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This paper investigates three stochastic modelling procedures for generating N (user
specified) synthetic annual electricity demand profiles at one-minute resolution. The
paper reviews previous work in the application of Hidden-Markov modelling (HMM)
for synthesizing highly stochastic time-series of domestic electricity demand through
a sophisticated framework coalescing 480 distinct HMM. The efficiency of a proposed
approach for integrating a time-series deseasonalizing technique with a single HMM has
been studied in parallel with a compatible stochastic modeling framework of a time-
series deseasonalized ARIMA model. Various statistical measures/characteristics of the
real and synthetic profiles have been compared for all the three stochastic modelling
procedures to identify the most efficient and practically suitable medium for generating
synthetic electricity time-series at a fine temporal resolution. Results have been shown for
both the individual buildings and the composite (aggregated) profiles of many buildings.

Keywords: Synthetic time-series; Energy; Hidden Markov Model; ARIMA Model; Time-
series Deseasonalization.

Nomenclature

HMM Hidden Markov Modelling.
ARIMA Autoregressive Integrated Moving Average.
MA Moving Average.
AR Autoregressive.
ARMA Autoregressive Moving Average.
EDA Exploratory Data Analysis.
ACF Auto-correlation Function.
ARIES Adaptation and Resilience In Energy Systems.
ARCC Adaptation and Resilience in a Changing Climate.

1. Introduction

Energy is often listed amongst priority issues in government policy [1]. As a result,

a considerable amount of recent research investment has been made to promote

quality research in the areas of energy. Researchers from different backgrounds are

coming together to provide better understanding and solutions on various aspects of

2
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energy use and efficiency. It has been anticipated that certain challenges in the area

of energy are likely to develop further in the future [2] and substantial amount of

research is required to develop efficient and sustainable energy related technologies

and solutions to deal with this multi-faceted problem.

Appropriate data is essential to accurately record the extent of such a challenge,

and researchers often face barriers in obtaining such data, relating to availability,

costs, and resolution of datasets. Specifically, understanding the characteristics of

energy demand that emanate from the built environment can require annual en-

ergy profiles at fine temporal resolutions (such as minute) for a large number of

buildings. For example, a researcher might be interested in examining the effect a

new appliance technology has on the electrical demand of an individual dwelling,

but then also studying the impact of changes on the aggregated a electricity pro-

files, should that technology reach the mass market. For many cases, information

required at such a large numerical scale (e.g. number of dwellings) and at such a

fine resolution is not always available. To overcome such issues, statistical modelling

techniques for generating synthetic profiles can be utilised.

Under this theme, in [3] the authors have previously presented novel application

of a HMM technique in generating annual synthetic domestic electricity demand

profiles at one-minute resolution through a complex framework of 480 integrated

distinct HMM. The procedure presented in this reference was complex and had

some identified limitations, particularly in capturing some stochastic characteris-

tics of individual synthetic demand profiles (e.g. the visual inspection of synthetic

profiles appeared to be more stochastic than the real profile, though other statistical

characteristics were in good agreement). This related study presents and compares

three methodologies to generate synthetic electricity demand profiles at one-minute

resolution by exploiting stochastic modelling techniques, namely:

Modelling Procedure 1: a framework of 480 integrated distinct HMM, pre-

sented in [3];

Modelling Procedure 2: ARIMA modelling technique integrated with a time-

series deseasonalization procedure; and

Modelling Procedure 3: HMM modelling technique integrated with a time-

series deseasonalization procedure.

The novelty of the present paper is the application of the time-series desea-

sonalization in association with a single HMM framework to design a systematic

methodology for generating synthetic profiles, which can significantly simplify the

methodology presented elsewhere [4], with the latter requiring the complex frame-

work of 480 distinct HMM models. The proposed simplified procedure involving

time-series deseasonalization has also been applied to a traditional ARIMA mod-

aAggregated Profiles for a geographic area are usually constructed by integrating a large number
of the individual energy demand profiles corresponding to many different buildings within the
area.
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elling framework. This paper will investigate the efficiency of these three stochastic

modelling procedures.

Next section is intended to present a brief overview of the state of the art, dis-

cussing various stochastic modelling techniques that can be utilized for synthesizing

electricity demand profiles. Section 3 presents an extensive EDA of the available

data and thus formulates basis for the selection and designing of appropriate mod-

elling techniques and framework. Details of the modelling procedure have been

structured and presented in the Section 4 which is then followed by the Section 5

that provides a thorough analysis of model outcomes. Model performance has been

systematically validated across individual profiles (Subsection 5.1), percentile dis-

tribution (Subsection 5.2) and ACF (Subsection 5.3). Practical application of the

proposed methodologies has been discussed in the Section 6 which is then followed

by the final discussion and conclusions in Section 7.

2. Background

Several techniques have been proposed in the past to generate synthetic electricity

demand profiles. In context of the present paper, an extensive literature review

for generating domestic electricity demand profiles can be found elsewhere [3, 5].

