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Abstract The Conway-Maxwell-Poisson (CMP) distribution is a natural two-parameter
generalisation of the Poisson distribution which has received some attention in the statis-
tics literature in recent years by offering flexible generalisations of some well-known mod-
els. In this work, we begin by establishing some properties of both the CMP distribution
and an analogous generalisation of the binomial distribution, which we refer to as the
CMB distribution. We also consider some convergence results and approximations, in-
cluding a bound on the total variation distance between a CMB distribution and the
corresponding CMP limit.

Key words and phrases: Conway-Maxwell-Poisson distribution; distributional theory;
Stein’s method; stochastic ordering; distributional transforms; CMB distribution.

AMS 2010 subject classification: 60E05; 60E15; 60F05; 62E10.

1 Introduction

A two-parameter generalisation of the Poisson distribution was introduced by Conway
and Maxwell [10] as the stationary number of occupants of a queuing system with state
dependent service or arrival rates. This distribution has since become known as the
Conway-Maxwell-Poisson (CMP) distribution. Beginning with the work of Boatwright,
Borle and Kadane [7] and Shmueli et al. [31], the CMP distribution has received recent
attention in the statistics literature on account of the flexibility it offers in statistical
models. For example, the CMP distribution can model data which is either under- or
over-dispersed relative to the Poisson distribution. This property is exploited by Sellers
and Shmueli [29], who use the CMP distribution to generalise the Poisson and logistic
regression models. Kadane et al. [24] considered the use of the CMP distribution in
Bayesian analysis, and Wu, Holan and Wilkie [34] use the CMP distribution as part of a
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Bayesian model for spatio-temporal data. The CMP distribution is employed in a flexible
cure rate model formulated by Rodrigues et al. [28] and further analysed by Balakrishnan
and Pal [2].

Our purpose in this work is twofold. Motivated by the use of the CMP distribution
in the statistical literature, we firstly aim (in Section 2) to derive explicit distributional
properties of the CMP distribution and an analogous generalisation of the binomial dis-
tribution, the CMB distribution. Our second aim is to consider the CMP distribution as
a limiting distribution. We give conditions under which sums of dependent Bernoulli ran-
dom variables will converge in distribution to a CMP random variable, and give an explicit
bound in total variation distance between the CMB distribution and the corresponding
CMP limit. These convergence results are detailed in Sections 3 and 4.

We use the remainder of this section to introduce the CMP and CMB distributions
and collect some straightforward properties which will prove useful in the sequel. We also
introduce some further definitions that we will need in the work that follows.

1.1 The CMP distribution

The CMP distribution is a natural two-parameter generalisation of the Poisson distribu-
tion. We will write X ∼ CMP(λ, ν) if

P(X = j) =
1

Z(λ, ν)

λj

(j!)ν
, j ∈ Z+ = {0, 1, 2, . . .} , (1.1)

where Z(λ, ν) is a normalizing constant defined by

Z(λ, ν) =
∞∑
i=0

λi

(i!)ν
.

The domain of admissible parameters for which (1.1) defines a probability distribution is
λ, ν > 0, and 0 < λ < 1, ν = 0.

The introduction of the second parameter ν allows for either sub- or super-linear
growth of the ratio P(X = j − 1)/P(X = j), and allows X to have variance either less
than or greater than its mean. Of course, the mean of X ∼ CMP(λ, ν) is not, in general,
λ. In Section 2 we will consider further distributional properties of the CMP distribution,
including expressions for its moments.

Clearly, in the case where ν = 1, X ∼ CMP(λ, 1) has the Poisson distribution Po(λ)
and the normalizing constant Z(λ, 1) = eλ. As noted by Shmueli et al. [31], other choices
of ν also give rise to well-known distributions. For example, in the case where ν = 0 and
0 < λ < 1, X has a geometric distribution, with Z(λ, 0) = (1−λ)−1. In the limit ν →∞,
X converges in distribution to a Bernoulli random variable with mean λ(1 + λ)−1 and
limν→∞ Z(λ, ν) = 1 + λ.

In general, of course, the normalizing constant Z(λ, ν) does not permit such a neat,
closed-form expression. Asymptotic results are available, however. Gillispie and Green
[17] prove that, for fixed ν,

Z(λ, ν) ∼
exp

{
νλ1/ν

}
λ(ν−1)/2ν(2π)(ν−1)/2

√
ν

(
1 +O

(
λ−1/ν

))
, (1.2)

2



as λ → ∞, confirming a conjecture made by Shmueli et al. [31]. This asymptotic result
may also be used to obtain asymptotic results for the probability generating function of
X ∼ CMP(λ, ν), since it may be easily seen that

EsX =
Z(sλ, ν)

Z(λ, ν)
. (1.3)

1.2 The CMB distribution

Just as the CMP distribution arises naturally as a generalisation of the Poisson dis-
tribution, we may define an analogous generalisation of the binomial distribution. We
refer to this as the Conway-Maxwell-binomial (CMB) distribution and write that Y ∼
CMB(n, p, ν) if

P(Y = j) =
1

Cn

(
n

j

)ν
pj(1− p)n−j , j ∈ {0, 1, . . . , n} ,

where n ∈ N = {1, 2, . . .}, 0 ≤ p ≤ 1 and ν ≥ 0. The normalizing constant Cn is defined
by

Cn =
n∑
i=0

(
n

i

)ν
pi(1− p)n−i .

The dependence of Cn on p and ν is suppressed for notational convenience. Of course, the
case ν = 1 is the usual binomial distribution Y ∼ Bin(n, p), with normalizing constant
Cn = 1. Shmueli et al. [31] considered the CMB distribution and derived some of its
basic properties, referring to it as the CMP-binomial distribution. We, however, consider
it more natural to refer to this as the CMB distribution (a similar convention is also
followed by Kadane [23]); we shall also later refer to an analogous generalisation of the
Poisson binomial distribution as the CMPB distribution.

There is a simple relationship between CMP and CMB random variables, which
generalises a well-known result concerning Poisson and binomial random variables. If
X1 ∼ CMP(λ1, ν) and X2 ∼ CMP(λ2, ν) are independent, then X1 |X1 + X2 = n ∼
CMB(n, λ1/(λ1 + λ2), ν) (see [31]).

It was also noted by [31] that Y ∼ CMB(n, p, ν) may be written as a sum of exchange-
able Bernoulli random variables Z1, . . . , Zn satisfying

P(Z1 = z1, . . . , Zn = zn) =
1

Cn

(
n

k

)ν−1
pk(1− p)n−k , (1.4)

where k = z1 + · · · + zn. Note that EZ1 6= p in general, unless ν = 1. However,
EZ1 = n−1EY may be either calculated explicitly or estimated using some of the properties
of the CMB distribution to be discussed in the sequel.

From the mass functions given above, it can be seen that if Y ∼ CMB(n, λ/nν , ν),
then Y converges in distribution to X ∼ CMP(λ, ν) as n → ∞. We return to this
convergence in Section 3 below, where we give an explicit bound on the total variation
distance between these distributions.
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1.3 Power-biasing

In what follows, we will need the definition of power-biasing, as used by Peköz, Röllin
and Ross [27]. For any non-negative random variable W with finite ν-th moment, we say
that W (ν) has the ν-power-biased distribution of W if

(EW ν)Ef(W (ν)) = E [W νf(W )] , (1.5)

for all f : R+ 7→ R such that the expectations exist. In this paper, we will be interested
in the case that W is non-negative and integer-valued. In this case, the mass function of
W (ν) is given by

P(W (ν) = j) =
jνP(W = j)

EW ν
, j ∈ Z+ .

