial distributions and orientatidrtb®all of the
segments within a local window without regard toichkh



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATIONNUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

Group Image Comparison Accuracy (%

Fig. 3. The bar chart in the centre shows the Gtogme Comparison Accuracies for the 14 perceptgatiuped clusters introduced in [1Bor each cluster, v
show results obtained using contour maps (leftrad}i phase-randomised images (middle and bluejaartbmised blocked images (right and cyan). Iritiaigl
we show two representative textures per clustees&€himages are outlined using the above coloumghe indicate which property lost important to the
recognition: contour maps (red), 2nd-order statistontained in phase-randomised images (blugeasttort-range interactions contained in randonisckec

images (cyan).

(CY (b)

ACSJH

SOAM

BAMs ]@ ]@

(c)

Fig. 4. A representation of the basic informatilon (a) original texture image; (b) contour mag); $¢egment map. For display purposes, only a paikels are
shown for each segment which is approximated bghitsd; and (e) three components of the PMIF featuaverage contour segment joint histogram (ACSJH)
segment orientation aura matrix (SOAM) and basie aatrices (BAMS).

contour they belong. These data provide mediumeangepresentation method. A number of contours coriieanches

(<23x23 pixels) HOS. Lastly,

we encode the spatiakhich make contour representation more difficuit. these

distributions of all pixels inside a local windoWwhese data cases, all branch points are located and the congre broken

encode short-range, 3x3 pixel, HOS.

A. Obtaining the Contour Maps

The Canny edge detector [7] is utilised to extiemttours
from a texture image due to its simplicity and effeeness. A
morphological erosion operation [50] is repeateaibylied to
the contour map until the output image does nohgegFig.
4(b) shows the result of using a 3x3 neighbourhodthjs
process removes redundant pixels without allowmgteurs to
break apart.

B. Producing the Segment Maps

1) Traversing a Contour
All contours are traversed from end to end in otdesbtain
a sequence of contour points as the input of thetoco

into multiple contours by deleting their branchrgsi

Connected component labelling [16], with 8-conndcte
neighbourhoods, is performed on the contour map and
connected component is obtained for each continaontour.
The Moore-Neighbour tracing algorithm with Jacostepping
criteria [28] is applied to each component to pdevéequences
of points. However, the exterior boundary of onmponent is
derived rather than the component (contour) itsetfause the
tracing algorithm considers each component as amedhe
traversing sequence of a contour is obtained frisnexterior
boundary sequence.
2) Dividing a Contour into Segments

It was found that humans are able to integratergirogous
contour from a series of discontinuous contour sEgm[25],



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATIONNUMBER (DOUBLE-CLICK HERE TO EDIT) <

[46-47]. In addition, it has been shown that olgecan be
identified using discontinuous fragmented contoegrsents
[44]. Thus, non-overlapping segments can retaincsire
information. Most importantly,
non-overlapping contour segments is more (compartatiy)

efficient compared with representing a completeo§ebntour
points. For example, the time required for encodihg

pairwise spatial relationship (see Section IlI-CbEtween

contour elements (e.g. points or segments) is dpgrtion to
(M —1)(M —2)/2. Given a contour, th¥ value is smaller
when segments rather than when points are used, Tising
segments is more efficient than using points.

representing a sef o
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Fig. 6. Three segment maps obtained from the comtap shown in Fig. 4 (b)
when the length of segments is set atS{a¥y 3 (pixels), (b)SL = 7 and (c)
SL = 11. It is noteworthy that the segments shown areagpmated by their
chords (only|2xSL/3] central pixels are shown). Each chord is placetiet
middle point of its corresponding segment. It cansben that the ease with
which the contours can be identified drops asehgth of segments increases.

Although primitives or salient points of contoursea ine second we use the aura matrix [22] to competgnent

commonly utilised in their representation [5], [2031], the
associated computation is relatively expensiveathere had
been considerable research using “fragmented”
segments [57], we decided to use this approacHirételivide

a contour into a set of equal-length segments hed éncode
the spatial distributions and orientations of thesgments.
Given that a contour contains a sequence of pamts:B,
with coordinategx,, y,) ... (x5, ¥), the length of the contour
(CL) is computed as:

CL = X753 (o — xi41)% + 0 — Yir1)?- 1)
If the length of segments §., the contour is then divided into
M = |CL/SL| segments.

