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Abstract 

Mineral carbonation (MC) using recyclable ammonium salts pH swing processes  is 

considered among the most promising MC techniquees to store CO2 permanently. 

However, the main key challenge to use this process at large scale is related to the energy 

consumption associated to the regeneration of the employed additives and in particular to 

the separation of the salt to be regenerated from the water solution.  

This work investigates the feasibility of a liquid-liquid extraction technique to replace 

the energy intensive salts/water separation step. Also, the CO2-balance of a 500 MW 

coal-fired based power plant with an integrated pH swing MC facility was investigated. 

Different operating conditions were investigated, including temperature, reaction time, 

pressure, solid to liquid ratio (S/L), reagents concentration and stirring rate.  An 

ammonium sulphate/water separation higher than 90% was achieved at 25°C, 10 minutes, 

1bar, 200g/l S/L ratio, 70% methanol and, 350rpm. The associated energy consumption 

was calculated, resulting in an energy saving of 35% in comparison to water evaporation. 
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The process resulted carbon negative when water evaporation was replaced by extraction 

technique, with 33% of CO2 sequestered by using a S/L ratios of 300 g/l. 

Keywords: Ammonium salt • CO2 fixation • CCS • mineral carbonation • separation 

Nomenclature 

AMD - Acid Mine Drainage 

AS - Ammonium Sulphate 

MC - Mineral carbonation  

CCS - CO2 Capture and Storage 

EFC - Eutectic Freeze Crystallization 

ESDM - Experimental Standard Deviation of the Mean 

FTIR - Fourier Transform InfraRed spectroscopy 

GHG - GreenHouse Gases 

HHV - High Heating Value 

KNeW - Potassium Nitrate Ex Waste 

MVR  Mechanical Vapour Recompression 

TGA - Thermo Gravimetric Analysis 

RH - Relative Humidity 

 

1. Introduction  

The electricity and heat production sectors release around 30 billion of tonnes of CO2 per 

year [1, 2]. It is, therefore, essential to find a way to reduce CO2 emissions. A series of 

different technologies such as liquid solvents and solid sorbents have been proposed to 

capture CO2 for geological storage [3,4,5]. Mineral carbonation (MC) is also becoming 

attractive to immobilize CO2 permanently as carbonate rocks. Silicate rocks including 

serpentine, olivine and a wide range of inorganic wastes (e.g. steel slags, cement wastes) can 
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be used in this process. The amount of feedstock minerals would be largely sufficient to store 

all the CO2 produced by fossil fuel reserves [2]. In particular, magnesium silicate deposits 

such as serpentine are known to be available worldwide [6]. MC involves the reaction of CO2 

with metal oxides to form carbonates. Since the carbonates obtained are stable 

thermodynamically and only a minimal fraction of CO2 stored could be releases, although on 

geological timeframes. Mineralization has the advantage to be an overall exothermic reaction 

and also, it can take place close to CO2 emitters, where inorganic wastes (e.g. steel slag in a 

steel work) can be used as in-situ carbonation feedstock. Otherwise, mineralization can be 

advantageous if mineral deposits are closely located [7]. 

However, at the current stage of development, MC drawbacks such as its slow kinetics, 

low efficiency and large energy consumption are limiting its wide deployment. MC can be 

classified in direct and in-direct processes. In the direct processes, where the dissolution of 

mineral is the rate-limiting step, Ca/Mg rich solids are carbonated in a single process step. 

Multiple steps are instead used in the in-direct approach, where the reactive components 

(Mg2+, Ca2+) are extracted from minerals, using acids or other solvents, followed by the 

reaction of the extracted components with CO2 in either the gaseous or aqueous phase [8].  

As natural carbonation of silicate rocks is very slow because of low exposed surface and 

diffusion limitations, ex-situ aqueous in-direct carbonation reactions are being developed to 

accelerate the process. Indeed, the addition of a mineral dissolution step with the employment 

of chemicals is able to shorten the reaction times and enhance the reaction extent [8,9]. MC 

by pH swing using ammonium salts is a promising multistep process, which is extensively 

described previously [7,10-12]. The process consists of 5 steps: (1) CO2 capture using 

ammonia (NH3 + CO2 ↔ NH4HCO3); (2) the leaching of the Mg/Ca cations from the mineral 

resource using acid ammonium bisulphate solution (NH4HSO4 + Mg/Ca rich silicate ↔ 

MgSO4 + SiO2 + unreacted silicate + (NH4)2SO4); (3) pH-regulation (to swing the pH from 
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pH 1-2 caused by unreacted NH4HSO4, to pH 8-9, at which carbonation reaction occurs); (4) 

the mineral carbonation of CO2 (bonded as NH4HCO3) (MgSO4 + NH4HCO3 + H2O ↔ 

MgCO3·3H2O + (NH4)2SO4 + CO2); (5) the regeneration of the used chemicals (separation of 

(NH4)2SO4 from the water solution and its decomposition to NH3 and NH4HSO4, which are 

the re-sued in steps 1 to 3). Overall, this method has the advantage to avoid the compression 

and the transportation of CO2, since only an absorption step is used to separate CO2 from the 

flue gas and also can be used to co-capture CO2, SO2 and NOx [7, 13]. Aqueous ammonia 

CO2 capture has become very attractive compared to the MEA based system, due to its high 

removal efficiency, low cost, absorption capacity, lower equipment corrosion, low heat 

energy requirement and low degradation rate [14-15]. 

