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Abstract

We examine regularity and basis properties of the family of rescaled
p-cosine functions. We find sharp estimates for their Fourier coeffi-
cients. We then determine two thresholds, p0 < 2 and p1 > 2, such that
this family is a Schauder basis of Ls(0, 1) for all s > 1 and p ∈ [p0, p1].

1 Introduction

The contents of this paper can be summarised as follows. Consider a contin-
uous 2-periodic function f : R −→ C. Denote by F the family of rescalings
F = {f(nx)}n∈N. When does F form a Schauder basis of Ls ≡ Ls(0, 1) for
all s > 1? This question can be traced back to a 1945 note by Arne Beurling
[1]. However, quite remarkably, there are still a number of open problems
associated to it. As it turns, finding a concrete answer can be extremely
difficult, even for apparently simple functions f .

In a series of recent papers the above question has been addressed for the
particular choice f(x) = sinp(πpx), the p-sine functions. Let p > 1. Let the
increasing function Fp : [0, 1] −→ [0,

πp

2 ] be defined by means of the integral

(1) Fp(y) :=

∫ y

0
(1− tp)

− 1
pdt

where

πp := 2Fp(1) =
2π

p sin(πp )
.

1Email address: L.Boulton@hw.ac.uk
2Email address: hm189@hw.ac.uk
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Denote the inverse of Fp by sinp, which is increasing in the segment [0,
πp

2 ].
Extend to the whole of R by means of the rules

(2) sinp(−x) = − sinp(x) and sinp

(πp
2

− x
)
= sinp

(πp
2

+ x
)
,

which makes it 2πp-periodic and continuous in R. The choice p = 2 corre-
sponds to the standard trigonometric setting sin2 ≡ sin, π2 = π and in this
case F is a Schauder basis of Ls for all s > 1 as a consequence of Fourier’s
Theorem.

The study of generalised trigonometric functions has a long history which
dates back to the XIX century, [14] and [9, Note 4.1]. The study of the
p-sine functions is closely related to the one-dimensional p-Laplacian non-
linear eigenvalue problem, see the work of Elbert [10] and Ôtani [15]. Their
basis properties were first examined in [2], where it was announced that the
family {sinp(nπp ·)}n∈N forms a Schauder basis of Ls for all s > 1 and p ≥ 12

11 .
Further development in this respect were settled in [5], [6] and [4]. Currently
we know that this family is a Schauder basis of Ls for all s > 1 when p > p̃0,
and also a Riesz basis of L2 for p ∈ (p̂0, p̃0], where p̃0 ≈ 1.087 and p̂0 ≈ 1.044
satisfy complicated identities involving hypergeometric functions [4].

Let

(3) cosp x :=
d

dx
sinp x ∀x ∈ R

and set f(x) = cosp(πpx), the p-cosine functions. From the various results
established in the recent paper [7], it follows that F∪{1} is a Schauder basis

of Ls for all s > 1 and p ∈ (p†0, 2] where p†0 ≈ 1.75. In the present work we
establish that this basis property in fact holds true for p in a wider segment.
To be precise, we show the following.

Theorem 1. There exist p0 <
3
2 and p1 >

11
5 , such that {cosp(nπp ·)}∞n=0 is

a Schauder basis of Ls for all s > 1 and p ∈ [p0, p1].

The constants p0 and p1 will be given analytically as the zeros of corre-
sponding equations involving the parameter p. Their approximated values
turn out to be p0 ≈ 1.46 and p1 ≈ 2.43.

The proof of Theorem 1 is naturally divided into the cases 1 < p <
2 and p > 2. The different parts of the paper follow this division. In
Section 2 we collect various properties of the p-trigonometric functions which
will be useful later on. In Section 3 we establish precise upper bounds
on the asymptotic behaviour of the Fourier coefficients of cosp(πp·). In
Section 4 we recall the framework for determining invertibility of the change
of coordinates map between the families {cos(nπ·)}∞n=0 and {cosp(nπp·)}∞n=0.
In Section 5 we assemble the proof of Theorem 1, by combining the crucial
criterion (12) of Section 4 with the estimates of Section 3. In the final
Section 6 we describe the relation between the results announced here and
other existing work.
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2 The generalised trigonometric functions

We begin by recalling various elementary properties of the p-cosine functions.
A more complete account on this matter can be found in [5, Section 2] and
[9, Chapter 2].

Throughout we shall assume that 1 < p < ∞. Note that πp is a decreas-
ing function, smooth in p > 1, such that⎧⎪⎨⎪⎩

πp → ∞ p → 1+

πp = π p = 2

πp → 2 p → ∞.

Here and everywhere below we write p′ := p/(p−1). According to [5, (2.3)],
we know that

p′πp′ = pπp.(4)

From (2) and (3) it immediately follows that cosp is 2πp-periodic,

cosp(x) = cosp(−x) and cosp

(
x+

πp
2

)
= − cosp

(
x− πp

2

)
∀x ∈ R.