The importance of local orientations to the perioepof
texture structure has been investigated by Dekial. [12]. In
addition, De Winter and Wagemans [15] found tha¢cts can
also be identified using the “straight-line” venssoof their
outlines. Motivated by these studies, we represkrtte
segments by their mid-point positiorn(x,y) and chord

co-occurrence data with no regard as to which eontbe
segments belong and we restrict the pairs to tlosarring

CoNtQyithin anL x L local neighbourhood. In the third, we employ
the basic aura matrix [48] to represent the spdit&itibutions

of pixels (unit length segments) in a contour map.

We refer to these three types of feature usingtéhnes:
Average Contour Segment Joint Histogram (ACSJHjn&mnt
Orientation Aura Matrix (SOAM) and Basic Aura Mats
(BAMSs). These are defined in the three subsectioel®w,
respectively.

1) Encoding the Average Shape of Contours within aagbm

We use rate of change of orientation to measural loc
curvature, and the distance between the mid-poirfitd/
segments within a contour is also employed to capspatial
layout. Pair-wise orientation differences and dises are
computed for all (M —1)(M —2)/2 segment pair
combinations. The contour segment joint histograimthe
orientation differences and distances is accumdjadad is
normalised by the sum of its elements. Note thabtfientation

orientation angles (6 € (0°, 180°). Compared to the chaingnglesp were quantised intd bins and the distances were

code method [27], this representation is less #eadb noise
or small variations. Fig. 5 presents three setgmfal segment
shapes and their chords. The result is a segmeptwhich
encodes each contour as a set of labelled segmenttheir
mid-point positions and chord orientations. Howewvas the
length of segments increases discriminatory inféionas lost
(see Fig. 6 for example). Hence, only short segmerith

(c)

Fig. 5. Three sets of typical segment shapes agid¢hords. The solid lines
above represent example contour segments, the Bogerepresent segment
endpoints, the dotted lines show the chords ofémnents, while the crosses
show the segment mid-points. The orientations ettiords and the positions
of the mid-points are used to represent segments.

lengths of 3, 5, 7, 9 and 11 pixels were used.

C. Encoding Contours’ Segment Maps

We use three different approaches to represensphéal
distributions and orientations of contours’ segraeht the first
we compute an average segment distribution acroswurs
(that is we compute pair-wise segment relationshigitin
contours and then average across all contours image). In

quantised intoB bins, providing histogram resolution of
((2A — 1) x B). Itis these histograms that are used to reptesen
individual contours. In addition, histograms areetaged
across contours to produce a single “Average Carg§egment
Joint Histogram” (referred to as ACSJH). See Fi(dy4
2) Representing the Spatial and Angular Distributiofshe
Segments across Contours

In this feature we compute segment relationshighimvian
image but the mapping of segments to contours neréyl.
Since it is computationally expensive to calcuktepair-wise
segment data within an image, we instead adapbtbg Level
Aura Matrix (GLAM) as defined in [22] and below, tepresent
segment-to-segment angle and position relationships

A GLAM is a 2D (co-occurrence) matrix in which th&es
are normally used to represent the two grey leg€lsairs of
pixels within anl x L local neighbourhood. The definition of
GLAM is based upon the Aura Measure and so we geodth
definitions below.

Aura Measure (AM) [22] Given two subsets,,S, € S,
the AM of S; with respect t&,, is computed as:

AM(Sl'SZ'N) = ZSESlle nSZl, (2)

where|M| counts the total number of the element#in; is
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theL x L neighbourhood at siteandN = {N,,s € S}.

Grey Level Aura Matrix (GLAM) [22] Given that
{S;,0 <i < G — 1} is a set of grey level sets of imgbe&), the
GLAM of f(s) overN is computed as:

GLAM(N) = [AM(S;, S}, N))], (3)

where G is the number of grey levels ifi(s), S; ={s €
S|f(s) =i} is the pixel set whose grey level is and
AM(S;, Sj, N) is the AM betweess; andS;, 0 < i,j < G — 1.

In our case we are encoding the joint distributiofithe two
angles of each pair of segments instead of thelgveys of two
pixels. This joint segment angle matrix is accurtedafor all
pair sets inside a local neighbourhood, where ¢igenent pairs
in a pair set are defined by a displacement vetter(Ax, Ay)

different similarity tasks [17], [19] were used &ssess the
performance of the new PMIF feature set againseXsting
feature sets (51 as investigated by Dengal. [17], [19] and
four contour type feature sets derived from the psha
recognition literature [4], [32]).