Wang and Maroto-Valer have also optimized the MC technique to reduce the water used 

by increasing the serpentine to water ratio [11]. In order to sequester 1t CO2, 11.34 t of 

NH4HSO4 were used to dissolve 4.93 t of serpentine at 300 g/l solid to liquid (S/L) ratio, 

obtaining a dissolution efficiency of 71 % and a carbonation efficiency of 66%. [11] After the 

carbonation, a water evaporation and a thermal decomposition steps are required to convert 

aqueous (NH4)2SO4 into NH3 and NH4HSO4 [16]. Therefore, to regenerate (NH4)2SO4 (after 

carbonation) a water evaporation step is required involving a large energy penalty. To 

overcome this, the feasibility of a methanol based liquid-liquid extraction technique modified 

from existing processes, where sodium ions and sulphates are removed from an acid mine 

drainage (AMD) [17] and a solution of ammonium sulphate is obtained after the generation 

of acrylonitrile [18], has been investigated, which successfully removes all the dissolved salts 

from AMD and converts them into beneficial raw materials for agriculture and industry 

(gypsum, ammonium nitrate and ammonium sulphate ). The latter is extracted from the water 

solution by adding 30 vol% of methanol in the KNeW (Potassium Nitrate ex Waste) process 

allowing the crystallization of the ammonium sulphate particles. Bewsey (2014) stated that 
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the combination of the Ion Exchange and KNeW processes would allow a water recovery 

superior at 90% and an energy usage very low compared to other techniques. [17]. 

As shown in Figure 1, in the AMD process, (NH4)2SO4 is extracted for the solution by 

adding methanol (30 vol%) allowing the crystallization of more than 90% (NH4)2SO4 with 

energy usage lower than other techniques [17]. The crystallised ammonium sulphate is then 

centrifuged, cleaned up and dried. The methanol/water solution is then sent to a distillation 

column, where the methanol is separated and recirculated in the process. The above process 

has been modified and applied to the MC by pH swing to evaluate if the large energy penalty 

related to the separation of the (NH4)2SO4 remaining after the MC carbonation step (step 4) 

by evaporative techniques could be decreased.  

 

Figure 1: Extraction of Ammonium Sulphate [modified from 17]. 1-methanol storage; 2-

stirred tank; 3-centrifuge, 4-heat exchanger; 5-pump; 6-distillation column. 

 

2. Material and methods 

2.1.1. Material and Apparatus 

Ammonium sulphate, methanol, acetone and ethanol were obtained from Sigma Aldrich. A 

250mL three necks flask and an oil bath were used to test the liquid-liquid extraction 

technique at ambient pressure. The bath was filled with silicone oil instead of water to avoid 

its evaporation during the experiments. A hot stirring plate was used to manage the 

temperature controller and the magnetic stirrer speed. An open circuit water heat exchanger 

was connected to the three necks flask to avoid losing liquid from the flask. Finally, a 

vacuum filter was used to separate the crystals and the salts.  
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A Parr high pressure reactor was used to run the extraction process at 1 bar. A RTC stirrer 

motor and a chiller were required for this apparatus. Finally, nitrogen was used to pressurize 

the vessel to 5 bars. 

2.1.2. Experimental method  

The experimental conditions were selected modifying those suggested in a recent patent 

filed for clean up a solution of (NH4)2SO4 obtained after the generation of acrylonitrile [18]. 

According to this patent, the amount of methanol can vary between 1 and 30 times the 

amount by weight of methanol, relative to the water content of the waste stream; the 

temperature range can change from 10°C to 60°C; the time of mixing should be at the 

minimum 0.01 min and at the maximum 50 min as well as the separation technique 

(filtration, centrifugation or decantation) [18]. Synthetic mother liquors resembling the real 

dissolution liquors (obtained dissolving 200, 150 and, 100 g serpentine / l solution) were 

prepared and used for all of the experiments. For that, 800 mL of water were poured in a 

graduated flask in which the required amount of ammonium sulphate was added (Appendix 

A). Then, 50 mL of the mother solution and a stirrer bar were placed in the three necks flask. 