Moreover, setting y = sinp(x) for x ∈ [0, πp/2] in the formula for the deriva-
tive of the inverse function of (1), gives

(5) cosp(x) = (1− yp)1/p = (1− sinp(x)
p)1/p.

Thus, cosp is decreasing in (0, πp/2], cosp(0) = 1 and cosp(πp/2) = 0. In fact
we have,

| sinp x|p + | cosp x|p = 1 ∀x ∈ R.

See [5, (2.7)].

Lemma 1. For all x ∈ [0, 12),

a.

cosp(πpx) = sinp′

(
πp′

(
1

2
− x

))p′−1

b.
d

dx
cosp(x) = − sinp(x)

p−1 cosp(x)
2−p

c.
d2

dx2
cosp(x) = sinp(x)

p−2 cosp(x)
3−2p[2− p− cosp(x)

p].
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Proof. The calculations leading to “a” and “b” can be found in the proofs
of [5, Proposition 2.2] and [5, Proposition 2.1], respectively. From (5) we
get

d2

dx2
cosp(x) = (2− p) sinp(x)

2p−2 cosp(x)
3−2p − (p− 1) sinp(x)

p−2 cosp(x)
3−p

= sinp(x)
p−2 cosp(x)

3−2p [(2− p) sinp(x)
p − (p− 1) cosp(x)

p] ,

which is “c”.

The following inequalities will be important below.

Lemma 2. Let 1 < p ≤ q < ∞ and x ∈ [0, 12 ]. Then

a. sinp(πpx) ≥ sinq(πqx)

b. cosp(πpx) ≤ cosq(πqx).

Proof. Statement “a” is [5, Corollary 4.4 -(iii)].
Let us show “b”. A direct evaluation at x = 0 and x = 1/2 gives

equality for all p and q at these points, so these two cases are immediate.
Let x ∈ (0, 12) be fixed. Since p′ is decreasing in p > 1, from part “a” it
follows that

d

dp
sinp′

(
πp′
(1
2
− x
))

≥ 0 ∀p ∈ (1,∞).

Note that, 0 < sinp′(πp′(
1
2 − x)) < 1 and hence ln(sinp′(πp′(

1
2 − x))) < 0.

Substituting the identity from Lemma 1(a), yields

d

dp
cosp(πpx) =

d

dp

[
sinp′

(
πp′
(1
2
− x
))] 1

p−1

=

[
− ln(sinp′(πp′(

1
2 − x)))

(p− 1)2
+

d
dp

[
sinp′(πp′(

1
2 − x))

]
(p− 1) sinp′(πp′(

1
2 − x))

]
cosp(πpx) > 0.

This implies “b”.

2.1 The case 1 < p < 2

For 1 < p < 2, let up : [0,
1
2 ] −→ R be given by

up(x) := cos′p(πpx) = − sinp(πpx)
p−1 cosp(πpx)

2−p.

This function will simplify the notation when we determine estimates for
the Fourier coefficients of the p-cosine functions in Section 3.1. Here and
everywhere below we write

(6) cp := (p− 1)
p−1
p (2− p)

2−p
p .
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Lemma 3. Let 1 < p < 2. Then

a. up(x) ≤ 0 for all x ∈ [0, 12 ]

b. up(x) = 0 if and only if x = 0 or x = 1
2

c. up(x) = −cp for x ∈ [0, 12 ] if and only if x = mp ∈ (0, 12), where mp is the
unique point such that cosp(πpmp)

p = 2− p

d. up : [0,mp] −→ [−cp, 0] is decreasing

e. up : [mp,
1
2 ] −→ [−cp, 0] is increasing

f. min
x∈[0, 1

2
]
up(x) = −cp.

Proof. Since sinp(πpx) and cosp(πpx) are non-negative over [0, 12 ], then “a”
holds true. Since sinp(πpx) only vanishes at x = 0 and cosp(πpx) only
vanishes at x = 1

2 in this interval, then “b” holds true.
Lemma 1-c gives

u′p(x) = πp sinp(πpx)
p−2 cosp(πpx)

3−2p[2− p− cosp(πpx)
p].

Neither sinp nor cosp vanish in (0, 12). On the other hand, cosp(0) = 1 > 2−p,
cosp(

πp

2 ) = 0 < 2 − p and cosp(πpx)
p is decreasing for x ∈ (0, 12). Then the

term cosp(πpx)
p + p− 2 indeed vanishes at the unique point mp ∈ (0, 12) as

stated in “c”.
At mp,

up(mp) = − sinp(πpmp)
p−1 cosp(πpmp)

2−p

= −(1− cosp(πpmp)
p)

p−1
p cosp(πpmp)

2−p = −cp.