These feature sets were used to compute 334x334rsyn
matrices, which were used in the two similarityktasThe first
was a pair-of-pairs comparison application [17] #relsecond
was a texture retrieval problem [19]. In the forrtiex classifier
is presented with two pairs of textures and musiddeon
which pair differs most. In the latter, given a guexture, the
task is to rank the other textures in the datas&trims of their
similarities with the query texture. One thousandgman
derived pair-of-pairs judgements [17] and 334 human

(1Ax], |Ay| < |L/2]). This is similar to the method used forperceptual texture rankings [19] were used as thergl-truth

selection of pixel pairs in co-occurrence matriG. for the two tasks respectively. Note that it was &vailability
We use the term “Segment Orientation Aura Matrixof these higher-resolution similarity data thattafied our

(SOAM) to refer to the segment angle matrix andaisies are Cchoice of using th@ertextexture database [19].

used directly in the feature vector. (Note thaghbburhood A The Four Shape Recognition Feature Sets

size was set ds= 2SL + 1, whereSL was the segment length
Therefore the maximum sized

and SL € {3,5,7,9,11} .
neighbourhood considered was 23x23 pixels). Nate #iat
we use the Aura Matrix defined in [22] instead o tBasic
Aura Matrix [48] used in [18] and below, in orderreduce the
SOAM dimensionality fromi? x (L2 — 1) to A2.

3) Encoding Spatial Distributions of Pixels in a ComtdMap

The features described above, based on the ang

distributions of contours’ segments, are desigredricode
longer range HOS. They are not efficient at captyri
information at the micro level. Hence, in order éncode
short-range (spatial) interactions between pixelsantours,
we use Basic Grey Level Aura Matrices (BGLAM) [48hey
are a special case of GLAM, defined above, butoatained
using a single site neighbourhood system [48]. We them
here because their resolution is higher, they hstvenger
discriminatory power, and the dimensionality ofdbenatrices
is acceptable given that they are computed onittaovalued
contour maps. Their dimensionality 2 x (32 —1) = 32
(where 2 is the number of grey levels and 3 issike of local
window N;).

We use the term “Basic Aura Matrices” (BAMs) to eef
these2 x 2 matrices.
4) Generating the Contour-Based Feature Vector

The ACSJH, SOAM and BAM features are concatenataglulti-resolution feature vector.

into a feature vector which we refer to using thert “PMIF”
(Perceptually Motivated Image Features). Each PfdHture
vector is normalised by the sum of all elementshinrest of

Shape context [4] and chain code histogram [32jufea
were calculated for each contour contained in aatonmap
using both local and global texton dictionaries.

Each contour was represented by a 300 dimensitagles
context feature vector or an eight dimensional rchaode
histogram. The texton generation method proposeddmna

Lﬁmd Zisserman [54] was used to derive ten textmm these

Shtures. All 3340 (334x10) textons were concatmhatto a
texton dictionary. A histogram was accumulated é&arch
contour map using this dictionary. We term the tgtobal

texton dictionary based feature sets obtained utfiegshape
context and chain code histogram methods as: “VZ-&@l

“VZ-CCH?" respectively. In addition, for the two ntetds, the
ten textons derived from each contour map were asdins to
calculate a histogram from the corresponding festextracted
from this map. We refer to the two local textontidicary

feature sets as “SCTH” and “CCHTH" respectively.

B. Computing Similarity Matrices Using Features

Each 1024x1024 texture image was decomposed o fi
Gaussian pyramid levels using the MatlabPyrTookwsoe
package [38]. Each level was separately normaligeén
average intensity of zero and standard deviatiamef Feature
vectors were computed at all levels and combintmarsingle
In addition, theignal
resolution feature vectors were examined in thig\st

The Chi-squarestatistic [54] (see Equation (4)) was utilised
to calculate pair-wise distances for histogram-taased the

this paper, “PMIFA-(SL)” denotes a PMIF feature set in whichPMIF feature sets, while tHeuclideandistance (see Equation

the segment anglé is quantised intoA bins (A€
{9,18,27,36,45}) and the segment leng#§y, € {3,5,7,9,11}. It
should be noted that PMIF encode long-range, medange
and short-range HOS.