Then, the stirrer motor was turned on and the temperature set to 20°C or 40°C. When the 

solution reached the required temperature, the required amount of methanol was added to the 

ammonium sulphate solution. After the required time of reaction (5, 10 or 30 minutes), the 

temperature and the stirrer were turned off. Finally, the solution containing water, ammonium 

sulphate and methanol was poured in a vacuum filter and the filter and filtrate were then dried 

at 60°C for 24 hours. 

Acetone tests and high pressure tests were carried out using a 200 ml hermetic stainless 

steel vessel (Parr) due to its high volatility following the same methanol procedure. 200 mL 

of the mother solution and the required amount of acetone were transferred in the vessel. The 

reactor was pressurized with 5 bars of nitrogen where required. At the end of all the 
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experiment, the solution was vacuum filtered and the filtrate dried in hoven for 24 hours at 

60°C.   

Different parameters including temperature (25 and 40 °C), stirrer speed (350 and 

850rpm), time of reaction (2, 10 and 30 mins), pressure (1bar and 5bars) as well as solid to 

liquid ratio (200, 150 and 100 g/l S/L ratio), were investigated to establish the feasibility of 

the liquid-liquid extraction technique when applied to the MC process. Triplicates of tests 

were run (Appendix B) to obtain the accuracy. The relative uncertainty calculated was 1.53 

%. The tests were numbered for convenience (as shown in Tables 1 to 4).  

A Thermogravimetric Analyzer (TGA) Q500 was used to determine the ammonium 

sulphate recovered at the end of the extraction process, after the filtration of test 6 (200 g/L, 

70% methanol, 350 rpm, 25°C, 10 min) to evaluate the loss of water and, the decomposition 

of the ammonium sulphate. The temperature program from 10 to 800°C at 50°C/min under a 

nitrogen atmosphere was used to evaluate the recovery of ammonium sulphate. 

XRD analysis were carried out using a Bruker Nonius X8-Apex2 CCD diffractometer 

equipped with an Oxford Cryosystems Cryostream, typically operating at 100 K, was used 

for the XRD analysis.  

3. Results and Discussion  

3.1.1. Extraction process results 

For each S/L ratio, a first experiment called ‘test 0’ was run to determine the minimum 

amount of methanol required for the solution to react. Then, the amount of methanol was 

increased in order to improve the ammonium sulphate recovery efficiency. Tables 1, 2 and 3 

report the extraction process results for 200, 150 and 100g/l S/L ratio, respectively. The 

yellow colour highlights the optimum parameters (defined as highest % AS recovered) 

evaluated while the red colour shows the efficiency (in terms of percentage of ammonium 
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sulphate recovered at the end of the process) obtained experimentally using these optimum 

parameters.  

These optimum parameters were determined by comparing the efficiency of two tests, 

with only one variable differing. For example, comparing tests 1 and 2, the percentage of 

recovered ammonium sulphate at 40°C was 67.11% (test 1, Table 1) while it was 70.17% at 

25°C (test 2, Table 1). Since the method was more effective at 25°C, it was then considered 

as the optimal temperature parameter. The other optimum conditions were determined in the 

same manner.  

Tests 1 and 2 clearly indicate that there is not gain in terms of AS recovered, when the 

temperature was increased from 25 to 40°C or the stirring rate increased from 350 to 850 rpm 

(tests 2 and 3). Similarly, the AS recovered slightly decreased when the pressure was rose 

from 1 to 5 bar (tests 2 and 5). The amount of solvent used in the extraction process resulted 

the most important parameter in terms of recovered AS. The optimal percentage of methanol 

used differed depending on the S/L ratio (200 g/l ≡ 70% of methanol, 150 g/l ≡ 80% of 

methanol and, 100 g/l ≡ 115% of methanol). It is important to note that the amount of 

methanol required to run the extraction process with a suitable efficiency, is the key 

parameter (in terms of energy efficiency), since the methanol will need to be recovered from 

the water after the separation of the (NH4)2SO4. Therefore, the tests in presence of 100 g/l and 

150 g/l were run to evaluate the optimal amount of methanol to be used. Overall, the solution 

having a ratio of 200 g/l was considered to be the most advantageous, since it used the lowest 

amount of methanol (70%). The optimum conditions within the range of value investigated to 

run the extraction process were obtained at S/L ratio of 200 g/l, using 70% of methanol, 

25°C, 350 rpm for 2 minutes. It should be noted that the reaction time had little influence on 

the process efficiency, but the shorter the better to decrease the energy consumption. The 
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presence of a more concentrated solution (200 g/l) involves the use of less methanol in the 

extraction process as can be seen in the tables below. 

 

Table 1: Extraction process results for the 200 g/l S/L ratio solution. 