Hence, the proof of “d” and “e”, and thus of “f”, is achieved as follows.
Just observe that in the expression for u′p(x) above, cosp(πpx)p > 2 − p for

x ∈ [0,mp) and cosp(πpx)
p < 2 − p for x ∈ (mp,

1
2), because cosp(πpx) is

decreasing in x ∈ (0, 12).

According to parts “d” and “e” of Lemma 3, the function up is invertible,
when restricted to the segments [0,mp] and [mp,

1
2 ]. We denote the inverses

by w1,p : [−cp, 0] −→ [0,mp] and w2,p : [−cp, 0] −→ [mp,
1
2 ], respectively, so

that
up(wk,p(x)) = x ∀x ∈ [−cp, 0] k = 1, 2.
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2.2 The case p > 2

For p > 2, let vp : (0,
1
2 ] −→ [0,∞) be given by

vp(x) := (p′ − 1) sinp′(πp′x)
p′−2 cosp′(πp′x).

Let us summarise various properties of this function, which will be employed
in Section 3.2.

Lemma 4. Let p > 2. Then

a. vp is decreasing in (0, 12 ]

b. lim
x→0+

x vp(x) = 0

c. lim
x→0+

vp(x) = +∞ and vp(
1
2) = 0

d. lim
x→0+

v′p(x) = −∞ and v′p(
1
2) = 0.

Proof. For p > 2, p′ ∈ (1, 2) and so p′−2 < 0. Since, sinp′(πp′x) is increasing
and cosp′(πp′x) is decreasing in x ∈ (0, 12), then “a” holds true.

Let us show “b”. L’Hôpital’s Rule gives

lim
x→0+

x

[sinp′(πp′x)]2−p′ = lim
x→0+

[sinp′(πp′x)]
p′−1

(2− p′)πp′ cosp′(πp′x)
= 0.

Then,

lim
x→0+

x vp(x) = lim
x→0+

(p′ − 1)
x cosp′(πp′x)

[sinp′(πp′x)]2−p′ = 0,

as claimed in “b”.
Both statements “c” and “d” follow directly from (5), the expression

v′p(x) = (p′− 1)πp′ sinp′(πp′x)
p′−3 cosp′(πp′x)

2−p′
[
(p′ − 1) cosp′(πp′x)

p′ − 1
]
,

and continuity of sinp and cosp at x = 0.

According to this lemma, there exists a function zp : [0,∞) → (0, 12 ] such
that zp is the inverse function of vp. This inverse function has the following
characteristics.

a. zp is decreasing in [0,∞)

b. zp(0) =
1
2 and lim

x→∞ zp(x) = 0

c. lim
x→0+

z′p(x) = +∞ and lim
x→∞ z′p(x) = 0.
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3 The Fourier coefficients of the p-cosine functions

Let

aj(p) ≡ aj := 2

∫ 1

0
sinp(πpx) sin(jπx)dx ∀j ∈ N

be the Fourier sine coefficients of sinp(πpx). Let

bj(p) ≡ bj := 2

∫ 1

0
cosp(πpx) cos(jπx)dx ∀j ∈ N ∪ {0}

be the Fourier cosine coefficients of cosp(πpx). Since sinp is an odd function
and cosp is an even function, aj = bj = 0 for all j ≡2 0. Here and elsewhere
below we will write j ≡2 k to denote that j ≡ k (mod 2).

Lemma 5. For j ∈ N,

bj(p) =
jπ

πp
aj(p).

Proof. Let j ≡2 1. Integration by parts alongside with the fact that cosp(πpx)
and cos(jπx) are odd with respect to 1

2 , yield

bj = 2

∫ 1

0
cosp(πpx) cos(jπx)dx = 4

∫ 1
2

0
cosp(πpx) cos(jπx)dx

=
4

πp
cos(jπx) sinp(πpx)

∣∣∣ 12
0
+

4jπ

πp

∫ 1
2

0
sinp(πpx) sin(jπx)dx

=
jπ

πp
aj .

We now find estimates on |bj(p)| in terms of the parameter p > 1.

3.1 The case 1 < p < 2

Lemma 6. For 1 < p < 2, let cp > 0 be given by (6). Then

|bj(p)| < 8πp
j2π2

cp ∀j ≥ 1.
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Proof. Integrate by parts twice to get

bj = 4

∫ 1
2

0
cosp(πpx) cos(jπx)dx

=
4

jπ
cosp(πpx) sin(jπx)

∣∣∣ 12
0
− 4πp

jπ

∫ 1
2

0
cos′p(πpx) sin(jπx)dx

= −4πp
jπ

∫ 1
2

0
cos′p(πpx) sin(jπx)dx

=
4πp
j2π2

cos′p(πpx) cos(jπx)
∣∣∣ 12
0
− 4πp

j2π2

∫ 1
2

0

d

dx
[cos′p(πpx)] cos(jπx)dx.