Some of the earlier modelling techniques for synthesizing electricity demand have

limited applicability, primarily because most of these techniques require detailed

information on various parameters which are not easily accessible in practice, such

as activity profiles of the occupants, usage details of the various appliances, and

lifestyle/habits of the occupants (see, e.g., [6–8]); secondly none of these techniques

are known to be effective for synthesizing electricity demand at a temporal resolu-

tion of one-minute.

Domestic electricity demand profiles can be considered as a complex combina-

tion of highly stochastic processes and deterministic processes. Deterministic pro-

cesses can be attributed to the steady operation patterns of certain appliances such

as refrigerator, freezers, and televisions (and other appliances) on standby. How-

ever, there exist several factors such as usage pattern of appliances (depending on

the number of occupants and their activities/habits), climatic influences (daylight

hours can effect usage of lighting, loads on heating or cooling systems), which could

be partly random and statistically suggests a more stochastic process.

A range of stochastic time-series modelling techniques such as moving average

(MA), autoregressive (AR) [9], autoregressive-moving average (ARMA) [10], au-

toregressive integrated moving average models (ARIMA) (see, e.g., [11,12]), Monte-

Carlo Simulation, Methods of Surrogate [13], Fast Fourier Transform [14], wavelet-

based models [15], neural networks [16], and Markov Chain Models [17] have been

explored to generate synthetic time-series across a wide range of discipline and in-

terest areas. Moving average (MA), autoregressive (AR), and autoregressive-moving

average (ARMA) modelling techniques are suitable for univariate stationary pro-

cesses. Autoregressive integrated moving average models (ARIMA) are often used
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for modelling stochastic non-stationary series. Through differencing, ARIMA mod-

els facilitate transformation of a non stationary time series in to a stationary time

series and have numerous applications [18]. Some of the interesting applications of

ARIMA modelling can be referred in time-series models involving seasonal effects,

econometrics, and forecasting models.

HMM was first introduced by the [19] and, since then, has been successfully

applied to a range of real world complex problems such as speech recognition [20],

exploring time-sequential images [21], complex brain R images [22], prediction in

computational biology [23] and modelling of protein structure [24] through large

scale genomes-sequence analysis [25].

Statistically, ARIMA models exploit the correlation between an observation at

time t with the subsequent observations in the past, i.e. t-1, t-2, t-3, . . . , t-n,

whereas a HMM accounts for the evolution probabilities of the observed state at

time t from one previous state (first order Markov model) at t-1, through a set of

un-observed (hidden) states. This paper explored the detailed structural make-up

of both the ARIMA model and the HMM and describe how these models can be

efficiently framed for generating synthetic electricity profiles.

3. EDA

For a preliminary selection of an appropriate modeling technique, and to design a

successful and efficient statistical modeling procedure, a key step is carrying out

a detailed EDA of the original dataset. An EDA procedure reveals the dynamics

and the detailed information on the statistical physiognomies of the dataset. Data

available to conduct the proposed work consists of annual electricity demand profiles

at one-minute resolution for nine different dwellings. Detailed information on the

dataset can be referred elsewhere [26]. An in-depth analysis of the available dataset

is presented and discussed below.

Table 1 presents the distribution of the average electricity consumption spread

across the nine different dwellings over the year, spring (March-April-May),

summer (June-July-August), autumn (September-October-November), and winter

(December-January-February) period. It is interesting to note that the average an-

nual consumption value along with the seasonal average consumption values varies

considerably across the nine buildings (buildings are arranged in descending order

for the average annual electricity consumption values of the dwellings). For all nine

dwellings, the average electricity consumption during the summer and the spring

period is moderately lower than the corresponding average annual consumption,

with the summer consumptions slightly lower than the corresponding spring con-

sumptions. Analogously, the average consumption during the autumn and the win-

ter is moderately higher than the corresponding annual average consumption, with

winter consumptions slightly higher than the corresponding autumn consumptions.

Table 2 presents a full spectrum of the five summary statistics (minimum, 25th

percentile, 50th percentile, 75th percentile, maximum) and two high-end extreme
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Table 1: Average electrical consumption analysis (in kWh) for nine different real

dwellings measured over the year, spring (March-April-May), summer (June-July-

August), autumn (September-October-November), and winter (December-January-

February) periods.

Building ID A B C D E F G H I

Annual 22.97 22.17 21.74 18.97 16.98 15.96 15.06 11.82 10.54

Spring 21.95 20.57 19.68 17.90 14.91 13.75 13.92 12.74 9.85

Summer 20.34 18.74 20.70 17.90 16.05 13.73 11.68 10.60 8.63

Autumn 24.60 22.18 21.44 19.81 17.01 18.04 16.50 11.01 11.44

Winter 25.31 26.54 25.27 20.23 20.08 17.89 17.91 12.66 12.00

percentile (90th percentile and 95th percentile) values measured across the nine

different dwellings. These various statistics of annual consumption values for the

nine different dwellings demonstrate considerable amount of variation. The table has

been color-coded on a gray scale to expose any patterns in the percentile distribution

of the electricity consumption values. It can be noted that for the percentile values

lower than the 75th percentile a consistent pattern in the electricity consumption

values can be observed, with values decreasing from dwelling A to I. However, for the

two high-end extreme percentiles (90th and the 95th percentile) a different pattern

can be seen. It is interesting to note that the difference in the values observed at

the 95th percentile and the maximum is considerable. Specifically, these differences

are 4.9 kW, 6.5 kW, 6.4 kW, 4.5 kW, 6.2 kW, 7.4 kW, 7.2 kW, 4.5 kW, and 6.3

kW for dwellings A, B, C, D, E, F, G, H and I respectively. This demonstrates, for

such a high resolution dataset, that peak values can occur at very low frequency,

being a result of a superposition of different activities/technologies that might only

occur very rarely and for very short (e.g. a few minutes) periods of time.