  Test 0 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 

Amount of 

methanol (%) 

25% 50% 50% 50% 50% 50% 70% 

Amount of 

methanol (ml) 

12.50 25.00 25.00 25.00 25.00 25.00 35.00 

Temperature 

(°C)  

40 40 25 25 25 25 25 

Time (min)  10 10 10 10 2 10 10 

Pressure (bar)  1 1 1 1 1 5 1 

Stirrer speed 

(rpm) 
350 350 350 850 350 350 350 

  

Result 

0 

Result 

1 

Result 

2 

Result 

3 

Result 

4 

Result 

5 

Result 

6 

% of AS 

recovered  

7.28 67.11 70.17 66.89 70.20 65.44 90.58 

 

Table 2: Extraction process results for the 150 g/l S/L ratio solution. 

  Test 0 Test 6 Test 7 Test 8 Test 9 

Amount of methanol 

(%) 

40% 50% 60% 80% 90% 
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Amount of methanol 

(ml) 
20.00 25.00 30.00 40.00 45.00 

Temperature (°C)  25 25 25 25 25 

Time (min)  10 10 10 10 10 

Stirrer speed (rpm) 350 350 350 350 350 

  Result 0 Result 6 Result 7 Result 8 Result 9 

AS recovered (%) 2.35 34.09 45.70 84.80 95.89 

 

Table 3: Extraction process results for the 100 g/l S/L ratio solution. 

  Test 0 Test 10 Test 11 Test 12 Test 13 

Amount of methanol 

(%) 

58% 80% 90% 100% 115% 

Amount of methanol 

(ml) 

29.00 40.00 45.00 50.00 57.50 

Temperature (°C)  25 25 25 25 25 

Time (min)  10 10 10 10 10 

Stirrer speed (rpm) 350 350 350 350 350 

  

Result 0 Result 10 Result 11 

Result 

12 

Result 

13 

AS recovered (%) 10.64 57.43 67.69 74.60 93.15 

 

As seen in Table 4, an additional set of tests using the 200 g/l solution was carried out at 

the optimum conditions within the values evaluated (25°C, 350 rpm, 1 bar, 70% of solvent, 

10 min), to evaluate the possibility of using alternative solvents as acetone and ethanol. 
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Ethanol was selected for being no toxic and acetone because of its lower boiling point 

(56°C). However, the use of ethanol and acetone did not achieved good AS recovery 

efficiency under the studied conditions. The reason could be that the selected conditions are 

not ideal for ethanol and acetone. Also, the set-up used was not ideal for using acetone due to 

its high volatility. 

 

Table 4: Extraction process results for the 200 g/l S/L ratio with other solvents.  

  Test 6 Test 7 Test 8 

Solvent Methanol Acetone Ethanol 

% of AS recovered  90.58 0.00 48.14 

 

3.1.2. FTIR, XRD and TGA analyses 

Figure 2 shows the FTIR of the extraction liquid sample of the solution recovered after 

the filtration of test 6 (200g/L, 70% CH3OH, 350rpm, 25°C, 10min) (●) together to H2O (♦), 

(NH4)2SO4 (■) and CH3OH (▲) standards . As it can be seen, the liquid sample contains only 

H2O and CH3OH. Therefore, after filtration the solution does not contain any (NH4)2SO4, 

which indicates complete separation of the salt.  This may also indicate that the AS recovery 

efficiencies shown in Tables 1-3 are probably higher than those reported in the tables and that 

a recovery efficiency close to 100 % is actually achieved, but some AS is lost in the process 

operations (e.g. remains in the filter paper). The composition of the solid sample recovered at 

the end of the extraction process (Test 6) was evaluated by FTIR and was represented by the 

pink curve in Figure 2. Again, the solid product is compared to ammonium sulphate, 

methanol and water standards, to evaluate its purity. The peaks of the solid product 
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correspond very well to those of the ammonium sulphate standard. Also, it is clear the 

presence of peaks (1650 cm-1 and 3400 cm-1) related to water in the dry sample.  

 

Figure 2: FTIR profile of (a) the liquid ammonium sulphate solution obtained after the 

filtration of the test 6; (b) the solid ammonium sulphate sample obtained after extraction 

process of test 6. Sample after extraction (test 6: 200g/L, 70% CH3OH, 350rpm, 25°C, 

10min) (●) together to H2O (♦), (NH4)2SO4 (■) and CH3OH (▲) standards. 

 

TGA analyses were used to confirm the composition of the separated salt. Figure 3 (test 

6) shows a first peak at 100°C with about 9 wt % of the weight lost, which is due to loss of 

water whereas the second peak located between 280 and 460°C (about 91 wt %) corresponds 

to the decomposition of the ammonium sulphate. The comparison of the thermo-gravimetric 

profile of the standard ammonium sulphate with that of the solid salt produced in the test 6 

indicated that the mineral phase of the salt was likely (NH4)2SO4.  