From the identities in Lemma 3(b), it follows that the boundary term in the
fourth equality always vanishes. Thus,

bj = − 4πp
j2π2

∫ 1
2

0
u′p(x) cos(jπx)dx

= − 4πp
j2π2

(∫ mp

0
u′p(x) cos(jπx)dx+

∫ 1
2

mp

u′p(x) cos(jπx)dx
)

= − 4πp
j2π2

(∫ −cp

0
cos(jπw1,p(s))ds+

∫ 0

−cp

cos(jπw2,p(s))ds
)
.

Hence,

|bj | ≤ 4πp
j2π2

[ ∫ 0

−cp

| cos(jπw1,p(s))|ds+
∫ 0

−cp

| cos(jπw2,p(s))|ds
]

<
8πp
j2π2

cp,

because the functions inside the integrals are not constants identically equal
to 1.

3.2 The case p > 2

Let p > 2. According to Lemma 1(a),

bj(p) = 4

∫ 1
2

0
sinp′

(
πp′

(
1

2
− x

)) 1
p−1

cos(jπx)dx.

Since cos(jπ(12 − t)) = (−1)
j−1
2 sin(jπt) for j ≡2 1, changing variables to

t = 1
2 − x gives

bj = (−1)
j−1
2 4

∫ 1
2

0
sinp′(πp′t)

1
p−1 sin(jπt)dt.
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By virtue of Lemma 4 and integration by parts twice, then

bj = (−1)
j−1
2

4πp′

jπ

∫ 1
2

0
vp(t) cos(jπt)dt

= (−1)
j−1
2

4πp′

jπ

[
1

jπ
vp(t) sin(jπt)

∣∣∣ 12
0
− 1

jπ

∫ 1
2

0
v′p(t) sin(jπt)dt

]

= (−1)
j+1
2

4πp′

j2π2

∫ 1
2

0
v′p(t) sin(jπt)dt

= (−1)
j+3
2

4πp′

j2π2

∫ ∞

0
sin (jπ zp(y)) dy.(7)

Lemma 7. Let p > 2. Then

|bj(p)| < 2πp′

π2(p− 1)

[
2 +

π2

2
(p− 2)

]
j−p′ ∀j ≥ 3.

Proof. Since p > 2, then 1 < p′ < 2. Let r = p′ − 1. In view of Lemma 2,
we have

vp(t) ≤ r
[
sinp′(πp′t)

]r−1 ≤ r
[
sin(πt)

]r−1

and so

zp(y) ≤ 1

π
arcsin

[(y
r

) 1
r−1

]
=: rp(y) ∀y ∈ [r,∞).(8)

Set

η(j) := r sin

(
π

2j

)r−1

.

Then,

rp(η(j)) =
1

2j
<

1

2
.

Here we use the requirement j ≥ 3, in order to make sure that the arc-sine
does not change branches.

Set

J1 =

∫ η(j)

0
dx = η(j)

and

J2 =

∫ ∞

η(j)
sin (jπ rp(y)) dy.

Then, (7) yields

|bj | ≤ 4πp′

j2π2
(J1+J2).

Here J2 is guaranteed to be on the right hand side, because

0 < jπ zp(y) ≤ jπ zp(η(j)) ≤ jπ rp(η(j)) =
π

2
,
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so that 0 < sin(jπ zp(y)) ≤ sin(jπ rp(y)) for y ∈ [η(j),∞).
Let us estimate an upper bound for J2. Changing variables to

t = jπ rp(y) ⇐⇒ y = r sin

(
t

j

)r−1

gives

J2 =

∫ π
2

0

r(1− r)

j
sin

(
t

j

)r−2

cos

(
t

j

)
sin(t)dt

= r(1− r)

∫ π
2

0
sin

(
t

j

)r−1
⎡⎣ t

j

sin
(

t
j

)
⎤⎦(sin t

t

)
cos

(
t

j

)
dt.

Note that,

max
0<θ≤π

2

θ

sin θ
=

π

2
, max

0<θ≤π
2

sin θ

θ
= 1(9)

and

0 < t < jπ rp(η(j)) =
π

2
.

Here we are using once again the fact that j ≥ 3. Then

J2 <
π

2
r(1− r)

∫ π
2

0
sin

(
t

j

)r−1

cos

(
t

j

)
dt.

Changing variables to

τ = sin

(
t

j

)
,

yields

J2 <
jπ

2
r(1− r)

∫ sin π
2j

0
τ r−1dτ =

jπ

2
(1− r) sin

(
π

2j

)r

.

Then

|bj | < 2πp′

j2π2

[
2 +

jπ(1− r)

r
sin

(
π

2j

)]
η(j).