Thus, the present analysis of the data suggests that up to 75% of the values

in the data set are less than 1 kW and could be attributed to the standby loads,

20% of the values range between 0.8 to 3.2 kW and could be attributed towards

a range of different appliance usages of the individual households used in a sys-

tematically predictable way, and the remaining 5% of the high-end values could be

more difficult to predict events occurring in the households that do not follow a

systematic trend (when, for example, comparing one dwelling to another dwelling).

This demonstrates that key features of a domestic electrical demand profile (such as

in Figure 2) relate to high values occurring for short time periods. Although these

features are infrequent, relative to a typical day, they become important if the re-

lated activity (e.g. cooking appliances) correspond to an energy use that is likely

to occur at the same time for many dwellings. This will result in a superposition

of values that will cause features to be observed in an aggregated profile (discussed

later).
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Table 2: Five summary statistics (minimum, 25th percentile, 50th percentile, 75th

percentile and maximum) together with 90th and 95th percentile across a year of

electricity demand data for nine different real dwellings.

Building ID A B C D E F G H I

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

25th Percentile 0.6 0.5 0.4 0.5 0.3 0.3 0.3 0.2 0.2

50th Percentile 0.7 0.6 0.6 0.7 0.4 0.5 0.4 0.4 0.3

75th Percentile 1.0 1.0 0.9 0.9 0.6 0.7 0.7 0.6 0.5

90th Percentile 1.6 1.6 1.8 1.3 1.4 1.0 1.3 0.9 0.8

95th Percentile 2.9 2.9 3.0 1.7 3.2 1.8 1.7 1.2 0.9

Maximum 7.8 9.4 9.4 6.2 9.4 9.2 8.9 5.7 7.2

Color code 0.0-0.2 0.3-0.5 0.6-0.8 0.9-1.1 1.2 and over

The electrical load profile of a dwelling displays varied patterns across different

days of a week, and months/seasons of the year, which can be partly correlated to

the household type, occupant activity, climatic effects and other factors. To explore

the dynamics of electricity load distribution corresponding to more random actions

happening in the household, four percentiles (minimum, 75th percentile, 90th per-

centile and maximum) of minutely electricity load values are plotted and presented

in Figure for three different dwellings (A, E and I) and for four different seasons

(Spring -‘March-April-Mayz’, Summer -‘June-July-August’, Autumn -‘September-

October-November’and Winter -‘November-December-January’).

Figure 1 shows that the percentile distribution of the electricity load profile has

considerable amount of variation across the three different dwellings, four seasons

and time of the day. Visual inspection of the Figure 1 suggests that the percentile

distribution of electricity consumption values between 00:00 - 08:00 hrs is slightly

higher during the summer in comparison to the corresponding values for winter.

This could be due to the warmer climatic conditions in summer putting extra loads

on certain appliances such as refrigerator and freezers. Analogously, between 18:00

- 24:00 hrs the percentile distribution of electricity consumption values is slightly

less during summer in comparison to the corresponding winter consumption values,

which could be due to longer sunlight hours during the summer. This observation

reflects the impact of climatic conditions on the electricity consumption. Again, the

difference between the 95th percentile value and the maximum value at each minute

is similarly large across all the three dwellings and across all the four seasons.

Figure 2 provides a snapshot of the randomly selected one-minutely daily elec-

tricity demand profile for three dwellings A, E and I over two different day types

(active and less active)b and two seasons (summer and winter) of a year. This

bExplained elsewhere [4], an active or less active weekday or weekend has been identified by
statistically measuring activity levels happing in between 12:00 - 16:00 (this specific time period
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Fig. 1: Minimum, 75th Percentile, 95th Percentile and Maximum for three dwellings

A, B and C, measured at one-minute resolution during spring (March-April-May),

summer (June-July-August), autumn (September-October-November), and winter

(December-January-February) period.

has been chosen to identify if occupants are in the house and active during the day time). A
percentile analysis of the number of events (defined as energy demand exceeding 2kW) within
the specified period suggested that a day could be labeled as ‘active’if more than 10th percentile
values of such events happen within the specified period. Note: a different time period (than 12:00
- 16:00); a different value of threshold (than 2 kW); and a different level of percentile cut off (than
10th Percentile) can be chosen to define diverse activity and occupancy patterns.
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Fig. 2: Snapshot of randomly selected minutely real electricity demand pro-

file for three dwellings A, E and I. One active and one less active day have

been randomly selected during summer (June-July-August) and winter (November-

December-January) period.
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figure shows the key features of typical daily electrical load profiles and the varia-

tions in daily electricity use patterns across different dwellings, seasons, day types

(active/less-active), and along different hours of the day. A typical daily electrical

load profile is composed of randomly superimposed, ‘standard base load cycles’c ,

‘time-specific loads’d and ‘random loads’e . Thus, preliminary EDA concludes that

the annual time series of the electricity consumption broadly demonstrates variation

across: a) buildings; b) seasons; c) day type; and d) hours of a day.