XRD analysis of materials remaning after tests 6 and 8 were carried out to establish if the 

separated ammonium sulphate was in anydrous of hydrated mineral phase, since it was not 

possible to define this by the TG plots. 

Figure 4 shows the XRD patterns of the materials recovered in tests 6 and 8. The 

diffraction patterns of both materials corresponds very well with those of standard (NH4)2SO4 

indicating that the liquid-liquid extration precipitates out anydrous ammonium sulphate and 

the water present (see Figure 3) is absorbed moisture.   

 

Figure 3: TGA profile of (a) the ammonium sulphate recovered after the test 6 of the 

extraction process; (b) Standard Ammonium sulphate. 
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Figure 4: XRD patterns of the material recovered after tests 6 and 8 and correspondence with 

(NH4)2SO4 standard (diamond). 

 

3.1.3. Energy consumption 

The energy consumed by the water evaporation step required prior to the (NH4)2SO4 

regeneration was calculated, in order to be compared to the energy required for the alternative 

extraction process proposed here. HSC Chemistry 5.1 software was used to calculate the 

amount of energy consumed by each step of the MC process considering the mass balance 

reported previously [11]. Table 5 shows the mass balance and heat balance of the CO2 

capture step. The reaction is exothermic with a total heat of 527.9 Mcal (or 612.83 kWh) 

released during the CO2 capture. Appendix C shows the energy balance calculations for each 

step of the process. The calculations are made for a 200, 150 and, 100 g/l S/L ratio solution. 

Knowing the amount of serpentine (1049.424 kg of Mg3Si2O5(OH)4) required to sequester 1t 

of CO2, the amount of water used can be calculated.  

Table 6 sums up the final energy balance for sequestering 1t of CO2 by the MC 

ammonium salts technique. Three different S/L ratios were investigated. As it can be seen in 

this table, the energy used for the water evaporation step is different according to the S/L 

ratio. Therefore, the higher is the S/L ratio, the lower is the amount of water to evaporate and 

energy can then be saved. Table 6 also shows that the water evaporation step requires 3411.7 

kWh for a 200g/l S/L ratio which is energy intensive. To make the pH swing MC process 

feasible at large scale it is necessary to improve this regeneration step.  
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Table 5: Energy balance for the CO2 capture. 

Temp 

°C 

Amount 

kmol 

Amount kg 
Amount 

Nm
3
 

Latent H 

(Mcal) 

Total H 

(Mcal) 

IN             

NH3(g) 10 22.722 386.968 518.03 -2.9 -252.39 

CO2(g) 10 22.722 1000 517.866 -3 -2140.02 

H2O 10 22.722 409.345 0.446 -6.12 -1558.39 

OUT             

NH4HCO3(ia) 10 22.722 1796.313 0 0 -4478.09 

BALANCE 

Amount 

kmol 

Amount 

kg 

Amount 

Nm
3
 

Latent H 

(Mcal) 

Total H 

(Mcal) 

Total H 

(kWh)  

IN1 68.167 1796.314 1036.343 -12.02 -3950.8   

OUT1 22.722 1796.313 0 0 -4478.09   

BALANCE -45.444 0 -1036.343 12.02 -527.29 -612.83 

 

The energy calculations made for the CO2 capture, mineral dissolution, pH 

adjustment, removal of impurities, carbonation, regeneration of additives and, ammonia 

adsorption were considered equal for the two techniques: thermal evaporation and liquid 

liquid extraction. Also, the energy required for the extraction of ammonium sulphate was 

very low (stirrer speed and vacuum filter) so it was disregarded. Nevertheless, the 

evaporation of methanol was taken into account (methanol’s boiling point which is at 64.8°C) 

and the energy calculation can be found in Appendix D [19].  

 

Table 6: Final balance for sequestering 1t of CO2 by MC technique using evaporation. 
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Heat released kWh  

CO2 Capture -612.83 

Mineral dissolution  -148.57 

pH adjustment  -292.96 

Removal of impurities -36.17 

Carbonation -20.71 

TOT HEAT RELEASED -1111,25 

Heat required kWh  

Water evaporation 200g/l 3411.68 

Water evaporation 150g/l 4548.90 

Water evaporation 100g/l 6823.35 

Regeneration of additives 1004.49 

Ammonia adsorption 48.79 

TOT HEAT REQUIRED 200g/l 4464.96 

TOT HEAT REQUIRED 150g/l 5602.19 

TOT HEAT REQUIRED 100g/l 7876.64 

 

For 5247.12 kg of water, 2702.267 kg of (NH4)2SO4 needed to be added which 

represents a total amount of 7949.42 kg of ammonium solution. Thus the total amount of 

methanol (70% of the solution by volume) was equal to 5564.57 kg. To evaporate this 

methanol, the total energy required was the sum of the energy to heat the methanol from 

25°C to 64.8°C and the methanol latent heat. Table 7 sums up the final energy balance for 

sequestering 1t of CO2 by MC technique including the methanol extraction step.  
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Table 7: Final balance for sequestering 1t of CO2 by MC technique using liquid-liquid 

extraction. 