According to (9), we get
η(j) ≤ rj1−r

and

|bj | < 2πp′r

j2π2

[
2 +

jπ(1− r)

r

π

2j

]
j1−r.(10)

Simplifying the expression on the right hand side, ensures the validity of the
lemma.
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4 The change of coordinates map

We now derive various properties of the change of coordinates maps that take
the 2-cosine functions into the p-cosine functions. Most of the material in
this section can also be found in [2], [5], [7] and [4]. We keep a self-contained
presentation here by including details of the main arguments.

Given any g ∈ Ls, denote the even extension of g with respect to 1 by

g̃(x) =

{
g(x) x ∈ [0, 1]
g(2− x) x ∈ (1, 2].

A 2−periodic extension of g to the whole of R is then written as

g∗(x) = g̃(x− 2
⌊x
2

⌋
).

The floor function 
y� ∈ Z is the unique integer such that y − 
y� ∈ [0, 1).
For any n ∈ N, let

Mng(x) := g∗(nx).

Lemma 8. The operators Mn : Ls −→ Ls are linear isometries.

Proof. Indeed,

‖Mng‖sLs
=

∫ 1

0
|Mng(x)|sdx =

∫ 1

0
|g∗(nx)|sdx =

∫ 1

0
|g̃(nx− 2

⌊nx
2

⌋
)|sdx

=
1

n

∫ n

0
|g̃(y − 2

⌊y
2

⌋
)|sdy =

1

n

n−1∑
l=0

∫ l+1

l
|g̃(y − 2

⌊y
2

⌋
)|sdy

=
1

n

⎡⎢⎣n−1∑
l=0
l≡20

∫ l+1

l
|g̃(y − 2

⌊y
2

⌋
)|sdy +

n−1∑
l=1
l≡21

∫ l+1

l
|g̃(y − 2

⌊y
2

⌋
)|sdy

⎤⎥⎦ .

Changing variables to w = y − l for l ≡2 0 and z = y − (l − 1) for l ≡2 1,
gives ⌊y

2

⌋
=

{
l
2 whenever l ≡2 0
l−1
2 whenever l ≡2 1.

Hence,

‖Mng‖sLs
=

1

n

⎡⎢⎣n−1∑
l=0
l≡20

∫ 1

0
|g(w)|sdw +

n−1∑
l=1
l≡21

∫ 2

1
|g̃(z)|sdz

⎤⎥⎦ .

Another change of variables z = 2− w, then yields

‖Mng‖sLs
=

1

n

[
n

∫ 1

0
|g(w)|sdw

]
= ‖g‖sLs

as claimed.
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Let en(x) := cos(nπx). If

g =
ĝ(0)

2
e0 +

∞∑
j=1

ĝ(j)ej ∈ Ls

where

ĝ(k) := 2

∫ 1

0
g(x)ek(x)dx ∀k ∈ N ∪ {0}

are the corresponding cosine Fourier coefficients, then

Mng =
ĝ(0)

2
e0 +

∞∑
j=1

ĝ(j)Mnej =
ĝ(0)

2
e0 +

∞∑
j=1

ĝ(j)enj ∈ Ls.

Now, let fn(x) := cosp(nπpx). Note that e0(x) = f0(x) = 1 for all
x ∈ R. Suitable linear extensions of the map A : en �→ fn are the changes
of coordinates between {en}∞n=0 and {fn}∞n=0. Our next goal is to find a
canonical decomposition for A in terms of Mn and the Fourier coefficients
bn(p). After that, we show that these are bounded operators of the Banach
spaces Ls for all s > 1.

Proposition 1. For all p > 1,
∞∑
j=1

|bj(p)| < ∞.

Proof. This is a direct consequence of lemmas 6 and 7. See (14) and (23)
below.

In the notation of Section 3, we have f̂1(k) = bk(p) for all k ∈ N ∪ {0}.
Recall that bk = 0 for k ≡2 0. Since any of the functions fn(x) is continuous,
then they all have a Fourier cosine expansion

fn(x) =
1

2
f̂n(0)e0(x) +

∞∑
k=1

f̂n(k)ek(x)

which is both pointwise convergent for all x ∈ [0, 1] and also convergent in
the norm of Ls for all s > 1. Then, for all n > 1,

f̂n(k) = 2

∫ 1

0
f1(nx) cos(kπx)dx

= 2

∫ 1

0

( ∞∑
m=1

f̂1(m) cos(mπnx)
)
cos(kπx)dx

= 2
∞∑

m=1

f̂1(m)

∫ 1

0
cos(mnπx) cos(kπx)dx

=

{
bm(p) for mn = k, m ≡2 1

0 otherwise.

12



Here we can exchange the infinite summation with the integral sign, due to
the pointwise convergence of the series, Proposition 1 and the Dominated
Convergence theorem.