4. Modelling Procedure

Synthetic time-series are designed to imitate the dynamics and the various statisti-

cal properties of the original time-series. This section presents step-by-step details

of three distinct statistical modeling procedures to generate synthetic electricity

demand profiles. All the three distinctive modeling procedures exploits the infor-

mation collected through the EDA carried out in the above section to design an

appropriate framework for replicating the dynamics and the key statistical features

of the original series to the duplicate series.

4.1. Modelling Procedure 1 - Integrated framework of 480 distinct

HMM

Markov models, in general, are suitable for problems involving temporal pattern

recognition. They survey the original dataset to identify temporal patterns in the

data and then simulate the patterns to extrapolate a desired number of synthetic

series. Markov models are known to have limited success when applied to a complex

dataset (see below for what such a dataset might entail). However, for complex

datasets HMM technique appeared to provide better solution than the conventional

Markov modeling technique. This section presenta the methodology designed to

exploit the Hidden-Markov Model (HMM) through a well-organized framework.

HMM can be identified as a probabilistic modeling toolkit for modeling complex

datasets, which can be categorized as a finite set of observed states with each ob-

served state comprised of countable number of underlying observations represented

as hidden states of the system. The structural composition of HMM consist of five

basic components:

(1) State space – A finite set of well-defined observed states.

cStandard base load cycles - Mainly attributed to continuously running appliances such as refrig-
erator, freezers TV/Laptops on standby mode
dTime-specific loads - Depending on the occupancy and occupants’ life style certain electrical
appliances (such as lighting, dishwashers, washing machines, cooking, TV/Games, etc.) could
have a consistent usage pattern during specific times of the day.
eRandom loads: Quite often depending on household type, life-style and habits of occupants’
climatic conditions, usage of electrical appliances could be partly random and attributed to the
random load.
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(2) Hidden states space – A finite set of underlying observations (often

referred as ‘hidden states’) corresponding to each observed states.

(3) State transitional probability matrix – A matrix containing transi-

tional probabilities between different observed states.

(4) Emission probability matrix – A matrix containing emission probabil-

ities of underlying observations from the observed states.

(5) Initial probability set – A set defining initial probabilities of observed

states.

Analysis of the key statistical features of the electricity demand data clearly in-

dicates that time series of the electricity demand profiles embrace variability across

the different dwellings, seasons/months, day type and hour of the day. Therefore, to

initialize simulations of synthetic time-series, the original electricity demand dataset

has been carefully segregated into 480 distinct parts and a distinct HMM has been

fitted to each part. Segregation procedure of the data can be summarized into three

stages, described below:

• Stage 1 To account for effects of seasonal variability, the annual time series

is segregated into six parts by pairing data from two consecutive months

together i.e. January- February; March-April; ... ; November-December.

• Stage 2 To capture variability arising due to activity patterns, each of

these six parts is then divided into four day types, namely active weekday,

active weekend, less-active weekday, and less-active weekend.

• Stage 3 To incorporate variability at different periods of a day, each day

has been divided into 20 distinct hour types. EDA suggests that the period

from 00:00 to 08:00 can be divided into four parts (each of 2 hrs) and then

remaining period from 08:00 to 24:00 can be divided into 16 distinct parts

(each of 1 hr).

Thus, by segregating an annual time-series of minutely electricity demand pro-

files into 6 × 4 × 20 = 480 parts and then by fitting the above specified HMM to

each of these 480 parts through an efficient algorithm compiled in R (Statistical

programming language and interface) [27] an integrated framework of 480 HMM has

been designed. The HMM model is fitted in R by exploiting the HMM-package [28].

For annual electricity demand profiles, the above specified five basic components of

HMM were defined as follow:

(1) State space – a set of five distinct observed states (A, B, C, D, E)f has

been defined by conducting a systematic percentile analysis of all observed

values of annual electricity demand profiles.

fExplained elsewhere [4], State A is defined as load between the minimum and 20th Percentile
value; state B as load between the 20th and 40th percentile value; state C as load between the
40th and 60th percentiles value; state D as load between the 60th and 80th percentile value; and
state E as load between the 80th percentile and maximum value.
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(2) Hidden states space – a set of underlying (hidden) states corresponding

to each observed state has been defined by accounting all discrete values

with one decimal place lying within the range of observed states. Therefore

if, for a dwelling, state A corresponds to the event of observing a load value

between 0 and 1 kW then a set of underlying hidden states corresponding

to observed state A will be 0.1, 0.2, . . . , 0.9 kW load values; similarly, if

state B corresponds to the event of observing a load value between 1 and

2 kW then set of underlying hidden states will 1.1, 1.2, . . . , 1.9 kW load

values; and . . . so on.