Capture of 1t of CO2  

Heat released kWh  

CO2 Capture -612.83 

Mineral dissolution  -148.57 

pH adjustment  -292.96 

Removal of impurities -36.17 

Carbonation -20.71 

TOT heat released -1111.25 

Heat required kWh  

water extraction 200g/l 1854.70 

water extraction 150g/l 2587.11 

water extraction 100g/l 5060.35 

Regeneration of additives 1004.49 

Ammonia absorption 48.79 

TOT heat required 200g/l 2907.98 

TOT heat required 150g/l 3640.39 

TOT heat required 100g/l 6113.63 

Figure 5 shows the energy consumption (kWh) according to the technique and the S/L 

ratio used. For each ratio the extraction process allows to save energy, but the energy 

consumption is lower at 200 and 150 g/l S/L ratio. Liquid-Liquid extraction process using 

methanol is then very promising because 35% of energy can be saved compared to the water 
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evaporation step with a similar efficiency in terms of ammonium sulphate recovery (90-

95%). 

Figure 5: Energy use for the ammonium sulphate-water separation. 

 

3.2 MC scale-up  

In the previous sections, it has been shown that the liquid-liquid extraction process (90% 

efficiency and, 35% energy saved compared to water evaporation step) can reduce the energy 

consumption compared to evaporative techniques for the separation of the AS from the 

carbonation solution. This section investigates the feasibility of a 500 MW coal-fired based 

power plant with an integrated pH swing mineralization facility. A comparison is conducted 

between water evaporation step and extraction technique at industrial scale. Coal-fired power 

plants represent ~40% of the worldwide global electricity production. A 500MW coal-fired 

power plant emits about 3.3 million tonnes of CO2 annually or 377 tCO2/h (assuming 365 

working days per year). However, previous studies show that pH swing MC process would 

work better for plant emitting < 0.5 Mt CO2/y, which is why this assessment is focussed on 

storing 55 tCO2/h.  

3.2.1. Heat released and required 

CO2 emissions balance was evaluated to investigate the feasibility of a mineralization 

facility for a coal-fired power plant to sequester 55 tCO2/h. The mass and the energy balances 

performed previously to store 1t of CO2 (Table 3) was used in this assessment. Table 8 

compares the heat required or release in the overall process when water evaporation or 

methanol liquid-liquid extraction are used to recover ammonium sulphate. As can be seen in 

the table, the use of the methanol-based water extraction requires 102,000 kWh/55tCO2, 

while the water evaporation method consumes 187,642 kWh/55tCO2, resulting in a heat 

requirement reduction of 45%. 
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Table 8: Heat balance to sequester 55t of CO2 using the different water/salts separation 

methods. 

Water evaporation  Methanol extraction  

Heat released kWh  Heat released kWh  

CO2 Capture -33705.65 CO2 Capture -33705.65 

Mineral dissolution  -8171.53 Mineral dissolution  -8171.53 

pH adjustment  -16112.78 pH adjustment  -16112.78 

Removal of impurities -1989.31 Removal of impurities -1989.31 

Carbonation -1139.22 Carbonation -1139.22 

TOT heat released -61118.49 TOT heat released -61118.49 

Heat required kWh  Heat required kWh  

Water evaporation 200g/l 187642.26 water extraction 200g/l 102008.46 

Regeneration of additives 55247.21 Regeneration of additives 55247.21 

Ammonia absorption 2683.33 Ammonia absorption 2683.33 

TOT heat required 200g/l 245572.80 TOT heat required 200g/l 159939.00 

 

3.2.2. Energy requirement and CO2 emissions 

To evaporate the water from ammonium sulphate solution and to regenerate ammonium 

bisulphate salts from ammonium sulphate crystals, a Mechanical Vapour Recompression 

(MVR) evaporator and a melting vessel were considered. Assuming that the heat required for 

these two stages was provided by natural gas, the relative CO2-emissions were calculated. 

CO2 emission from generating heat from natural gas was considered to be 0.20 kgCO2/kWh 

[20]. CO2 emissions could be minimised assuming the use of renewable energy instead of 
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natural gas. Based on the emissions factors from the 2012 Guidelines to DEFRA/ DECC's 

GHG Conversion Factors for Company Reporting [20], a ‘carbon neutral’ emissions factor 

for biodiesel of 0.12 kgCO2e/kWh (net CO2e emissions assuming carbon sequestration) can 

be considered for the calculations. 