Let

A :=
∞∑
j=1

bj(p)Mj .(11)

By virtue of Proposition 1, Lemma 8 and the triangle inequality, it follows
that the expression (11) is convergent in the operator norm of Ls and that
A : Ls −→ Ls is a bounded linear operator such that

‖A‖Ls−→Ls ≤
∞∑
j=1

|bj |‖Mj‖Ls−→Ls =
∞∑
j=1

|bj |.

Moreover,

Ae0 =
∞∑
j=1

bjMje0 =
∞∑
j=1

bje0 =
∞∑
j=1

bjej(0) = cosp(πp0) = 1 = f0

and

Aen =
∞∑
j=1

bjMjen =
∞∑
j=1

f̂1(j)enj =
∞∑
k=1

f̂n(k)ek = fn ∀n ∈ N.

These are the change of basis maps between {en}∞n=0 and {fn}∞n=0.
The operator A is an homeomorphism of Ls if and only if the family

{cosp(nπp·)}∞n=0 is a Schauder basis of Ls, cf. [12] or [16]. Then we have the
following criterion, which is a consequence of [13, Theorem IV-1.16],

(12)
∞∑
j=3
j≡21

|bj(p)| < |b1(p)| ⇒
{
{cosp(nπp·)}∞n=0 is a Schauder

basis of Ls for all s > 1.

We employ this criterion below in order to determine the basis thresholds
for the family {cosp(nπp·)}∞n=0 claimed in Theorem 1.

5 Proof of Theorem 1

The proof is separated into two cases.

5.1 The case 1 < p < 2

Recall the expression for cp given in (6) and consider the identity

(13) π2
pcp =

π3

π2 − 8
.

13



Lemma 9. There exists 1 < p0 < 2 such that (13) holds true for p = p0.
Moreover,

π2
pcp <

π3

π2 − 8
∀p ∈ (p0, 2).

Proof. It will be enough to prove that π2
pcp is a convex function of the

parameter p for all 1 < p < 2. Indeed, since

lim
p→1+

π2
pcp = ∞ and lim

p→2−
π2
pcp = π2 <

π3

π2 − 8
,

both statements will immediately follow from this property.
Firstly note that

d

dp
ln(p− 1)

p−1
p =

1

p2
ln(p− 1) +

1

p

and

d2

dp2
ln(p− 1)

p−1
p =

2− p

p2(p− 1)
− 2

ln(p− 1)

p3
> 0.

Then ln(p− 1)
p−1
p is convex for 1 < p < 2.

Similarly, we have

d

dp
ln(2− p)

2−p
p =

−2

p2
ln(2− p)− 1

p

and

d2

dp2
ln(2− p)

2−p
p =

4− p

p2(2− p)
+ 4

ln(2− p)

p3
> 0.

Then, also ln(2− p)
2−p
p is convex for 1 < p < 2.

Furthermore,
d

dp
[lnπp] =

π cot(πp )

p2
− 1

p

and
d2

dp2
lnπp =

(p2 + π2)

p4
− 2π

p3
cot
(π
p

)
+

π2

p4
cot2

(π
p

)
> 0.

The latter is a consequence of the fact that cos π
p < 0 and sin π

p > 0. Hence,

also lnπ2
p is convex for 1 < p < 2.

The convexity of the logarithm of each one of the multiplying terms in
the expression for π2

pcp, implies that lnπ2
pcp is convex for 1 < p < 2. This

ensures that indeed π2
pcp is convex in the same segment and the validity of

the statement is ensured.

14



Corollary 1. Let 1 < p0 < 2 be such that (13) holds true for p = p0.
The family {cosp(nπp·)}∞n=0 is a Schauder basis of Ls for all s > 1 and
p0 ≤ p ≤ 2.

Proof. According to Lemma 6,

(14)
∞∑
j=3
j≡21

|bj(p)| < 8πpcp
π2

∞∑
j=3
j≡21

1

j2
=

π2
pcp(π

2 − 8)

π2πp
.

On the other hand, in view of Lemma 5 and Lemma 2(a), we have

b1(p) =
π

πp
a1 =

4π

πp

∫ 1
2

0
sinp(πpx) sin(πx)dx

≥ 4π

πp

∫ 1
2

0
sin(πx)2dx =

π

πp
.

Then, Lemma 9 yields
∞∑
j=3
j≡21

|bj(p)| < b1(p)

for all p ∈ [p0, 2). By virtue of (12) the claimed conclusion follows.

Since

π2
4
3

c 4
3
=

π23
5
4

√
2

2
>

π3

π2 − 8

and

π2
3
2

c 3
2
=

64π2

27 3
√
4
<

π3

π2 − 8
,

then 4
3 < p0 <

3
2 . This settles the proof of Theorem 1 for 1 < p < 2.