Properties of a large family of such transformations, of which power-biasing is a part, are
discussed by Goldstein and Reinert [18]. The case ν = 1 is the usual size-biasing, which
has often previously been employed in conjunction with the Poisson distribution: see
Barbour, Holst and Janson [6], Daly, Lefèvre and Utev [15], Daly and Johnson [14], and
references therein for some examples. The power-biasing we employ here is the natural
generalisation of size-biasing that may be applied in the CMP case.

2 Distributional properties of the CMP and CMB

distributions

In this section we collect some distributional properties of the CMP and CMB distribu-
tions. Some will be required in the sequel when considering approximations and conver-
gence to the CMP distribution, and all of are of some interest, either independently or
for statistical applications.

2.1 Moments, cumulants, and related results

We begin this section by noting, in Proposition 2.1 below, that some moments of the
CMP distribution may be easily and explicitly calculated. The simple formula EXν = λ
was already known to Sellers and Shmueli [29]. We also note the corresponding result for
the CMB distribution.

Here and in the sequel we let

(j)r = j(j − 1) · · · (j − r + 1)

denote the falling factorial.

Proposition 2.1. (i). Let X ∼ CMP(λ, ν), where λ, ν > 0. Then

E[((X)r)
ν ] = λr ,

for r ∈ N.
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(ii). Let Y ∼ CMB(n, p, ν), where ν > 0. Then

E[((Y )r)
ν ] =

Cn−r
Cn

((n)r)
νpr ,

for r = 1, . . . , n− 1.

Proof. We have

E[((X)r)
ν ] =

1

Z(λ, ν)

∞∑
k=0

((k)r)
ν λk

(k!)ν
=

λr

Z(λ, ν)

∞∑
k=r

λk−r

((k − r)!)ν

=
λr

Z(λ, ν)

∞∑
j=0

λj

(j!)ν
= λr ,

and

E[((Y )r)
ν ] =

1

Cn

n∑
k=0

((k)r)
ν

(
n

k

)ν
pk(1− p)n−k

=
1

Cn

(
n!

(n− r)!

)ν n∑
k=r

(
n− r
k − r

)ν
pk(1− p)n−k

=
1

Cn
((n)r)

νpr
n−r∑
j=0

(
n− r
j

)ν
pj(1− p)n−r−j =

Cn−r
Cn

((n)r)
νpr .

Remark 2.2. It is well-known that the factorial moments of Z ∼ Po(λ) are given by
E[(X)r] = λr. We therefore have the attractive formula E[((X)r)

ν ] = E[(Z)r], for X ∼
CMP(λ, ν).

Such simple expressions do not exist for moments of X ∼ CMP(λ, ν) which are not
of the form E[((X)r)

ν ]. Instead, we use (1.2) to give asymptotic expressions for such
moments.

Proposition 2.3. Let X ∼ CMP(λ, ν). Then, for k ∈ N,

EXk ∼ λk/ν
(
1 +O

(
λ−1/ν

))
,

as λ→∞.

Proof. It is clear that, for k ∈ N,

E[(X)k] =
λk

Z(λ, ν)

∂k

∂λk
Z(λ, ν) .

Differentiating (1.2) (see Remark 2.4 for a justification) we have that

∂k

∂λk
Z(λ, ν) ∼ λk/ν−k ·

exp
{
νλ1/ν

}
λ(ν−1)/2ν(2π)(ν−1)/2

√
ν

(
1 +O

(
λ−1/ν

))
, (2.1)
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as λ→∞, and hence
E[(X)k] ∼ λk/ν

(
1 +O

(
λ−1/ν

))
,

as λ → ∞. We now exploit the following connection between moments and factorial
moments:

EXk =
k∑
r=1

{
k

r

}
E[(X)r] , (2.2)

for k ∈ N, where the Stirling numbers of the second kind
{
k
r

}
are given by

{
k
r

}
=

1
r!

∑r
j=0(−1)r−j

(
r
j

)
jk (see Olver et al. [26]). Using (2.2), and noting that

{
k
k

}
= 1, com-

pletes the proof.

Remark 2.4. In the above proof, we differentiated the asymptotic formula (1.2) in the
naive sense by simply differentiating the leading term k times. We shall also do this below
in deriving the variance formula (2.4), and in Proposition 2.6, in which we differentiate an
asymptotic series for log(Z(λet, ν)) with respect to t in an analogous manner. However,
as noted by Hinch [21], p. 23, asymptotic approximations cannot be differentiated in this
manner in general. Fortunately, in the case of the asymptotic expansion (1.2) for Z(λ, ν)
we can do so. This is because we have the following asymptotic formula for the CMP
normalising constant that is more precise than (1.2). For fixed ν,

Z(λ, ν) ∼
exp

{
νλ1/ν

}
λ(ν−1)/2ν(2π)(ν−1)/2

√
ν

(
1 +

∞∑
k=1

akλ
−k/ν

)
, (2.3)

as λ→∞, where the ak are constants that do not involve λ. The m-th derivative of the
asymptotic series (2.3) is dominated by the m-th derivative of the leading term of (2.3),
meaning that one can naively differentiate the asymptotic series, as we did in the proof
of Proposition 2.3.

The leading term in the asymptotic expansion (2.3) was obtained for integer ν by
Shmueli et al. [31], and then for all ν > 0 by Gillispie and Green [17]. When stating their
results, [31] and [17] did not include the lower order term

∑∞
k=1 akλ

−k/ν , but it can be
easily read off from their analysis. For integer ν, [31] gave an integral representation for
Z(λ, ν) and then applied Laplace’s approximation to write down the leading order term in
its asymptotic expansion. Laplace’s approximation gives that (see Shun and McCullagh
[32], p. 750), for infinitely differentiable g : Rd → R,∫

Rd
exp{−ng(x)} dx ∼

(
n det(ĝ′′)

2π

)−1/2
exp{−nĝ}

(
1 +

∞∑
k=1

bkn
−k
)
, as n→∞ ,

where the bk do not involve n, and ĝ and ĝ′′ denote g and the matrix of second order
derivatives of g, respectively, evaluated at the value x̂ that minimises g. It is now clear
that the lower order term in (2.3) has the form

∑∞
k=1 akλ

−k/ν . For general ν > 0, [17]
obtained an expression for the leading term in the asymptotic expansion of Z(λ, ν) by us-
ing Laplace’s approximation, as well as several other simpler asymptotic approximations.
In each of these approximations, the lower order term is of the form

∑∞
k=1 ckλ

−k/ν , from
which it follows that Z(λ, ν) has an asymptotic expansion of the form (2.3).
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We also have the following relationship between moments of X ∼ CMP(λ, ν):

EXr+1 = λ
d

d λ
EXr + EXEXr ,

for r > 0. See equation (6) of Shmueli et al. [31]. With r = 1 we obtain

Var(X) = λ
d

d λ
EX ∼ 1

ν
λ1/ν +O(1) , (2.4)

as λ→∞, from Proposition 2.3. This also gives the following corollary.