IV. PERCEPTUALTEXTURE SIMILARITY ESTIMATION
EXPERIMENTS

Three hundred and thirty-folRertextextures [29] and two

(5)) was used for all other feature sets. Thesmmtes were
normalised td0, 1] and subtracted from 1 to provide data for
the similarity matrices. These simple distance sfdidlarity)
metrics were used in order not to confound theyaigivith the
overtraining that might occur with more sophistézhtnachine
learning methods [8] when applied to what is atieddy small
texture set.
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X2 y) = %Zz—(2i+yyl: : (4)
Euclidean(x,y) = /2i(x; — ¥;)?. ®)

We test our PMIF features at five different segmamgle
guantisation schemes (usidgbins, A € {9,18,27,36,45})
and five different segment lengthsi(e {3,5,7,9,11}). In
terms of the five pyramid resolutions, the distancEsegment
middle points were quantised inBoe {80,60,40,35,30} bins
respectively. Therefore, the dimensionality of tkangle
resolution PMIF feature set {84 — 1) x B + A? + 32.

C. Experimental Design

As the computational similarity matrix is obtainéd a
different manner from that used to obtain the paxca
similarity data, they are represented in differesiie spaces.
However, direct comparison of the two similarity tnees is
avoided when pair-of-pairs comparison [17] or tegtietrieval
[19] are used, because they ustative magnitudes of the
similarity data. Having derived the similarity mags from the
computational features it is then a simple taskge these to
generate either pair-of-pairs judgements or restieankings.

In the case of the pair-of-pairs comparison theagent rate
[17] between the computational and the human dairags
judgements was used as the performance metric.thor
retrieval based assessment we compared the ran&intee
computational and human-derived retrievals (whigblweed
the query image) using tliemeasure@ € [0, 1]) [23].

IR Uri—tiD+ENRIN+ ) —r + R (v D - t)

N(N+1) ©)
whereR is the number of all relevant imagesNrretrieved
imagesy; is the rank order of-th relevant/irrelevant image
retrieved by one search engine (or feature set)tais the
“ideal” rank order (i.e. the rank order oth texture image
ranked by human observers in this research) of ittte
relevant/irrelevant image retrieved. Thg measure was
averaged over different query textures. We did fiighe top
N € {10,20,40,60} retrieved textures. The measure has the
advantage that it considers the relative rankingisinvthe two
retrievals compared with traditional measures: igies and
recall [23] which do not.

G=1-

D. Experimental Results
1) Pair-of-Pairs Based Evaluation Experiment

Results for two different resolution cases (102241@and
the multi-resolution case) are shown in Fig. 7. The best
performing feature sets at these two resolutiosgseported in
[17], i.e. Ring and Wedge Filters (RING & WEDGE[land
Multi-resolution  Simultaneous  Autoregressive
(MRSAR) [37], were used as baselines for our coispar
These results are therefore shown separately in7Riggether
with the average performance of the 51 featuressetmsined in
[17] (as “MeanOf51"). In addition, the results betfour shape
recognition-based feature sets (see Section V&) @so
reported. The remainder of the graph shows thdtsefs our
PMIF feature set at five different segment anglesb{d €
{9,18,27,36,45} ) and five different segment lengths

Model
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Fig. 7. Agreement rates obtained using computdtieaduresagainst hume
pair-of-pairs data computed at a resolution of 2224 (red dash-datace
and multi-resolution (blue solid trace). The fitstee columnsldbelled ir
bold blue) show the mean and two best results métaising th 51 featur
sets [17]. The next four columns (labelled in redid) show results derived
using four shape recognition feature sets. The ir@nmaresults aralerivec
using our new feature set.

(SL € {3,5,7,9,11)).

It can be observed that our feature set perforrttetoehen
the segment angkis quantised into 36 or 45 angle bins and
when longer segment lengths are used. In theses dase
outperforms the two best conventional feature detsan also
be seen that the performance of all feature setepting RING
& WEDGE [11], are enhanced when multi-resolutiotadare
used. In addition, the Varma and Zisserman texto#] [
versions of the shape context [4] and chain costgiam [32]
termed VZ-SC and VZ-CCH here; perform better tHanttvo
local texton feature sets (SCTH and CCHTH). In ipalar,
VZ-CCH closely matches our best feature set inquerénce.