Remark 1. An implementation of the Newton method gives p0 ≈ 1.458801
as an approximated solution of (13) with all digits correct.

5.2 Case p > 2

Recall the following identities involving the Riemann Zeta function [11,
3.411, 9.522 & 9.524],

(15) ζ(q) =
1

Γ(q)

∫ ∞

0

tq−1

et − 1
dt Re(q) > 1,

∞∑
j=1
j 	≡20

1

jq
=

(
1− 1

2q

)
ζ(q)(16)
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and

ζ ′(q)
ζ(q)

= −
∞∑
k=1

Δ(k)

kq
(17)

where

Δ(k) =

{
ln(r) if k = rm for some r prime and m ∈ N

0 otherwise.

Lemma 10. Let

t0 =
2(e2 − 3e+ 1)

(e2 − 2e− 1)
.

Then
(18)

ζ

(
3

2

)
<

2√
π

(
2
√
2 arctan

1√
2
+

π2

6
+

t20
4
− (t0 − 1)2

2(e− 1)2
− t0(e− 2) + 1

e− 1

)
.

Proof. Since Γ(1 + 1
2) =

√
π
2 1!! =

√
π
2 , the representation (15) gives

ζ

(
3

2

)
=

2√
π

∫ ∞

0

t1/2

et − 1
dt

=
2√
π

(∫ 1

0
+

∫ ∞

1

t1/2

et − 1
dt

)
=

2√
π
(J1 + J2).

We estimate separately upper bounds for J1 and J2.
The change of variables t = u2, yields

J1 =

∫ 1

0

t1/2

et − 1
dt <

∫ 1

0

t1/2

t+ t2

2

dt

=

∫ 1

0

2u2

u2 + u4

2

du = 2
√
2 arctan

1√
2
.

On the other hand, we know that ζ(2) =
∫∞
0

t
et−1dt =

π2

6 , so

J2 ≤
∫ ∞

1

t

et − 1
dt =

π2

6
−
∫ 1

0

t

et − 1
dt.

We find lower bound for the integral on the right hand side, by interpolating
the curve c(t) = t

et−1 at two points, t = 0 and t = 1. Firstly observe that
c(t) → 1 as t → 0, c(t) is decreasing and c′′(t) ≥ 0 for t ∈ [0, 1]. Let t0 be as
in the hypothesis and let

c̃(t) =

{
1− 1

2 t 0 ≤ t ≤ t0
1

(e−1)2
(1− t) + 1

e−1 t0 ≤ t ≤ 1

16



be the piecewise linear interpolant of c(t) in the two segments [0, t0] and
[t0, 1], which is continuous at t0. Note that c̃(t) and c(t) are tangent at t = 0
and t = 1. Then

c(t) ≥ c̃(t) ∀t ∈ [0, 1].

Hence∫ 1

0
c(t)dt ≥

∫ t0

0

(
1− 1

2
t

)
dt+

∫ 1

t0

(
1

(e− 1)2
(1− t) +

1

e− 1

)
dt

= − t20
4
+

(t0 − 1)2

2(e− 1)2
+

t0(e− 2) + 1

e− 1
.

Thus

J2 ≤ π2

6
+

t20
4
− (t0 − 1)2

2(e− 1)2
− t0(e− 2) + 1

e− 1
.

Alongside with the upper bound above for J1, this ensures the validity of
the claimed statement.

Now, consider the equation

(19)
2πp′

π2(p− 1)

[
2 +

π2

2
(p− 2)

] [(
1− 1

2p′

)
ζ(p′)− 1

]
=

8

ππp
.

Lemma 11. There exists p1 ∈ (115 , 3) such that (19) holds true for p = p1.
Moreover,

2πp′

π2(p− 1)

[
2 +

π2

2
(p− 2)

] [(
1− 1

2p′

)
ζ(p′)− 1

]
<

8

ππp
∀p ∈ [2, p1).

Proof. From (4) it follows that the identity (19) reduces to

(20)
π

p2 sin(πp )
2

(
2 +

π2

2
(p− 2)

)[(
1− 1

2p′

)
ζ(p′)− 1

]
= 1.

Denote by h(p) the left hand side of (20). Then h : (1,∞) −→ R is contin-
uous and

h(2) =
π

2

(
π2

8
− 1

)
< 1.