Corollary 2.5. Let m be the median of X ∼ CMP(λ, ν). Then

m ∼ λ1/ν +O
(
λ1/2ν

)
,

as λ→∞.

Proof. From above, EX ∼ λ1/ν + O(1) and σ =
√

Var(X) ∼ 1√
ν
λ1/2ν + O (1). Since

σ <∞, we may use a result of Mallows [25], who showed that |EX −m| ≤ σ. The result
follows.

As with the moments above, we may also find asymptotic expressions for the cumulants
of the CMP distribution.

Proposition 2.6. For n ≥ 1, let κn be the nth cumulant of X ∼ CMP(λ, ν). Then

κn ∼
1

νn−1
λ1/ν +O(1) ,

as λ→∞.

Proof. From (1.3), the cumulant generating function of X ∼ CMP(λ, ν) is

g(t) = log(E[etX ]) = log(Z(λet, ν))− log(Z(λ, ν)).

The cumulants are given by

κn = g(n)(0) =
∂n

∂tn
log(Z(λet, ν))

∣∣∣∣
t=0

.

From (1.2),
log(Z(λet, ν)) ∼ νλ1/νet/ν ,

as λ → ∞. The expression for the leading term in the asymptotic expansion of κn now
easily follows, and a straightforward analysis, which is omitted, shows that the second
term is O(1) for all n ≥ 1. The result now follows.
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Note that as a corollary to this result, the skewness γ1 of X ∼ CMP(λ, ν) satisfies

γ1 =
κ3
σ3
∼ 1√

ν
λ−1/2ν +O

(
λ−3/2ν

)
,

as λ→∞, where σ2 = Var(X) ∼ 1
ν
λ1/ν from (2.4). Similarly, the excess kurtosis γ2 of X

satisfies

γ2 =
κ4
σ4
∼ 1

ν
λ−1/ν +O

(
λ−2/ν

)
,

as λ → ∞. For comparison, recall that in the Poisson case (ν = 1), γ1 = λ−1/2 and
γ2 = λ−1.

We conclude this section with two further results of a similar flavour. We begin by
giving expressions for the modes of the CMP and CMB distributions. The expression for
the mode of CMP distribution for non-integral λ1/ν was known to Guikema and Goffelt
[20], but for clarity and completeness we state the result and give the simple proof. The
expression for the mode of the CMB distribution is new. Here and in the sequel we will
let b·c denote the floor function.

Proposition 2.7. (i). Let X ∼ CMP(λ, ν). Then the mode of X is bλ1/νc if λ1/ν is not
an integer. Otherwise, the modes of X are λ1/ν and λ1/ν − 1.

(ii). Let Y ∼ CMB(n, p, ν) and define

a =
n+ 1

1 +
(

1−p
p

)1/ν .
Then the mode of Y is bac if a is not an integer. Otherwise, the modes of Y are a
and a− 1.

Proof. (i). Writing

P(X = j) =
1

Z(λ, ν)

(
(λ1/ν)j

j!

)ν
,

the result now follows as in the Poisson case, for which the result is well-known.

(ii). This is a straightforward generalisation of the derivation of the mode of a binomial
distribution given by Kaas and Buhrman [22]. Consideration of the ratio

P(Y = k + 1)

P(Y = k)
=

(
n− k
k + 1

)ν
p

1− p
=

(
n− k
k + 1

(
p

1− p

)1/ν
)ν

,

shows that P(Y = k) increases as a function of k if k < a and decreases for k > a−1.
Therefore, if a is not an integer, P(Y = k) increases for k ≤ bac and decreases for
k ≥ bac, giving bac as the mode. If a is an integer then P(Y = k) increases for
k ≤ a− 1 and decreases for k ≥ a and so a− 1 and a are neighbouring modes.
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We also give, in Proposition 2.8 below, an expression for the mean deviation of Xν ,
where X ∼ CMP(λ, ν), as usual. This generalises a result of Crow [11], who showed that
if Z ∼ Po(λ) has a Poisson distribution, then

E|Z − λ| = 2e−λ
λbλc+1

bλc!
= 2λS ,

where S = e−λ λ
bλc+1

bλc! is the maximum value of the mass function of Z.

Proposition 2.8. Let X ∼ CMP(λ, ν). Then

E|Xν − λ| = 2Z(λ, ν)−1
λbλ

1/νc+1

bλ1/νc!
= 2λT ,

where T = Z(λ, ν)−1 λ
bλ1/νc+1

bλ1/νc! , the maximum value of the mass function of X.

Proof.

E|Xν − λ| =
∞∑
k=0

|kν − λ|Z(λ, ν)−1
λk

(k!)ν

= Z(λ, ν)−1
[ bλ1/νc∑

k=0

(λ− kν) λk

(k!)ν
+

∞∑
k=bλ1/νc+1

(kν − λ)
λk

(k!)ν

]

= 2Z(λ, ν)−1
λbλ

1/νc+1

bλ1/νc!
.

2.2 Characterisations

In Section 3, we will use Stein’s method for probability approximations (see, for example,
Stein [33] or Chen [9]) to give bounds on the convergence of the CMB distribution to a
suitable CMP limit. Stein’s method relies on linear operators characterising distributions
of interest. In the following lemma, we present such characterisations for the CMP and
CMB distributions. These will also prove useful in deriving several other properties of
these distributions in the work that follows.

Lemma 2.9. We have the following characterisations for the CMP and CMB distribu-
tions.

(i). Let X ∼ CMP(λ, ν), and suppose that f : Z+ 7→ R is such that E|f(X + 1)| < ∞
and E|Xνf(X)| <∞. Then

E[λf(X + 1)−Xνf(X)] = 0. (2.5)

Conversely, suppose now that W is a real-valued random variable supported on Z+

such that E[λf(W + 1) −W νf(W )] = 0 for all bounded f : Z+ 7→ R. Then W ∼
CMP(λ, ν).

9



(ii). Let Y ∼ CMB(n, p, ν), and suppose that f : Z+ 7→ R is such that E|f(Y + 1)| <∞
and E|Y νf(Y )| <∞. Then

E[p(n− Y )νf(Y + 1)− (1− p)Y νf(Y )] = 0. (2.6)

Proof. The characterising equations (2.5) and (2.6) may be obtained directly through
straightforward manipulations, or from the work of Brown and Xia [8], for example, who
consider such characterisations in the more general setting of the equilibrium distribution
of a birth-death process. To prove the converse statement for the CMP distribution in
part (i), we consider the so-called Stein equation for the CMP distribution:

I(x ∈ A)− P(X ∈ A) = λfA(x+ 1)− xνfA(x), (2.7)

where X ∼ CMP(λ, ν), A ⊆ Z+ and fA : Z+ 7→ R. In Lemma 3.7 below, we will obtain
the unique solution to (2.7) and prove that it is bounded. Since fA is bounded, evaluating
both sides of (2.7) at W and taking expectations gives that, for any A ⊆ Z+,

P(W ∈ A)− P(X ∈ A) = E[λfA(W + 1)−W νfA(W )] = 0,

from which it follows that W ∼ CMP(λ, ν).