To evaporate the methanol from ammonium sulphate solution an evaporator also was 

required. The heat required was about 157 MWh (566GJ). Different equipment that releases 

CO2, such as conveyors belt, axial pumps, agitators and compressor were considered for the 

MC process. The electric consumption required for these devices was then calculated and was 

included in the CO2-balance calculations.  The energy requirement calculations are shown in 

Appendix E. Table 9 reports the electric consumption of mineralization facility using water 

evaporation step or extraction process. The total electric consumption of a mineralization 

facility was then about 10 MW/h. based on natural gas fuel, the MC CO2-emissions from 

equipment using water evaporation step would be 1.93 tCO2/h and 2.19 tCO2/h using the 

extraction process [21]. 

 

Table 9: Electric consumption of mineralization facility. 

Equipment Water evaporation Extraction process 

Conveyor  44.52 kW 44.52 kW 

Pumps 5.7 MW 5.7 MW 

Agitators  3.9 MW 5.2 MW 

TOTAL  9.64 MW 10.94 MW 

3.3. CO2 balance 

Tables 10 shows the CO2 experimental capacity based on CO2 fixation obtained in 

previous work at different S/L ratios (100, 200 and 300 g/l) [7,11]. According to Wang and 

Maroto-Valer, the CO2 fixation efficiency are 67%, 44% and 47% respectively for a 100 g/l, 
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200g/l and 300 g/l S/L ratio, respectively, as reported in Table 10 [7,11]. The decrease of 

dissolution efficiencies at high S/L ratio was associated to precipitated magnesium sulphate 

(MgSO4) [11]. Since the solubility of MgSO4 is 52.9 g/100 g water at 90°C, MgSO4 would 

precipitate during the dissolution stage using NH4HSO4 when the S/L ratio is above 280 g/l if 

100% dissolution efficiency is achieved [11]. It was also found that the dissolution 

efficiencies increase slightly when the S/L ratio increases from 200 g/l to 300 g/l. This may 

be due to inter-collisions at high S/L ratio, that may break down particles or remove the 

product layer, and thus increasing the diffusion of NH4HSO4 into the pore space of the 

mineral particles [11,22]. Therefore, the mineralisation facility design to store 55 tCO2/hr 

could then in practice sequester between 26 tCO2 and 37 tCO2 depending on the S/L ratio 

used as shown in Table 10.   

 

Table 10: CO2 experimental capacity according to S/L ratio [9,11] . 

Ratio (g/l S/L) 

Dissolution 

efficiency (%) 

Carbonation 

efficiency (%) 

Fixation 

efficiency (%) 

Experimental 

CO2 capacity 

(tCO2/h) 

300 [11] 71.3 65 47 25.85 

200 [11]  65.6 67 44 24.2 

100 [7] 70.7 95.9 67.8 37.29 

 

Table 11 shows the CO2 emissions related to the regeneration of additives according to 

technique employed, fuel used (natural gas and bio-diesel) and S/L ratio. The extrapolation 

considered to measure the energy balance of a 300g/l S/L ratio in reported in Appendix F. 

The heat requirement for both techniques increases inversely proportionally to the S/L ratio 

due to large volumes of water to separate. Heat requirement is higher for the evaporative 
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technique using 100 and 200 g/l, while become comparable using 300 g/l. This is related to 

the increased amount of methanol that is required using 300 g/l solution and in the same time, 

to the similar experimental CO2 capture capacity at 200 and 300 g/l [11]. Also, CO2 

emissions change depending on the fuel used in the assessment, with bio-diesel emitting 

considerably less amount of CO2 compared to natural gas. Therefore, the use of bio-fuels 

would increase the sequestration capacity of the system, independently to the technology 

employed.  

Considering natural gas as source of energy, the total CO2 emitted using the thermal 

water evaporation process results larger than the capture capacity at 100 and 200 g/l 

solid/liquid ratios (as can be seen comparing the data in Table 10). The CO2 sequestration 

technique (using natural gas as source of heat) becomes carbon negative at S/L ratios 

approaching 300 g/l, where about 22% of the starting 55 tCO2 are sequestered. The carbon 

balance is more favourable when the extraction technique is employed as shown in Table 12.   

MC using the extraction process performed better in terms of energy consumption than 

using evaporative technique, but was still carbon positive at 100 g/l S/L ratio (+7% CO2 

emissions). Increasing the S/L ratio to 200 and 300 g/l decreased the heat required to run the 

MC process. Less water was present in the solution, and therefore, less water was required to 

be evaporated and in the same way, less methanol was required to precipitate the salts. 

Indeed, the process was able to sequester 7.5% (4.1 t/h) and 33% (17.81 t/h) of the CO2 

treated (55t/h) at 200 and 300 g/l, respectively. To conclude, the ammonium salts pH swing 

MC process designed for a coal-fired power plant would be carbon negative only if the S/L 

ratio used get close to 300 g/l, which could results in salts being lost by precipitation due to 

its solubility limits. 
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Table 11: CO2 emissions related to regeneration of additives according to technique and S/L 

ratio. 