(3) State transitional probability matrix containing transitional probabil-

ities of five different observed states has been identified as a 5× 5 matrix,

say S, where Sij (elements in ith row and jth column) giving probability

of transition from state i to state j.

(4) Emission probability matrix containing emission probabilities of un-

derlying (hidden) observations from the discrete observed states has been

identified as a5× 9 matrix, say E, where Eij (elements in ith row and jth

column) giving probability of transition from observed state i to underlying

(hidden) state j.

(5) Initial probability set as a set of five initial probabilities corresponding

to each observed state has been obtained from the analysis of the time

series.

Modelling Procedure 1 can be simulated to generate any number of user-

specified, say N (integer number), synthetic annual electrical demand profile at

minutely resolution.

4.2. Modelling Procedure 2 - ARIMA model with time-Series

deseasonalization

Generally, time-series can be decomposed into three components: trends, seasonal

variation and random components. For effectively modelling a time series it is de-

sired that any trends, seasonal variation, random components and residual corre-

lations between the data should be appropriately accounted for in the modelling

procedure. Annual one-minutely electricity demand profiles available for the present

work are associated with seasonal variation transversely through the daily, weekly

and monthly cycles. Therefore, it is important that the modelling procedure should

effectively account for these seasonal variations in the synthetic time-series.

Autoregressive modelling is a commonly approached technique for generating

synthetic univariate time series. ARIMA(p, d, q) models are generally encouraged

for modelling non-stationary processes, where p denotes delay, q denotes moving

average and d denotes the order of differentiation required for transforming non-

stationary series into stationary series [17]. A time-series deseasonalization tech-

nique promotes segregation of seasonal variations from the series while leaving

behind any trends and random components in the residual data. A systematic pro-
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cedure for deseasonalizing a time-series can be referred elsewhere [29]. To generate

a synthetic time-series of annual electricity demand under modelling procedure 2,

the time-series deseasonalization technique has been integrated with the ARIMA

models. The modelling procedure is consists of two parts and is described as follows:

Step I to III involves deseasonalization of the annual electricity demand profiles

(described as below):

Step1 Various methods are available for removing trend component from the

time-series, one of the simple approach is taking logarithm . Thus, step 1 involves

log-transforming time-series of annual electricity demands, say time-series

{Et} = Et1 , Et2 , . . . , Eti , . . . , (1)

to the log-transformed series

{log(Et)} = log(Et1), log(Et2), . . . , log(Eti ), . . . . (2)

Step2 To remove seasonal effects at an hourly scale, hourly averages and hourly

standard deviations of the log-transformed series are computed, i.e.

{E}µhr
= Eµ1

, Eµ2
, . . . , Eµi

, . . . , (3)

and

{E}σhr
= Eσ1

, Eσ2
, . . . , Eσi

, . . . , (4)

where

Eµ1
= Average of (log(Et1), log(Et2 ), . . . , log(Et60)) ,

Eµ2
= Average of (log(Et61), log(Et62), . . . , log(Et120 )) ,

. . . so on.

(5)

Eσ1
= standard deviation of (log(Et1), log(Et2), . . . , log(Et60)) ,

Eσ2
= standard deviation of (log(Et61 ), log(Et62), . . . , log(Et120)) ,

. . . so on.

(6)

Step 3 To deseasonalize the time series, the hourly averages are subtracted

from each minutely values of the log-transformed series and then divided by the

difference of hourly standard deviation values, i.e.

{E}Deseasonalize = EDeseasonalize(t1), EDeseasonalize(t2), . . . , EDeseasonalize(ti), . . . ,

(7)

where



August 24, 2016 0:2 WSPC/INSTRUCTION FILE IJES˙SPatidar

14 S. Patidar, D. P. Jenkins & S. A. Simpson

EDeseasonalize(t1) =
log(Et1)− EAvg1

Esd1

, . . . , EDeseasonalize(t60) =
log(Et60 )− EAvg1

Esd1

,

EDeseasonalize(t61) =
log(Et61 )− EAvg2

Esd2

, . . . , EDeseasonalize(t120) =
log(Et120)− EAvg2

Esd2

,

. . . so on.

(8)

Step 4 involves fitting of the ARIMA(p, d, q) model to the deseasonalized time

series of annual electricity demand. The ARIMA model has been fitted in ‘R’by ex-

ploiting Forecast-package [30]. Simulation of the ARIMA model n times generates

n synthetic deseasonalized annual electricity demand time series of minutely reso-

lution. To introduce seasonal variation back into the series, the reverse procedure

of the above step has been followed, i.e. these synthetic deseasonalized time series

were multiplied by the hourly standard deviation and then hourly averages were

added accordingly. Finally, the exponential of the series terms were taken which

provides the required n synthetic annual electricity demand profiles at one-minute

resolution.

4.3. Modelling Procedure 3 - HMM model with time-Series

deseasonalization

Modelling Procedure 3 combines a HMM with the above specified time-series de-

seasonalization procedure. To the deseasonalized series obtained as described above

a HMM model is fitted in R using HMM-package [28] and then exactly the same

procedure as described in Part II has been followed to add seasonal trends and

construct the required n synthetic annual electricity demand profiles at one-minute

resolution.