We do not give a converse statement, and thus a complete characterisation, for the
CMB distribution. We do not need the converse in this paper, and giving a proof analogous
given to that for CMP distribution would be tedious, because we would need to solve the
corresponding CMB Stein equation and then derive bounds for the solution.

2.3 Stochastic ordering and related results

In this section we will explore some properties of CMP and CMB distributions that may be
obtained by considering various stochastic orderings. In particular, we will use the usual
stochastic order and the convex order. For random variables U and V , we say that U is
smaller than V in the usual stochastic order (which we denote U ≤st V ) if Ef(U) ≤ Ef(V )
for all increasing functions f . Equivalently, U ≤st V if P(U > t) ≤ P(V > t) for all t.
For random variables U and V with EU = EV , we will say that U is smaller than V in
the convex order (written U ≤cx V ) if Ef(U) ≤ Ef(V ) for all convex functions f . Many
further details on these orderings may be found in the book by Shaked and Shanthikumar
[30], for example.

We begin with two lemmas that make use of the power biasing introduced in Section
1.3.

Lemma 2.10. Let W be a non-negative random variable and 0 ≤ α < β. Suppose that
EWα and EW β exist. Then W (α) ≤st W (β).

Proof. It is easily checked, using the definition (1.5), that for α, δ ≥ 0,
(
W (α)

)(δ)
=st

W (α+δ). Taking δ = β −α > 0, it therefore suffices to prove the lemma with α = 0. That
is, we need to show that Ef(W ) ≤ Ef(W (β)) for all β > 0 and all increasing functions f .
From the definition (1.5) this is immediate, since Cov(W β, f(W )) ≥ 0 for all increasing
f .
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Lemma 2.11. Let Y ∼ CMB(n, p, ν). Then Y (ν) ≤st Y + 1.

Proof. Note that

P(Y + 1 = j) =
1

Cn

(
n

j − 1

)ν
pj−1(1− p)n−j+1 , j = 1, . . . , n+ 1 ;

P(Y (ν) = j) =
1

CnEY ν

p(n− j + 1)ν

1− p

(
n

j − 1

)ν
pj−1(1− p)n−j+1 , j = 1, . . . , n .

Hence, the condition that Ef(Y (ν)) ≤ Ef(Y + 1) (for all increasing f : Z+ 7→ R) is
equivalent to the non-negativity of

E
[
f(Y + 1)

{
1− p(n− Y )ν

(1− p)EY ν

}]
, (2.8)

for all f increasing. Noting that, by Lemma 2.9 (ii), E
[
1− p(n−Y )ν

(1−p)EY ν

]
= 0, (2.8) is the

covariance of two increasing functions, and is hence non-negative.

2.3.1 Ordering results for CMP distributions

Throughout this section, let X ∼ CMP(λ, ν). It is clear that X(ν) =st X + 1 and hence,
for ν ≥ 1, Lemma 2.10 gives X(1) ≤st X + 1. This is the negative dependence condition
employed by Daly, Lefèvre and Utev [15]. Some consequences of this stochastic ordering
are given in Proposition 2.12 below. Before we can state these, we define the total variation
distance between non-negative, integer-valued random variables U and V :

dTV (L(U),L(V )) = sup
A⊆Z+

|P(U ∈ A)− P(V ∈ A)| .

We will also need to define the Poincaré (inverse spectral gap) constant RU for a non-
negative, integer-valued random variable U :

RU = sup
g∈G(U)

{
E[g(U)2]

E[{g(U + 1)− g(U)}2]

}
,

where the supremum is take over the set

G(U) =
{
g : Z+ 7→ R with E[g(U)2] <∞ and Eg(U) = 0

}
.

Proposition 2.12. Let X ∼ CMP(λ, ν) with ν ≥ 1. Let µ = EX. Then

(i).

dTV (L(X),Po(µ)) ≤ 1

µ
(µ− Var(X)) ∼ ν − 1

ν
+O

(
λ−1/ν

)
,

as λ→∞.

(ii).
Var(X) ≤ RX ≤ µ .

11



(iii). X ≤cx Z, where Z ∼ Po(µ). In particular,

P(X ≥ µ+ t) ≤ et
(

1 +
t

µ

)−(µ+t)
,

P(X ≤ µ− t) ≤ e−t
(

1− t

µ

)t−µ
,

where the latter bound applies if t < µ.

Proof. The upper bound in (i) follows from Proposition 3 of Daly, Lefèvre and Utev [15].
The asymptotic behaviour of the upper bound is a consequence of our Proposition 2.3 and
(2.4). In (ii), the lower bound is standard and the upper bound is from Theorem 1.1 of
Daly and Johnson [14]. (iii) follows from Theorem 2.2 and Corollary 2.8 of Daly [13].

On the other hand, if ν < 1 we have that X + 1 ≤st X(ν). In that case, Proposition 3
of Daly, Lefèvre and Utev [15] gives the upper bound

dTV (L(X),Po(µ)) ≤ 1

µ
(Var(X)− µ) ∼ 1− ν

ν
+O(λ−ν) ,

as λ→∞, where µ = EX and the asymptotics of the upper bound again follow from our
Proposition 2.3 and (2.4).

However, in the case ν < 1 we cannot adapt the proof of Theorem 1.1 of Daly and
Johnson [14] to give an analogue of Proposition 2.12 (ii). By suitably modifying the proof
of Theorem 2.2 of Daly [13], we may note that Z ≤cx X in this case, where Z ∼ Po(µ).
There is, however, no concentration inequality corresponding to that given in Proposition
2.12 (iii).

2.3.2 Ordering results for CMB distributions

Now let Y ∼ CMB(n, p, ν). In the case ν ≥ 1 we may combine Lemmas 2.10 and 2.11 to
see that Y (1) ≤st Y + 1. That is, the negative dependence condition holds. We thus have
the following analogue of Proposition 2.12, which may be proved in the same way as that
result.

Proposition 2.13. Let Y ∼ CMB(n, p, ν) with ν ≥ 1. Let µ = EY . Then

(i).

dTV (L(Y ),Po(µ)) ≤ 1

µ
(µ− Var(Y )) .

(ii).
Var(Y ) ≤ RY ≤ µ .

(iii). Y ≤cx X, where X ∼ Po(µ). In particular,

P(Y ≥ µ+ t) ≤ et
(

1 +
t

µ

)−(µ+t)
,

P(Y ≤ µ− t) ≤ e−t
(

1− t

µ

)t−µ
,

where the latter bound applies if t < µ.
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There is no corresponding result in the case ν < 1, since the stochastic ordering
Y (ν) ≤st Y + 1 holds regardless of the sign of 1 − ν, and so we cannot use our previous
lemmas to make a stochastic comparison between Y (1) and Y +1 when Y ∼ CMB(n, p, ν)
with ν < 1.

2.4 Example: ν = 2

For some illustration of our results, consider the case ν = 2 and let X ∼ CMP(λ, 2). Let
Ir(x) be the modified Bessel function of the first kind defined by

Ir(x) =
∞∑
k=0

1

k!Γ(r + k + 1)

(x
2

)r+2k

.