2) Retrieval Based Evaluation Experiment

In this experiment, the five best feature sets stigated in
[19], namely, VZ-NBRHD [54], MRSAR [37], LBPBASIC
[40], LBPHF [1] and RING & WEDGE [11], were utilideas
baselines. Thé measures obtained using the feature sets are
shown in Fig. 8 for retrieval sizes &fe {10,20,40,60}. From
this figure it can be observed that: (1) the use of
multi-resolution data improves the performance of the
feature sets; and (2) at 1024x1024 our featurewperforms
all other feature sets with the exception of VZ-NHR and

e e S e S S s e s e s e s e s e
-9 1024 & Top 10 -8~ 1024 & Top 20 -+ 1024 & Top 40 - -+ 1024 & Top 6
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Fig. 8. G measures for the computational features (calailatgnghumat
ranking data as ground-truth) provided at a ltgimm of 1024x1024 (re
dash-dot traces) and multi-resolution (blue salatés). The foudifferen
marker types indicate results for four valuesva {10,20,40,60}. The firs
six columns (labelled in boldlue) show the mean and five best re:
obtained using the 51 feature sets tested in [d8]fierert conditions. Th
next four columns (labelled in red italic) show uks obtained usindour
shape recognition feature sets. The remaining teeanéobtained using o
new feature set.
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Fig. 9. Best and worst query images (central quagieown) for PMIF-3§5)
when 10 textures are retrieved: (a) 10 “best” quextures sorted in
descending order & measures; and (b) 10 “worst” query textures With
measures of 0.

RING & WEDGE feature sets. For the multi-resolutiase it
outperforms all except the MRSAR feature set.

Fig. 9 shows the top 10 “best” and “worst” quemttees for
the PMIF-36-(5) feature set. Clearly, the textusgth obvious
long-range structures (see Fig. 9 (a)) can beerstd more
reliably than those with small blob-like structuré®©40”,
‘0437, “104”, “254” and “302") or without obvioustrictures
(232" and “324”). In addition, our feature set can retrieve
those regular textures whose long-range contounsiatabe
accurately extracted (“329”, “332” and “334").

E. Discussion

Here we discuss issues concerning choice of segamagth,
effect of contour detector and performance measoreBMIF
features; the feasibility of incorporating otheracdcteristics
into PMIF features; and the merits of the use oftcor data.
For simplicity, we only consider the pair-of-pa@speriment.
1) Choice of Segment Length

The choice of the segment length is a trade-offvben

TABLE Il
AGREEMENT RATES(%) OBTAINED USING PMIF WHEN THREE EDGE
DETECTORS ARE USEDINCLUDING CANNY, LIP CANNY AND STRUCTURED
FORESTS(SF).THE LENGTH OF SEGMENTS IS SET AS FIVE PIXELS WHILEHE
SEGMENT ANGLES IS QUANTISED INTOA =9,18,27,36 AND 45BINS.

Edge Detectof A =9 A=18 A=27 A=36 A=45
Canny [7] 59.30 59.30 59.30 59.20 59.10
LIP Canny [43] 58.20 57.70 58.50 58.60 58.50
SF [14] 59.50 60.80 60.10 60.20 60.30

Bold fonts indicate the highest performance activsghree edge detectors.

be seen that the SF-based system outperforms thettver
implementations while the LIP implementation prasdthe
worst performance. Note that while LIP provides som
illumination invariance, th@ertextextures [29] were acquired
using the identical illumination conditions and sthcould
explain why the LIP version does not have an acagmhere.

It should also be noted that the Canny implemeonatiare
more efficient than the Structured Forest with tagter
implementation being approximately ten times slovior a
machine with a 64-bit, 3.40GHz Intel(R) i7-4770 C&hd 16.0
GB memory, the total time required for extractinonours
from 334Pertextextures at five pyramid levels using the Canny,
LIP Canny and SF detectors are 210.42, 215.82 4A8.88
seconds respectively. Thus, the use of Canny vsictited
Forest can be viewed as another speed vs. acanaaeyoff.

3) Effect of Performance Measures

In the pair-of-pairs experiment, we used “agreenraig”
[17] as the performance measure. However, a varidty
performance measures could have been used. Forpexam
Spearman’s correlation coefficient (CC) [24] is @menonly
used measure in vision science. In addition, ag@ienof the

TABLE IlI
THE VALUES OF THE AGREEMENT RATEAR, %), SPEARMAN'S CORRELATION
COEFFICIENT(CC) (0 = 0.05) AND MUTUAL INFORMATION (MI) OBTAINED
USING SIX BASELINES ANDPMIF AT THE MULTI-RESOLUTION SCHEMEONLY
THE BEST PERFORMANCE OPMIF IS SHOWN IN EACH CASE

Measure | MRSAR([37] R&W [11] CCHTHVZ-CCH SCTH VZ-SC PMIF
AR (%) [17]  60.00 56.10 47.90 59.80 4830 56.6060.10
CC[24] | 03155 01970 -0.07040.2927 -0.01890.1726 0.3227
MI [45] 0.0289  0.0106 0.0012 0.0278 0.0008 0.01Z50294