It should be noted that Modelling Procedure 1, which proposes fitting of 480

distinct HMM to the different partitions of the original time-series, is complex and

involves intense data processing, whereas Modelling Procedure 3 requires a single

HMM model. At this point, it can be argued that Modelling Procedure 2 and 3 are

comparatively much simpler, cost effective (in terms of computational resources

and time required) and easier to implement in practical applications than Mod-

elling Procedure 1, though the fact remains that the success of a model depends

on its efficiency in generating a desired outcome of high quality. The efficiency of

Modelling Procedure 1 in generating synthetic profiles has been rigorously tested

and validated in [3]. This paper thoroughly investigates the efficiency and limita-

tions of Modelling procedure 2 and 3 in comparision to the Modelling procedure

1.
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5. Results

This section examines the results of the synthetic electricity demand profiles con-

structed from the three modelling procedures (1, 2 and 3). To serve this purpose,

various statistical characteristics of the synthetic electricity demand profiles were

compared with the real electricity demand profiles.

5.1. Individual profiles

In section EDA, Figure 2 displayed the variation in usage patterns and key dynam-

ical characteristics of a typical daily electricity load profile for three dwellings A, E

and I, across two different day types (active and less active) and two seasons (Sum-

mer and Winter). Figure 3 provide a quick visual examination to assess the success

of modeling procedures 1, 2 and 3 (respectively) in simulating these variations for

dwelling A [please refer to Appendix Figure 8 and Figure 9for dwelling E and I

respectively].

As already discussed, a typical daily electricity load profile can be considered

as being composed of ‘standard base load cycles’, ‘time specific loads’and ‘random

loads’. Although quite specific features will occur due to dwelling type, occupant

lifestyle and climatic conditions, some basic features of different profiles can still be

compared.

A quick inspection of Figures 3, 8, and 9 reveals that all the three modelling

procedures are reasonably successful in capturing most of the basic features of the

one-minutely electricity load distribution and observed variations of the electricity

load profiles across the different hours of the day, day types, season types and the

dwelling types. However, a closer inspection reveals that the general makeup of

these synthetic profiles is slightly different across the three modelling procedures.

To demonstrate this difference, the inset plots of Figures 2, 3, 8, and 9, highlight-

ing the standard base load cycles, have been used. Standard base load cycles con-

structed through modelling procedure 1 have comparatively more irregular patterns

of peaks and troughs than modelling procedures 2 and 3. Modelling procedure 2

generates more frequently appearing sharp peaks than modelling procedures 1 and

3, which is less representative of actual cycles in real data (which would be derived

from fridge/freezers). Similarly, on comparing peak loads (exceeding 2 kW values),

synthetic profiles generated by modelling procedure 1 display considerably more ir-

regularity of peak load; whereas modelling procedure 2 generates load profiles with

comparatively sharper and more frequent peak load values. The overall makeup of

one-minute electricity load profiles generated by modelling procedure 3 seems to be

slightly more consistent with the real load profiles.

5.2. Percentile distribution

Visual inspection of the minutely electricity load profiles provides evidences to sup-

port the effectiveness of the modelling procedures in replicating various statistical
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Fig. 3: Snapshot of randomly selected minutely synthetic electricity demand profile

for dwelling A generated by three modelling procedures 1, 2 and 3. One active and

one less active day have been randomly selected during summer (June-July-August)

and winter (November-December-January) period.
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characteristics of the real profiles. This section presents a more thorough compari-

son of the percentile distribution (10th, 25th, 50th, 75th, 90th, 95th and Maximum)

for the real dwellings A (Figure 4), [Please refer to Appendix Figure 10 and Figure

11 for dwelling E and I respectively] with the corresponding percentiles at one-

hour resolution for randomly selected synthetic annual profiles generated by the

modelling procedure 1, 2, and 3.

From the analysis of Figures 4, 10, and 11 all three modelling procedures are

successful in capturing dynamics of all the percentiles lower than the 75th, (though

modelling procedure 1 appears to display slight variations for dwelling E and I).

This effect is specifically noticed during the active periodg, i.e. between the morn-

ing (07:00 - 10:00) and the evening (17:00 - 24:00) hours. During these hours the

percentile values of real profiles are considerably higher than those of the synthetic

profiles generated by modelling procedure 1. Additionally, the maximum load values

estimated by modelling procedure 1 is consistently lower than the value observed

for the real profiles, whereas for modelling procedures 2 and 3 the maximum load

values are slightly higher than the values observed for the real profiles. Overall it is

suggested that modelling procedures 2 and 3 are performing better than modelling

procedure 1; and modelling procedure 3 looks slightly more effective than modelling

procedure 2 in capturing percentile distribution of the real profiles.