Note that, by definition, the normalizing constant Z(λ, 2) = I0(2
√
λ). Hence, for m ∈ N,

E[(X)m] =
1

I0(2
√
λ)

∞∑
k=m

λk

k!(k −m)!

=
λm/2Im(2

√
λ)

I0(2
√
λ)

.

From (2.2) we therefore have

EXm =
m∑
k=1

{
m

k

}
λk/2Ik(2

√
λ)

I0(2
√
λ)

.

In particular, the mean of X is given by

EX =

√
λI1(2

√
λ)

I0(2
√
λ)

.

Also, since EX2 = λ, the variance is given by

Var(X) = λ

(
1− I1(2

√
λ)2

I0(2
√
λ)2

)
.

Formulas for the cumulants, skewness and excess kurtosis of X can also be obtained, but
their expressions are more complicated and are omitted.

Note that the asymptotic formula Ir(x) ∼ 1√
2πx

ex as x→∞ (see Olver et al. [26]) easily

allows one to to verify (2.4) in this case. Writing Var(X) = E[X(X − 1)] + EX − (EX)2,
the Turán inequality Ir(x)2 > Ir+1(x)Ir−1(x) (see Amos [1]) also allows direct verification
that Var(X) < EX, which follows from the convex ordering in Proposition 2.12. The
total variation bound in that same result may be expressed as

dTV (L(X),Po(EX)) ≤
√
λ

(
I1(2
√
λ)

I0(2
√
λ)
− I2(2

√
λ)

I1(2
√
λ)

)
.

13



3 Convergence and approximation for CMB distri-

butions

In this section we will use Stein’s method for probability approximation to derive an
explicit bound on the convergence of Y ∼ CMB(n, λ/nν , ν) to X ∼ CMP(λ, ν) as n→∞.
This convergence is the analogue of the classical convergence of the binomial distribution
to a Poisson limit, which corresponds to the case ν = 1 here.

Stein’s method was first developed by Stein [33] in the context of normal approxi-
mation. The same techniques were applied to Poisson approximation by Chen [9]. An
account of the method for Poisson approximation, together with a wealth of examples,
is given by Barbour, Holst and Janson [6]. Stein’s method has also found a large num-
ber of applications beyond the classical normal and Poisson approximation settings. For
an introduction to Stein’s method and discussion of its wide applicability, the reader is
referred to Barbour and Chen [3] and references therein.

For future use, we define

gν(λ) =


min

{
1,max

{
1 + 1

ν
,
(
3
2

)ν} (
1− λ−1/2ν

)1/ν−1
λ1/2ν−1

}
if ν ≥ 1 and λ > 1 ,(

1 + 1
ν

) (
1 + λ−1/2ν

)1/ν−1
λ1/2ν−1 if ν ≤ 1 and λ ≥ 1 ,

1 if ν ≥ 1 and λ ≤ 1 ,

(1− λ1−ν)−1 if ν < 1 and λ < 1 .

We use much of the remainder of this section to prove the following.

Theorem 3.1. Let Y ∼ CMB(n, λ/nν , ν) for some 0 < λ < nν, and let X ∼ CMP(λ, ν).
Then

dTV (L(Y ),L(X)) ≤ λ

(
λ

nν − λ
+

νnνEY
n(nν − λ)

)(
gν(λ) + (1 + EY ) min

{
1, λ−1

})
+
λcν
n

(
EY + EY 2

)
min

{
1, λ−1

}
,

where cν = max{1, ν} and gν(λ) is as defined above.

Remark 3.2. Taking λ = nνp in Theorem 3.1 gives the following bound for the total
variation distance between the laws of Y ∼ CMB(n, p, ν) and X ∼ CMP(nνp, ν):

dTV (L(Y ),L(X)) ≤ nνp

(
p

1− p
+

νEY
n(1− p)

)(
gν(n

νp) + (1 + EY ) min
{

1, (nνp)−1
})

+ nν−1pcν
(
EY + EY 2

)
min

{
1, (nνp)−1

}
.

However, we prefer to work with the parameters given in Theorem 3.1, because in that
theorem the CMP distribution (which we regard as the limit distribution) does not depend
on n.

Remark 3.3. For large n, the bound of Theorem 3.1 is of order n−min{1,ν}, which is in
agreement with the order of upper bound in the classical case ν = 1 that is given by
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Barbour, Holst and Janson [6]. In fact, Barbour and Hall [5] obtained a lower bound of
the same order:

1

32
min

{
λ, λ2

}
n−1 ≤ dTV (Bin(n, λ/n),Po(λ)) ≤ min

{
λ, λ2

}
n−1. (3.1)

It would be desirable to obtain a corresponding lower bound for all ν > 0, although
their method of proof does not generalise easily to ν 6= 1. We have, however, been able
to get a good indication of the ‘true’ rate of convergence via a simple numerical study.
We fixed λ = 1 and considered a number of different values of ν. For each ν, we used
Mathematica to evaluate dν,n := dTV (CMB(n, 1/nν , ν),CMP(1, ν)) for different values of
n. The values of log(dν,n) were plotted against log(n) and the gradient of the line of best
fit was used to estimate the exponent of n. The results of this study strongly suggest that
the convergence is indeed of order n−min{1,ν} (for general λ, but see Remark 3.5 below
for a choice of λ that gives a faster rate). For example, in the case ν = 1/2 the fitted
gradient was −0.502, and the fitted gradient was −0.974 for ν = 3/2. A direction for
future research is to verify this assertion theoretically by obtaining a lower bound of this
order.

Remark 3.4. For general ν, we do not have closed-form formulas for the moments EY
and EY 2. However, EY k ≈ EXk for large n, and so we can use the asymptotic formula
EXk ≈ λk/ν to see that, for large λ, the upper bound of Theorem 3.1 is of order

λ2/ν

n
+
λ1/ν+1

nν
.

For ν = 1, this dependence on λ is not as good as the O(λ) rate of (3.1).

Remark 3.5. In the special case λ = EY ν , the rate improves to order n−1:

dTV (L(Y ),L(X)) ≤ min
{

1, λ}cν
n

(
EY + EY 2

)
. (3.2)

This bound can be easily read off from the proof of Theorem 3.1.

Remark 3.6. As we shall see, the proof of Theorem 3.1 relies on a stochastic ordering
argument. Before arriving at this proof, we considered generalising the classical Stein’s
method proofs of the Poisson approximation of the binomial distribution. These ap-
proaches involve local couplings or size bias couplings (see Barbour, Holst and Janson
[6]). However, neither of these approaches generalise easily to the CMP approximation
of the CMB distribution. The first step in generalising the classical proofs is to write
Y ∼ CMB(n, λ/nν , ν) as a sum of Bernoulli random variables. However, these Bernoulli
random variables have are strongly dependent (see (1.4)), and so local couplings are not
applicable. Also, the natural generalisation of the size-bias coupling approach involves the
construction of the power-bias distribution of Y , which we found resulted in intractable
calculations.