Bold fonts indicate the highest performance acdif$srent feature sets.

mutual dependence between two variables, mutuadrirdgtion

efficiency and accuracy. Short segments requireatgre (MI) is popular in information theory [45].

computation, while long segments do not allow thigioal

We computed Spearman’s correlation coefficient afid

shape of contours to be retained (see Fig. 6). rAfteising values derived directly from the two setssiofilarity
experimentation, a segment length of five pixels whserved data. Table Il shows the original pair-of-pairsegment rate,
to provide reasonable computational efficiency ehillowing against the CC and MI values. These were obtainedik

flexible encoding (see the experiments describegkiction V).
2) Effect of Contour Detection Method

baseline feature sets and PMIF. This shows thatPkiéF
feature set outperforms its counterparts indepenoiewhich

For contour detection, we compared the original rgan of the three performance measures is used.

detector [7] with (1) a Logarithmic Image Procesgsiii.IP)
model based Canny [43] and (2) a Structured Fo{8BE)
method [14]. All other procedures were kept coristéme
segment length was set®is= 5 and the segment andlevas
quantised intal € {9, 18,27,36,45} bins.

The agreement rates obtained are reported in Tabtean

4) Incorporating Other Image Characteristics

The PMIF feature set utilises contour data at thesible cost
of distortion of 2nd-order statistics. However, @jat al [41]
showed that a local variance measure (“VAR") is
complementary to the Local Binary Patterns (LBRitdee set
(which also removes or distorts 2nd-order stasjtitnspired
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TABLE IV
AGREEMENT RATES(AR, %) OBTAINED USING THEPMIF AND PMIF&VAR
FEATURE SETSTHE LENGTH OF SEGMENT$SL) AND THE BINS OF SEGMENT
ANGLES (A) ARE SET AS DIFFERENT VALUES

SL | FeatureSetf A=9 A=18 A=27 A=36 A=45

3 PMIF 59.10 59.10 58.80 59.10 58.90
PMIF&VAR | 59.40 60.10 59.90 59.80 60.10

5 PMIF 59.30 59.30 59.30 59.20 59.10
PMIF&VAR | 59.10 60.20 60.10 60.40 60.40

7 PMIF 58.90 59.80 59.30 59.60 59.40
PMIF&VAR | 59.80 59.50 60.30 60.30 60.40

9 PMIF 59.40 59.60 59.70 59.70 60.10
PMIF&VAR | 59.80 60.00 59.50 59.50 60.00

11 PMIF 59.00 59.40 59.90 60.10 60.00
PMIF&VAR | 59.20 59.30 59.80 59.30 59.70

Bold fonts indicate the higher performance betwisese obtained using the
two feature sets.

by this, we added the VAR feature to the PMIF feauector in
order to incorporate local contrast characteristiise new
feature set is termed as “PMIF&VAR”. We compareds th
feature set with original PMIF in the pair-of-paggperiment.
The results are reported in Table IV. It can bendbat the use
of the local variance data improves the performasfceMIF
when the segment length is less than nine pixeldoar
numbers of segment angle bins are used. Howeueristinot
the case when longek(9 pixel) segments and more £7)
segment angle bins are used. This may be attribiatettie
sparse representation of PMIF when fewer (longeghents
and more segment angles are used.
5) Merits of the Use of Contours

As shown in Section II, the contour data is sugafdr
representing global image structural informationtHis study,
we encode each contour using its segments. Thiexdppation
obtains computational efficiency but may sacrifithe
representation accuracy especially for those ssualle
contours (see Fig. 9 (b)). On the other hand, ttepgsed
feature set does not represent an image well winenme tis no
obvious structure in the image (see Fig. 9 (b)esEnfindings
probably explain why the PMIF feature set was sligh

outperformed by MRSAR [37] which models local image

characteristics based on grey level image patcheshé
retrieval task. Therefore, a more precise reprasient of local
contour elements and the joint modelling of localage
contrast characteristics should improve the peréome of the
PMIF feature set. However, the time cost for cormguPMIF
features is lower than that required for MRSAR. Ebe
machine described in Section IV-E-2, the averagee tcost
required for the extraction of PMIF and MRSAR faagifrom

512x512Pertex [29] images are 22.95 and 131.30 second °

respectively. In this context, the PMIF featurealsb provides
a good trade-off between efficiency and accuracy.