5.3. ACF

Autocorrelation, also referred as ‘lagged correlation’or ‘serial correlation’, of a time

series can be defined as the correlation of the time-series with its own past and

future values. Autocorrelation can be considered as a signature property of time-

series data, which detects if successive terms of the series are independent of each

other. A series with no autocorrelation is a random series and therefore cannot be

predicted whereas positive/negative autocorrelation of values indicates some certain

degree of association between the observations. To detect autocorrelation in a time-

series, i) time-series plots; ii) lagged scatter plot and iii) ACF plots (also known as

‘correlogram’h ) are commonly used.

Figure 5 displays ACF plots of the electricity demand profiles for dwellings A,

E and I[represented by the solid black line with the solid circles] compared with the

ACF plots of the randomly selected synthetic annual series generated by modelling

procedure 1 [solid gray (orange online) line with solid diamonds], 2 [solid gray

(brown online) line with solid squares], and 3 [solid gray line with cross]. From the

analysis of Figure 5 it can be noticed that for all the three dwellings, the ACF for

the synthetic series generated by modelling procedure 3 is bordering closest to the

ACF of the real series, whereas the ACF of modelling procedure 1 is running to the

gMost of the peak load values (exceeding 2kW) are observed during this period of the day.
hCorrelogram - plots correlation of the data (y-axis) for the various lags (x-axis). For example: at
lag 1 ACF represents correlation of observation at time t and one previous period t− 1. Similarly
at lag h ACF represents correlation of observation at time t and at h previous periods t− h
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Fig. 4: Maximum and 10th, 25th, 50th, 75th, 90th and 95th percentile at one-hour

resolution over the entire year period. Percentiles are compared for real dwelling A

with percentiles measured for randomly selected synthetic annual profiles generated

by modelling procedure 1, 2 and 3.
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outermost of the real series. Thus analysis of ACF clearly indicates that modelling

procedure 3 is the most effective procedure in capturing the correlation trends of

the successive terms of the real series.

In summary, from the analysis presented in this section all the three modelling

procedures appear to be compatible for generating synthetic electricity demand

profiles at one-minute resolutions. However, when considering the fine details of

the comparison analysis, modelling procedure 3 appears considerably more effective

than modelling procedures 2 and 1 (with modelling procedure 1 the least effective).

6. Practical Application

Synthetic electricity demand profiles of the type described in this paper have a

range of possible applications, including the construction of aggregated electric-

ity load profiles, energy demand forecasting and compensating for missing data

in empirical datasets. This section will demonstrate a significant application of the

synthetic profiles in constructing aggregated profiles. Aggregated electricity demand

profiles are particularly useful when considering the impact of technology and/or

policy changes on how energy is supplied. The management of the electricity grid,

for example, is mostly concerned with the demand profile of large regions of build-

ing stock (as well as nationally), rather than individual demand profiles of single

dwellings.

Figures 6 and 7 demonstrate the efficiency of the proposed modelling proce-

dures 1, 2, and 3 in capturing the transient variations of aggregated electricity load

profiles. Figure 6 compares the aggregated profiles of the nine real dwellings [solid

black lines] at one-minute resolution with the aggregated profiles of 225 synthetic

dwellings [solid brown line]. The 225-dwelling plots were synthesized by creating 25

synthetic profiles from each real dwelling, and applying modelling procedures 1, 2,

and 3 (in Figure 6 top row, middle row and bottom row respectively) for three dif-

ferent versions of this aggregated synthesis. These 225 aggregated synthetic profiles

and the aggregated profiles of the nine dwellings are then compared to a randomly

selected summer day of 13th June (in Figure 6 left panel) and winter day 17th Jan

(in Figure 6 right panel). Key observations from this analysis are: i) The synthetic

aggregated electricity profiles are smoother than the individual profiles - as would

be seen with empirical data - and the increase in the number of the distinct profiles

entering in the aggregation process increases the smoothness of the final aggregated

profile (an effect often referred to as After Diversity Maximum Demand when ob-

served in real electricity demand data). Thus, the aggregated profiles constructed

from 225 synthetic profiles are much smoother than the 9 aggregated profiles cor-

responding to the real profile; ii) The aggregated profiles of 225 synthetic dwellings

follows the same trends as of the aggregated real profiles of nine dwellings across

the different hours of the day and also for different seasons (summer and winter).

Figure 7 compares real substation profiles of 230 dwellings [solid black lines] at

ten-minute resolution with the aggregated profiles of 225 synthetic profiles [solid
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brown line]. This substation data was available at 10-minute resolution and there-

fore minutely synthetic aggregated profiles are averaged together to get comparable

data at the same resolution, used for the analysis illustrated in Figure 7. The left

panel and right panel display analysis for the above randomly selected days of 13th

June and 17th Jan respectively. Top row, middle row and bottom row respectively

displays aggregated synthetic series constructed through the application of mod-

elling procedure 1, 2, and 3.

It is important to note that the substation data is of a different group of buildings

and different year than the data that is used to synthesis the individual dwellings

comprising the 225-dwelling profile. There are therefore a number of reasons for the

profiles not to exactly match. One such reason is that the more recent substation

data is taken from homes with a higher penetration of low energy lighting; this

would result in lower peak demand during the evening for the real substation data.