The starting point for applying Stein’s method is the characterisation of the CMP
distribution given by Lemma 2.9 (i). Using that, we have the representation

dTV (L(Y ),L(X)) = sup
A⊆Z+

|λEfA(Y + 1)− E[Y νfA(Y )]|

= sup
A⊆Z+

∣∣λEfA(Y + 1)− EY νEfA(Y (ν))
∣∣ , (3.3)
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where fA : Z+ 7→ R solves the Stein equation

I(x ∈ A)− P(X ∈ A) = λfA(x+ 1)− xνfA(x). (3.4)

Hence, in proving Theorem 3.1 we find a bound on
∣∣λEfA(Y + 1)− (EY ν)EfA(Y (ν))

∣∣
which holds uniformly in A ⊆ Z+. In order to do this, we will need bounds on the
functions fA solving (3.4). These are given in Lemma 3.7 below, whose proof is deferred
until Section 3.2.

Lemma 3.7. The unique solution of the CMP(λ, ν) Stein equation (3.4) is given by
fA(0) = 0 and, for j ≥ 0,

fA(j + 1) =
(j!)ν

λj+1

j∑
k=0

λk

(k!)ν
[I(k ∈ A)− P(X ∈ A)], (3.5)

for A ⊆ Z+. The solution satisfies the bounds

sup
A⊆Z+

sup
j∈Z+

|fA(j)| ≤ gν(λ) , (3.6)

sup
A⊆Z+

sup
j∈Z+

|fA(j + 1)− fA(j)| ≤ λ−1
(
1− Z(λ, ν)−1

)
≤ min

{
1, λ−1

}
, (3.7)

where gν(λ) is as defined above.

Remark 3.8. The value of fA(0) is in fact irrelevant, and we follow the usual convention
and set it equal to zero (see Barbour, Holst and Janson [6], p. 6). Therefore, to be precise,
the function fA(j), as given by (3.5), is the unique solution of (3.4) for j ≥ 1.

For use in what follows, we define the forward difference operator ∆ by ∆f(j) =
f(j + 1)− f(j), and the supremum norm ‖·‖ by ‖f‖ = supj |f(j)| for all f : Z+ 7→ R.

Now, we have that

λEfA(Y +1)−EY νEfA(Y (ν)) = EY ν
(
EfA(Y + 1)− EfA(Y (ν))

)
+(λ− EY ν)EfA(Y +1) .

Recall from Lemma 2.11 that Y (ν) ≤st Y + 1. Hence, we may follow the methods of
Daly, Lefèvre and Utev [15] and obtain

|λEfA(Y + 1)− EY νEfA(Y ν)| ≤ (EY ν)‖∆fA‖
(
1 + EY − EY (ν)

)
+ ‖fA‖ |λ− EY ν |

= ‖∆fA‖
(
(1 + EY )EY ν − EY ν+1

)
+ ‖fA‖ |λ− EY ν | ,

where we used (1.5) to note that EY ν+1 = EY νEY (ν). We may then combine the repre-
sentation (3.3) with Lemma 3.7 to get

dTV (L(Y ),L(X)) ≤ min
{

1, λ−1
} (

(1 + EY )EY ν − EY ν+1
)

+ gν(λ) |λ− EY ν | . (3.8)

To complete the proof of Theorem 3.1, we use Lemmas 3.9 and 3.10 below. These make use
of the characterisation of the CMB distribution. The idea of combining characterisations
of two distributions when using Stein’s method has previously been employed by Goldstein
and Reinert [19] and Döbler [16].
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Lemma 3.9. Let Y ∼ CMB(n, λ/nν , ν). Then

EY ν+1 ≥ λ
(

1 + EY − cν
n

(
EY + EY 2

))
,

where cν = max{1, ν}.

Proof. We use the characterisation of the CMB distribution given in Lemma 2.9 (ii) to
note that

EY ν+1 = λ

(
1− λ

nν

)−1
E
[
(Y + 1)

(
1− Y

n

)ν]
≥ λ

(
1− λ

nν

)−1
E
[
(Y + 1)

(
1− cνY

n

)]
≥ λE

[
(Y + 1)

(
1− cνY

n

)]
.

Lemma 3.10. Let Y ∼ CMB(n, λ/nν , ν). Then

|λ− EY ν | ≤ λ

(
λ

nν − λ
+

νnνEY
n(nν − λ)

)
.

Proof. Let p = λ/nν . Using Lemma 2.9 (ii),

λ− EY ν = λ

(
1−

E
(
1− Y

n

)ν
1− p

)
.

The result then follows by applying Taylor’s theorem to the function (1− y)ν .

Substituting the bounds of Lemmas 3.9 and 3.10 into (3.8) completes the proof of
Theorem 3.1.

3.1 Remarks on Lemma 3.10

We use this section to give some remarks related to Lemma 3.10. Firstly, note that the
upper bound given in that lemma is of order n−min{1,ν}, which can in fact easily be seen
to be the optimal rate. Using Lemma 3.11 below, we show that a better bound is possible
when λ/nν is small, although this improved bound will of course still be of the same order
as the bound given in Lemma 3.10.

Lemma 3.11. Let Y ∼ CMB(n, p, ν) with n > 1. There exists p? ∈ (0, 1] such that for
p ≤ p?

EY ν

{
≤ nνp if ν ≥ 1 ,
≥ nνp if ν < 1 .
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Proof. Let

h(p) = EY ν =

∑n
j=0 j

ν
(
n
j

)ν
pj(1− p)n−j∑n

j=0

(
n
j

)ν
pj(1− p)n−j

.

Elementary calculations show that h(0) = 0, h′(0) = nν and

h′′(0) = −2nν (nν − (n− 1)ν − 1) .

Note that (since n > 1), h′′(0) < 0 for ν ≥ 1 and h′′(0) > 0 for ν < 1. Using the continuity
of h and Taylor’s theorem applied to h, the result follows.

Consider now the case Y ∼ CMB(n, λ/nν , ν) with ν ≥ 1. By Lemma 3.11, for n
sufficiently large we have that λ−EY ν ≥ 0, and we may then follow the proof of Lemma
3.10 to get the bound

λ− EY ν ≤ λ

(
νnνEY

n (nν − λ)
− λ

nν − λ

)
,

which improves upon Lemma 3.10.
A similar argument in the case ν < 1 gives that, for n sufficiently large, λ− EY ν ≤ 0

and

EY ν − λ ≤ λ2

nν − λ
.

3.2 Proof of Lemma 3.7

It is straightforward to verify that (3.5), denoted by fA(j), solves the Stein equation (3.4).
To establish uniqueness of the solution, we take j = 0 in (3.4), from which it follows that
any function hA(j) that solves the Stein equation (3.4) must satisfy hA(1) = fA(1). By
iteration on λhA(j + 1) − jνhA(j) = λfA(j + 1) − jνfA(j) it follows that hA(j) = fA(j)
for all j ≥ 1, which confirms the uniqueness of the solution.

We now establish (3.7). By constructing X ∼ CMP(λ, ν) as the equilibrium distribu-
tion of a birth-death process with birth rates αj = λ and death rates βj = jν , the first
inequality of (3.7) follows from Corollary 2.12 of Brown and Xia [8]. Since Z(λ, ν) ≥ 1
for all λ and ν, it follows that λ−1 (1− Z(λ, ν)−1) ≤ λ−1. Finally,

λ−1(1− Z(λ, ν)−1) =

∑∞
j=0

λj

((j+1)!)ν∑∞
k=0

λk

(k!)ν

≤ 1 .