F. Summary

The PMIF feature set performs well in the two ekpents
when compared to existing feature sets. AlthoughlIFPM
performs slightly worse than its original versi@DoCS [18],
its feature dimensionality has been reduced greatlis makes
the generalisation of it to other applications muractical.
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V. GENERALISATIONS

We assessed the performance of the PMIF featurésan
additional applications: sketch-based image redlid$BIR)
[21] and natural scene recognition [6]. As the hatson of the
images used in these experiments is lower tharuded in the
previous experiments, the features were only etddaon three
Gaussian pyramid [38] levels. The BAM features were
extracted using three levels of spatial pyramid][821
sub-images) and were concatenated. All conditiongefature
extraction were kept the same except the two aspdcive. In
this case, the dimensionality of the single resolutPMIF
feature set i§24 — 1) x B + A% + 32 x 21.

A. Sketch-Based Image Retrieval Experiment

We used the framework proposed by Etzl.[21] for the
SBIR task. In this framework, human ranking da&wased as
the ground-truth and Kendall's rank correlation flomnts
[24] are used as the performance measures. Wealployed
theG measure [23] used in the texture retrieval taskt s
suitable for comparing two non-identical ranking@8]} As in
[21], we setr = 5 and low and high thresholds for the Canny
detector [7] to 0.05 and 0.2 respectively.

First, as baselines, we used the best Kendall'selation
coefficients obtained using five feature sets: Temsor and
HoG (T & HoG) descriptor; the shape context desorip
(SCD); the histogram of oriented gradients desoriftoG);
the spark descriptor (SD) and the standard histogod
oriented gradients descriptor using dominant locentations
(SHoG) tested by Eitet al.[21] (see Table V). The best results
obtained using the shape recognition feature sétsduced in
Section IV-A and our PMIF feature set are also regbin

TABLE V
BESTKENDALL’S CORRELATION COEFFICIENT$r) BETWEEN
COMPUTATIONAL AND PERCEPTUAL RETRIEVALYd = 0.05)

Feature Set T & HOG SCD HG SD SHG
T 0.223[21] 0.161[21] 0.175[21] 0.217[21] 0.277[21]
Feature Set SCTH CCHTH  VZ-SC VZ-CCH MRPMIF
T 0.002 0.012 0.024 0.012 0.231

Bold fonts indicate the highest performance actesdeature sets.
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Fig. 10.G measures for the computational features (calalilaggnghumar
ranking data as ground-truth) provided at the pebiesolution (red dasiet
traces) and for the multi-resolution (blue solidces). Five differentarke
types are used to indicate results for five vabfel € {1,2,4,6,8}. The firs
column (labelled in bold blue) shows the best tssobtained using SHoG
[21] (multi-resolution is not available). The néatir columnglabelled in re
italic) show results obtained using four shape ged®mn feature setsThe
remaining results are obtained using our new feagat.
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Table V. It can be seen that the multi-resolutiomIP
(MRPMIF) outperformed all its counterparts with tixeeption
of SHoG [21] which uses the most dominant sketdimexs$.

Second, since Eitet al. [21] published the best ranked list
obtained using SHoG we compared PMIF and the fhaps
recognition feature sets with it using tlfemeasure. We
examined the top 1, 2, 4, 6 and 8 (out of 40) eead images.
(The ratio of 8/40 is approximately equal to thé33@ ratio
used in texture retrieval). The results are shawfig. 10. It
can be seen that the best multi-resolution PMIpediormed
all the other feature sets.

B. Natural Scene Recognition Experiment

Brown and Susstrunk [6] derived a new natural sterge
dataset (containing 477 colour and near-infrareiRfNmage
pairs) and used this to compare three feature S8#AX,
GIST, and SIFT for scene recognition. They randoselcted
99 images for testing (11 per category) and trainsidg the
remainder. We used the same experimental schemeniyt
utilised the nearest-neighbour classifier, and md use the
Bayes or linear SVM classifiers [6]. We conductete t
experiment 1000 times, rather than repeating itdioly ten
times with different training/test splits. The meamd standard
deviation of the recognition rates (%) were usepeaformance
measure.