This is evident in the three winter profiles of Figure 7. The comparison is therefore

carried out to identify whether a similar scale of variation is being achieved by

the synthesized profiles, but further work is required to validate this. The current

validation does indicate that the difference between summer and winter profiles

exhibits approximately similar patterns in the synthetic data as seen in the real

data. Timing of peak demand is also predicted at similar times, which would be

crucial to an energy supplier. This is further explored by the authors [3] in a more

application-focused study .

7. Conclusion and discussion

Energy demand across the globe is rising rapidly and it is important to balance

an efficient energy demand and supply chain. To conduct research into the various

factors likely to influence future energy demand, such as impact of new technolo-

gies, climate change, and government policies, high quality data at an appropriate

resolution is needed. However, in practice it could be challenging to gain access

to such data for conducting these studies. This could limit our understanding of

how different demand-side technologies, if applied across a large proportion of the

building stock, might impact the supply of that energy in terms of magnitude and

timing of peak demand and other demand profile characteristics.

This paper proposed three stochastic modelling strategies for generating syn-

thetic electricity demand profiles. All three proposed techniques were critically

analysed compared and validated. For generating synthetic annual energy demand

profiles at one-minute resolution, modelling procedure 1 proposes a sophisticated

framework of 480 integrated HMM. Modelling procedures 2 and 3 propose much

simpler and efficient solutions by integrating time-series deseasonalization tech-

niques with ARIMA and HMM approaches.

The validation included the analysis of key statistical features of the real and

synthetic electricity demand profiles. It was found that all three techniques are able

to generate synthetic electricity demand profiles at one-minute resolution. However,
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modelling procedure 3 appears to provide a simpler and more efficient solution in

comparison with the other two models.

Modelling procedure 2 uses an ARIMA model at its core whereas modelling

procedures 1 and 3 adopt an HMM approach. Statistically, ARIMA models are

based on exploiting the correlation property of the series with itself whereas the

HMM technique exploits the probability of a system to jump from one state to

another state. Therefore, ARIMA models appear to capture most of the statisti-

cal characteristic of real series but are not highly successful in emulating the basic

structure of electricity load profiles (specifically, with the data presented here, for

peak values of over 2 kW). Consequently, it has been noted that individual profiles

generated through the application of modelling procedure 2 exhibit sharper peaks,

which appear to be unrealistic when compared to real data. Although both mod-

elling procedures 1 and 3 use HMM at their core, it should be noted that modelling

procedure 3 is much simpler to implement in practice than modelling procedure 1.

This would have clear computational advantages if adopted in industry.

Work is in progress to generalize the stochastic modelling techniques of gen-

erating synthetic profiles for wider application areas. In the Adaptation and Re-

silience In Energy Systems (ARIES) project [31], the possible generalization of the

technique in synthesizing demand profiles for non-domestic buildings could also

be investigated. Plans are in place to include larger datasets from real dwellings

to examine the robustness of the technique and application of the methodology

in compensating missing datasets. Various interesting approaches are available in

literature for methodologically decomposing and forecasting a time series such as

Empirical Mode Decomposition, Singular Spectrum Analysis, Exponential Smooth-

ing etc., which can be investigated for expanding this work in future. Nevertheless,

the present work presents a novel and applicable technique for effectively simulating

highly stochastic time-series at a fine temporal resolution of one-minute.
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Fig. 6: Aggregated profile of nine dwellings [solid black lines] at one-minute reso-

lution compared with aggregated profile of 225 synthetic dwellings [represented by

solid brown line] for a randomly selected summer day 13th June (Left Panel) and

for a randomly selected winter day 17th Jan (Right Panel). Top row ‘modelling

procedure 1’; middle row ‘modelling procedure 2’; bottom row ‘modelling procedure

3’.
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Fig. 7: Substation profile of 230 dwellings [solid black lines] at ten-minute resolution

compared with aggregated profile of 225 synthetic dwellings [solid brown line] for a

randomly selected summer day 13th June (Left Panel) and for a randomly selected

winter day 17th Jan (Right Panel). Top row ‘modelling procedure 1’; middle row

‘modelling procedure 2’; bottom row ‘modelling procedure 3’.
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Fig. 8: Snapshot of randomly selected minutely synthetic electricity demand profile

for dwelling E generated by three modelling procedures 1, 2 and 3. One active and

one less active day have been randomly selected during summer (June-July-August)

and winter (November-December-January) period.
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Fig. 9: Snapshot of randomly selected minutely synthetic electricity demand profile

for dwelling I generated by three modelling procedures 1, 2 and 3. One active and

one less active day have been randomly selected during summer (June-July-August)

and winter (November-December-January) period.
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Fig. 10: Maximum and 10th, 25th, 50th, 75th, 90th and 95th percentile at one-hour

resolution over the entire year period. Percentiles are compared for real dwelling E

with percentiles measured for randomly selected synthetic annual profiles generated

by modelling procedure 1, 2 and 3.
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Fig. 11: Maximum and 10th, 25th, 50th, 75th, 90th and 95th percentile at one-hour

resolution over the entire year period. Percentiles are compared for real dwelling I

with percentiles measured for randomly selected synthetic annual profiles generated

by modelling procedure 1, 2 and 3.
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