This completes the proof of (3.7).

Remark 3.12. The upper bound λ−1 (1− Z(λ, ν)−1) for the forward difference is attained
by f{1}(2)− f{1}(1).

It remains to establish (3.6). We do this by considering separately four cases. Our
strategy is to suitably generalise the proof of Lemma 1.1.1 of Barbour, Holst and Janson
[6], which gives analogous bounds in the Poisson case (ν = 1).

Firstly, note that from (3.7) and the choice fA(0) = 0,

|fA(1)| ≤ min{1, λ−1} , (3.9)

for each A ⊆ Z+. Given (3.9), we need only to show the stated bound on |fA(j + 1)| for
j ≥ 1 in each of the four cases detailed below.
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Case I: ν ≥ 1 and λ > 1

Note that by examining the proof of Lemma 1.1.1 of Barbour, Holst and Janson [6], it is
clear that |fA(j + 1)| ≤ 5/4 for all j ≥ 1 whenever ν ≥ 1. We can, however, do a little
better. Barbour and Eagleson [4], Lemma 4, obtained the bound |fA(j + 1)| ≤ 1 when
ν = 1. By examining their proof we see that the bound also holds for all ν ≥ 1.

Now, let Um = {0, 1, . . . ,m}. It is easily verified that the solution fA to the Stein
equation (3.4) is given by

fA(j + 1) = λ−j−1(j!)νZ(λ, ν)
(
CMP(λ, ν){A ∩ Uj} − CMP(λ, ν){A}CMP(λ, ν){Uj}

)
= λ−j−1(j!)νZ(λ, ν)

(
CMP(λ, ν){A ∩ Uj}CMP(λ, ν){U c

j }
− CMP(λ, ν){A ∩ U c

j }CMP(λ, ν){Uj}
)
,

where CMP(λ, ν){A} = P(X ∈ A). Hence

|fA(j + 1)| ≤ λ−j−1(j!)νZ(λ, ν)CMP(λ, ν){Uj}CMP(λ, ν){U c
j } , (3.10)

with equality for A = Uj.
Equation (3.10) gives us two ways of bounding |fA(j + 1)|. Firstly, note that

|fA(j + 1)| ≤ λ−j−1(j!)νZ(λ, ν)CMP(λ, ν){Uj} = λ−1
j∑
r=0

λ−r
(

j!

(j − r)!

)ν
, (3.11)

and when jν < λ, this may be bounded to give

|fA(j + 1)| ≤ λ−1
j∑
r=0

(
jν

λ

)r
≤ 1

λ− jν
. (3.12)

Secondly, we also have

|fA(j + 1)| ≤ λ−j−1(j!)νZ(λ, ν)CMP(λ, ν){U c
j } = λ−1

∞∑
r=j+1

λr−j
(
j!

r!

)ν
, (3.13)

and when (j + 2)ν > λ, this may be bounded to give

|fA(j + 1)| ≤ 1

(j + 1)ν

∞∑
r=0

(
λ

(j + 2)ν

)r
=

(j + 2)ν

(j + 1)ν ((j + 2)ν − λ)
. (3.14)

Note that the bounds (3.11)–(3.14) hold for all values of ν and λ. We will also make use
of these bounds in the other cases we consider below.

Now, for jν ≤ λ− λ1−1/2ν , we use (3.12) to get that

|fA(j + 1)| ≤ λ1/2ν−1 . (3.15)

Similarly, when (j + 2)ν ≥ λ+ λ1−1/2ν , we use (3.14) to get that

|fA(j + 1)| ≤ (3/2)νλ1/2ν−1 , (3.16)

19



noting that (j + 2)ν > jν . It remains only to treat the case |jν − λ| < λ1−1/2ν .
To that end, let λ− λ1−1/2ν < jν < λ, and use (3.11) to note that

|fA(j + 1)| ≤ λ−1

 bBc∑
r=0

ar +

j∑
r=bBc+1

ar

 ,

for any B ≤ j, where

ar = λ−r
(

j!

(j − r)!

)ν
.

Note that |ar| < 1 for each r ∈ Z+. We choose

B = λ1/ν
[
1− (1− λ−1/2ν)1/ν

]
,

so that ar+1/ar < 1− λ−1/2ν for all r > B. Hence, we have

|fA(j+ 1)| ≤ λ−1
(
B + 1 +

1− λ−1/2ν

λ−1/2ν

)
= λ1/ν−1

[
1− (1− λ−1/2ν)1/ν

]
+λ1/2ν−1 . (3.17)

Note that, by Taylor’s theorem and since ν ≥ 1,

1− (1− λ−1/2ν)1/ν ≤ 1

ν

(
1− λ−1/2ν

)1/ν−1
λ−1/2ν .

Hence,

|fA(j + 1)| ≤
(

1 +
1

ν

)(
1− λ−1/2ν

)1/ν−1
λ1/2ν−1 . (3.18)

Finally, we consider the case λ < jν < λ+ λ1−1/2ν . From (3.13) we have

|fA(j + 1)| ≤ λ−1

 bCc∑
r=j+1

br +
∞∑

r=bCc+1

br

 ,

for C ≥ j, where

br = λr−j
(
j!

r!

)ν
.

Analogously to before, we note that |br| < 1 for each r, and we make the choice C =

λ1/ν
(
1 + λ−1/2ν

)1/ν
so that br+1/br ≤ (1 + λ−1/2ν) for r > C. We then get the bound

|fA(j + 1)| ≤ λ1/ν−1
[
(1 + λ−1/2ν)1/ν − 1

]
+ λ1/2ν−1 . (3.19)

Using Taylor’s theorem,

(1 + λ−1/2ν)1/ν − 1 ≤ 1

ν
λ−1/2ν ,

since ν ≥ 1, and so

|fA(j + 1)| ≤
(

1 +
1

ν

)
λ1/2ν−1 . (3.20)

Combining the bounds (3.15), (3.16), (3.18) and (3.20) we obtain the stated bound on
‖fA‖ in this case.
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Remark 3.13. Recall (3.10). Taking j ≈ λ1/ν , and using Stirling’s formula and (1.2),
gives

|fA(j + 1)| ≈ λ1/2ν−1

(2π)(ν−1)/2
√
ν
,

for j ≈ λ1/ν and large λ. Hence, a bound of order λ1/2ν−1 is the best that we can expect
for ‖fA‖ for large λ. This order is achieved by Lemma 3.7. This remark also applies to
Case II considered below.

Case II: ν ≤ 1 and λ ≥ 1

Here we use an analogous argument to that employed in Case I. The bounds (3.15) and
(3.16) still apply; the only changes to our argument come for the cases where |jν − λ| <
λ1−1/2ν .

When λ − λ1−1/2ν < jν < λ, we again use (3.17). Since ν ≤ 1 in this case, Taylor’s
theorem gives

1− (1− λ−1/2ν)1/ν ≤ 1

ν
λ−1/2ν ,

from which it follows that

|fA(j + 1)| ≤
(

1 +
1

ν

)
λ1/2ν−1 .