Considering detailed information is necessary fatahing
two natural scene images, the value aff the Canny detector
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Fig. 11. Average recognition rates (&)d standard deviations obtained u
computational features d@) grey level images and (b) both grey level
near-infrared images. Each bar-group shows two lugsos: origina
resolution (left), and multi-resolution (righfjhe first three columns (labell
in bold blue) show the best results obtained using thratife sets tested
[6] (multi-resolution is not available). The neruf columnglabelled in re
italic) show results obtained using four shape gad®mn feature setsThe
remaining results are obtained using PMIF.
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TABLE VI
BEST AVERAGE RECOGNITION RATE$%) AND STANDARD DEVIATIONS
Feature Set HMAX GIST SIFT PMIF  MRPMIF
L |50.3:3.2[6] 59.9%3.5[6] 59.8:3.8[6] 64.3:4.2 65.3:4.1
RR| LI [55.9:3.7[6] 60.4:3.4[6] 64.1:3.6[6] 66.5:4.2 66.24.1
(%)| RGB [53.43.9[6] 60.0:3.3[6] 62.9:3.1[6] 65.1+4.1 67.0:4.2
RGBI |57.2:4.0[6] 60.0:4.4[6] 67.5:2.3[6] 66.24.0 68.0:4.2

Bold fonts indicate the best performance for eatdige data combination.

[7] was set ag/2. We carried out the experiment using four
different combinations of image data: L = luminar(geey
level), LI = luminance + NIR, RGB, and RGBI = RGBNtR
[6]. The performances of HMAX, GIST, and SIFT reeakin

[6] were used as baselines. Fig. 11 reports thdtsegbtained
using the three baselines, the four shape recogrfgature sets
and the PMIF feature sets for the L and LI datacdh be
observed that PMIF performed better than all itsnterparts
on these data. A summary of the results for alt fmage data
combinations is shown in Table VI. This shows thestb
average recognition rates and their correspondiagdard
deviations obtained using the three baselines amdPMIF
feature sets. Both the PMIF and MRPMIF feature sets
outperformed the other feature sets for the fouagen data
combinations.

VI.

In this paper we first examined the importance loké
different categories of data to the human percapiictexture.
Two categories were motivated by the informatiomowonly
used by existing texture features: 2nd-order siedis and
short-range higher order statistics (HOS) (typicalbtained
from image patches). The use of the third categooptour
data, was motivated by the fact that the humanralisystem is
extremely adept at exploiting these visual cues|, [2$4],
[46-47], [53] and that they utilise long-range HO®le
conducted an experiment with human observers thaved
that for thePertexdatabase [29], contours are the most useful
category of data for human texture discrimination.

Inspired by this result and the fact that nonehefil feature
sets examined by Dorgg al.[17], [19] use HOS beyond 19x19
pixel neighbourhoods, we developed a set of newgéma
features, based on representing contours as setsgaients.
We refer to this feature set as: “Perceptually Mattd Image
Features” or “PMIF” for short. The PMIF feature seploits
the long-range, medium-range and short-range H@8adnle
from the segment and pixel distributions.

We tested this feature set using two texture siityla
estimation tasks. The first task was a pair-ofgpaomparison
in which the classifier simply has to decide whaftthe two
pairs differ most [17]. The second task was imagfeiaval
[19]. Using an existing human-derived higher-retolu
similarity matrix [10] we were able to fully ranke results
which in turn allowed us to assess the ability editéires to
estimate perceived similarity more thoroughly. @ dor this
comparison we used theG" measure [23] that takes into
account rank order). We also applied the PMIF featet to
two more popular tasks: sketch-based image retri@BIR)

CONCLUSIONS
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[21] and natural scene recognition [6]. The ressiftswed that
the PMIF feature set outperformed, or performed anably
to, its counterparts in the four tasks.

Although the proposed feature set does not utilisgonary
learning [54], parameter estimation [37], or comtealection
[21] techniques, it outperformed, or performed canaply to,
the existing feature sets examined in this studhe VZ-CCH,
MRSAR [37] and SHoG [21] feature sets which perfedmvell
in parts of the experiments are relatively compaoiet!y
intensive, and in these cases, the proposed fesgtiis more
efficient.

While the PMIF feature set was designed for, and
particularly suitable for, the representation ofages that
contain long-range (aperiodic or periodic) struefuthere
remain three open problems. First, the featurea®tot encode
small contours well, as it uses segments rather puants to
describe contour shapes (see Section IlI-C-1). i®#Hgp it
cannot represent an image well that is devoid oficts
structure (in this case, grey level, or colour imation is
needed). Finally, longer-range spatial distributioacross
contours are not exploited within the feature set.

However, we have shown that using image HOS ovange
of spatial extent is important both to human petioepand for
machine analysis, particularly for exploiting therder scale
structures often found in image texture. We hopétifis work
will encourage further research into the usefulnessuch
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