 

Water evaporation & decomposition 

Extraction & methanol 

 evaporation & decomposition 

S/L 

ratio 

(g/l) 

Heat 

required, 

MW 

CO2 

emissions 

[Nat. Gas] 

(t/h) 

CO2 

emissions 

[biodiesel] 

(t/h) 

Heat 

required, 

MW 

CO2 

emissions 

[Nat. Gas] 

(t/h) 

CO2 

emissions 

[biodiesel] 

(t/h) 

300 57.5  11.5 6.9 56.18  11.2 6.7 

200 243  48.6 29.2 157  31.4 18.8 

100 430.5  86.1 51.7 333.4  66.7 40 

 

 

 

 

 

 

 

Table 12: Summary of CO2 emissions related to regeneration of additives according applying 

the extraction technique and using biodiesel fuel.  

 
Extraction & methanol 

 evaporation & decomposition 
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S/L ratio 

(g/l) 

Extraction, 

CO2 

emissions 

[biodiesel] 

(t/h) 

Equipment, 

CO2 

emissions 

[biodiesel] 

(t/h) 

Total CO2 

emissions 

[biodiesel] 

(t/h) 

Experimental 

CO2 capture 

capacity 

(tCO2/h) 

NET 

 CO2 

sequestration 

 (t/h) 

300 6.7 1.3 8.04 - 25.85 - 17.81 

200 18.8 1.3 20.1 - 24.2 - 4.1 

100 40 1.3 41.3 37.29 + 4.01 

 

4. Conclusions  

This work investigated the feasibility of a liquid-liquid extraction technique as alternative 

method for the separation of AS salts from the water solution remaining after the CO2 

sequestration using an ammonium-salts based process in order to reduce the energy 

consumption of the overall process.  

An ammonium sulphate/water separation higher than 90% was achieved at 25°C, 10 minutes, 

1bar, 200g/l S/L ratio using 70% methanol as solvent. In order to achieve the optimum 

efficiency, it was necessary to lower the temperature and notably to reduce the stirrer speed to 

increase the interactions between methanol and ammonium sulphate and render the extraction 

more effective. However, these parameters had a marginal effect on the extraction efficiency 

in comparison to the S/L and the % methanol added to the solution during this process. 

Regarding the time of reaction, it did not affect the efficiency. At a large scale for industrial 

applications, the extraction process presents the advantage of requiring only 2 minutes to 

achieve the maximum efficiency.  The FTIR results show that there was no ammonium 

sulphate in the filtered solution. The TGA results showed that water was still present in the 

ammonium sulphate solids in a small quantity, about 9 % wt.  
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The extraction process would require 2908 kWh of heating energy while water evaporation 

step would require 4465 kWh to sequester 1t of CO2. Therefore, by replacing the water 

evaporation step by the extraction process, the energy consumption decreased by 35%. 

Finally, a CO2-balance study of a 500 MW coal-fired based power plant with integrated pH 

swing MC facility was investigated based on the heat needed and electric consumption 

required for the mineralization process. The CO2-balance evaluation indicated that the 

process is carbon negative if the water evaporation is replaced by methanol extraction 

technique using S/L ratios of 200 and 300 g/l, with 7% and 33% CO2 sequestered, 

respectively. This suggests that the efficiency of the dissolution and carbonation steps must 

be increased to enhance the CO2 sequestration capacity of the process. 
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Figure Captions 

 

Figure 1: Extraction of Ammonium Sulphate [modified from 17]. 

Figure 2: FTIR profile of (a) the liquid ammonium sulphate solution obtained after the 

filtration of the test 6; (b) the solid ammonium sulphate sample obtained after extraction 

process of test 6. Sample after extraction (test 6: 200g/L, 70% CH3OH, 350rpm, 25°C, 

10min) (●) together to H2O (♦), (NH4)2SO4 (■) and CH3OH (▲) standards. 

Figure 3: TGA profile of (a) the ammonium sulphate recovered after the test 6 of the 
extraction process; (b) Standard Ammonium sulphate. 

Figure 4: XRD patterns of the material recovered after tests 6 and 8 and correspondence with 
(NH4)2SO4 standard (diamond). 

Figure 5: Energy use for the ammonium sulphate-water separation. 
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Highlights 

� The feasibility of a liquid-liquid extraction applied to pH swing mineral carbonation  

was studied 

� An ammonium sulphate/water separation higher than 90% was achieved  

� The process resulted in an energy saving of 35% in comparison to water evaporation 

� The CO2 sequestration process was able to sequester 33% of the treated CO2  

 

 

 

 