When λ < jν < λ+ λ1−1/2ν , we use (3.19), noting that, since ν < 1,

(1 + λ−1/2ν)1/ν − 1 ≤ 1

ν

(
1 + λ−1/2ν

)1/ν−1
λ−1/2ν ,

giving

|fA(j + 1)| ≤
(

1 +
1

ν

)(
1 + λ−1/2ν

)1/ν−1
λ1/2ν−1 .

The stated bound follows.

Case III: ν ≥ 1 and λ ≤ 1

As before, we may use the proof of Lemma 4 of Barbour and Eagleson [4] to obtain the
bound |fA(j + 1)| ≤ 1 for all ν ≥ 1.

Case IV: ν < 1 and λ < 1

Here we again use (3.13). That bound gives us

|fA(j + 1)| ≤ λ−1
∞∑

r=j+1

(
λr−j

(r − j)!

)ν (
r

j

)−ν (
λ1−ν

)r−j ≤ λν−1
∞∑
r=1

(
λ1−ν

)r
.

Since λ < 1 and ν < 1, we have λ1−ν < 1. Hence we get the bound

|fA(j + 1)| ≤ 1

1− λ1−ν
.
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Remark 3.14. Consider the case ν = 0 and λ < 1. We then have that our CMP random
variable X has a geometric distribution, supported on Z+, with parameter P(X = 0) =
1 − λ. Note that in this case, Lemma 3.7 gives the bound ‖fA‖ ≤ (1 − λ)−1. This was
shown, in Remark 4.1 of Daly [12], to be the correct dependence on λ for such a bound.

4 Other convergence and approximation results

In this section we consider other convergence and approximation results related to CMP
distributions.

4.1 Sums of Bernoulli random variables

In Section 3 we have considered the convergence of the CMB distribution to an appropriate
CMP limit. In this case we were able to derive an explicit bound on this convergence.
Recalling (1.4), we are able to write a CMB distribution as a sum of Bernoulli random
variables (having a particular dependence structure), with each Bernoulli summand having
the same marginal distribution. In this section we consider how we may generalise (1.4)
to a sum of Bernoulli random variables which are no longer exchangeable and yet give a
CMP limiting distribution in an analogous way to the limit considered in Section 3. In
this case, although we are able to prove convergence in distribution, we are unable to give
an explicit bound on the convergence rate; further discussion is given in Remark 4.2.

Consider the following generalisation of (1.4). Let X1, . . . , Xn be Bernoulli random
variables with joint distribution given by

P(X1 = x1, . . . , Xn = xn) =
1

C ′n

(
n

k

)ν−1 n∏
j=1

p
xj
j (1− pj)1−xj ,

where k = x1 + · · ·+ xn and the normalizing constant C ′n is given by

C ′n =
n∑
k=0

(
n

k

)ν−1 ∑
A∈Fk

∏
i∈A

pi
∏
j∈Ac

(1− pj) ,

where
Fk = {A ⊆ {1, . . . , n} : |A| = k} .

We consider the convergence of the sum W = X1 + · · ·+Xn. It is easy to see that W has
mass function

P(W = k) = pn,ν(k; p1, . . . , pn) =
1

C ′n

(
n

k

)ν−1 ∑
A∈Fk

∏
i∈A

pi
∏
j∈Ac

(1− pj) , (4.1)

for k = 0, 1, . . . , n. This distribution generalises the Poisson binomial distribution in a way
analogous to the CMP and CMB generalisations of the Poisson and binomial distributions.
We therefore say that a random variable with mass function (4.1) follows the Conway-
Maxwell-Poisson binomial (CMPB) distribution. Of course, the case ν = 1 is the usual
Poisson binomial distribution and the case p1 = · · · = pn = p reduces to the CMB(n, p, ν)
distribution.
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Theorem 4.1. Let W = X1 + · · ·+Xn be as above, with mass function pn,ν(k; p1, . . . , pn)
given by (4.1) with pi = λi

nν
for i = 1, . . . , n, where the λi are positive constants that do

not involve n. Then W converges in distribution to X ∼ CMP(λ, ν) as n→∞, where

λ = lim
n→∞

1

n

n∑
i=1

λi .

Proof. Firstly, note that in the case ν = 1 the result is known. It is the classical con-
vergence of a sum of independent Bernoulli random variables to a Poisson distribution.
That immediately gives us the limit

1

nk

∑
A∈Fk

∏
i∈A

λi
∏
j∈Ac

(
1− λj

n

)
→ e−λ

λk

k!
, (4.2)

as n→∞. As a consequence of (4.2), we have that

1

nk

∑
A∈Fk

∏
i∈A

λi →
λk

k!
, (4.3)

as n→∞, since

lim
n→∞

∏
j∈Ac

(
1− λj

n

)
= lim

n→∞

n∏
j=1

(
1− λj

n

)
· lim
n→∞

∏
l∈A

(
1− λl

n

)−1
= e−λ .

Now, in the present case we may write the mass function (4.1) in the form

pn,ν(k;λ1/n
ν , . . . , λn/n

ν) =
1

C ′n

(
n!

(n− k)!nk

)ν−1
1

(k!)ν−1

∑
A∈Fk

∏
i∈A

λi
n

∏
j∈Ac

(
1− λj

nν

)
.

Clearly

lim
n→∞

n!

(n− k)!nk
= 1 ,

and ∏
j∈Ac

(
1− λj

nν

)
=

n∏
j=1

(
1− λj

nν

)∏
l∈A

(
1− λl

nν

)−1
.

Note that

lim
n→∞

∏
l∈A

(
1− λl

nν

)−1
= 1 ,

and that the product
n∏
j=1

(
1− λj

nν

)
and the normalizing constant C ′n do not depend on k. Combining these observations with
(4.3), we have that

lim
n→∞

pn,ν(k;λ1/n
ν , . . . , λn/n

ν) =
Cλk

(k!)ν
,

where C does not depend on k. The result follows.
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Remark 4.2. It would be desirable to extend Theorem 4.1 to include an explicit bound
on the convergence rate, as was achieved in Theorem 3.1. Such a bound could, in principle,
be established by generalising the proof of that theorem. This approach would require one
to obtain a Stein equation for the CMPB distribution, a generalisation of the stochastic
ordering result of Lemma 2.11 to the CMPB distribution, and an appropriate extension
of the moment estimates of Lemmas 3.9 and 3.10. This is a possible direction for future
research.

4.2 Mixed CMP distributions

Finally, we also consider the case of a mixed CMP distribution. For a non-negative, real-
valued random variable ξ, we say that W ∼ CMP(ξ, ν) has a mixed CMP distribution
if

P(W = j) =
1

(j!)ν
E
[

ξj

Z(ξ, ν)

]
, j ∈ Z+ .

We assume throughout that ξ is such that this expectation exists.
Following the proof of Theorem 1.C (for mixed Poisson approximation) in the book

by Barbour, Holst and Janson [6], we use the characterisation in Lemma 2.9 (i), along
with the bounds on the solution to the Stein equation given in Lemma 3.7, to obtain the
following.

Theorem 4.3. Let ξ be a non-negative random variable. Then

dTV (CMP(ξ, ν),CMP(λ, ν)) ≤ gν(λ)E|ξ − λ| ,

where gν(λ) is as defined in Section 3.
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