Since

ζ

(
3

2

)
> 1 +

√
2

4
+

√
3

∞∑
k=3

1

k2
=

4 +
√
2

4
+

√
3

(
π2

6
− 5

4

)
,

we get

h(3) =
π

9 sin(π3 )
2

[
2 +

π2

2

] [(
1− 1

2
3
2

)
ζ

(
3

2

)
− 1

]
>

π

9 sin(π3 )
2

[
2 +

π2

2

] [(
1− 1

2
3
2

)(
4 +

√
2

4
+

√
3

(
π2

6
− 5

4

))
− 1

]
> 1.
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Hence, there exists p1 ∈ (2, 3) such that h(p1) = 1.
The derivative

d

dq

[(
1− 1

2q

)
ζ(q)

]
=

ln(2)

2q
ζ(q) +

(
1− 1

2q

)
ζ ′(q)

is negative for any q ∈ (1, 2). Indeed the identity (17) gives

ζ ′(q)
ζ(q)

< − ln(2)

2q
− ln(3)

3q
− ln(2)

4q

< − ln(2)

[
1

2q
+

1

3q
+

1

4q

]
<

ln(2)

1− 2q
,

so that

d

dq

[(
1− 1

2q

)
ζ(q)

]
= ζ(q)

[
ln(2)

2q
+

2q − 1

2q
ζ ′(q)
ζ(q)

]
< 0.

Since p′ and sin
(
π
p

)
are decreasing functions of p > 2, then

π

sin(πp )
2

[(
1− 1

2p′

)
ζ(p′)− 1

]
is an increasing function of p > 2.

As

d

dp

[
1

p2

(
2 +

π2

2
(p− 2)

)]
=

1

p3
(−π2

2
p+ 2π2 − 4) > 0 ∀p ∈ [2, 3],

then h(p) is increasing for p ∈ [2, 3] and so indeed

h(p) < h(p1) = 1 ∀p ∈ [2, p1).

Let us now show that p1 > 11
5 . Let c1 denote the right hand side of the

estimate (18) in Lemma 10. Since ζ(q) is convex in the segment [32 , 2], then

ζ(q) ≤
(
π2

3
− 2c1

)
(q − 2) +

π2

6
.

That is, the straight line joining the points (32 , c1) and (2, π
2

6 ) is above the
curve ζ(q) for all q ∈ [32 , 2]. Then

(21) ζ

(
11

6

)
≤ π2

9
+

c1
3
.

Note that for p = 11
5 , p

′ = 11
6 . Now, sin(πy) is concave for y ∈ [ 5

12 ,
1
2 ]. Then

it is above the straight line joining the points ( 5
12 , sin

5π
12 ) and (12 , 1). That

is

sin (πy) ≥
(
12− 12 sin

5π

12

)(
y − 1

2

)
+ 1 ∀y ∈

[
5

12
,
1

2

]
.
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Then

(22) sin
5π

11
>

√
6

22

(√
3 + 3

)
+

5

11
.

Denote by c2 the right hand side of the latter inequality. From (21) and
(22), it follows that

h

(
11

5

)
=

π

(115 )
2 sin(5π11 )

2

[
2 +

π2

2

(
11

5
− 2

)][(
1− 1

211/6

)
ζ

(
11

6

)
− 1

]
<

π
121
25 c

2
2

(
2 +

π2

10

)[(
1− 1

211/6

)(
π2

9
+

c1
3

)
− 1

]
< 1.

As h(p) is increasing, then indeed p1 >
11
5 .

Corollary 2. Let p1 > 2 be such that (19) holds true for p = p1. The family
{cosp(nπp·}∞n=0 forms a Schauder basis of Ls for all s > 1 and 2 ≤ p ≤ p1.

Proof. From Lemma 7 and (16), we have

∞∑
j=3
j≡21

|bj | < 2πp′

π2(p− 1)

[
2 +

π2

2
(p− 2)

] [(
1− 1

2p′

)
ζ(p′)− 1

]
.(23)

According to part “b” of Lemma 1, sinp(πpx) is strictly concave on (0, 12).
Then

a1 = 2

∫ 1

0
sinp(πpx) sin(πx)dx = 4

∫ 1
2

0
sinp(πpx) sin(πx)dx

> 4

∫ 1
2

0
(2x) sin(πx)dx =

8

π2
.

Hence, in view of Lemma 5, we get

b1 =
π

πp
a1 >

8

ππp
.(24)

From Lemma 11, it then follows that

∞∑
j=3
j≡21

|bj(p)| < b1(p) ∀p ∈ [2, p1].

By virtue of (12) this implies the claimed conclusion.

Remark 2. An approximation of the solution of (19) via the Newton Method
gives p1 ≈ 2.42865 with all digits correct.
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6 Connections with other work

In this final section we describe various connections between the statements
established above and those reported in the literature.

The p-exponential functions

Let
expp(iy) = cosp(y) + i sinp(y) ∀y ∈ R.

By combining Theorem 1 with [2, Theorem 1] or [5, Theorem 4.5], it imme-
diately follows that the family F̃ = {expp(inπp·)}∞n=−∞ is a Schauder basis
of the Banach space Ls(−1, 1) for all p ∈ [p0, p1].

Indeed, recall that every f ∈ Ls(−1, 1) decomposes as f = fe + fo for

fe(x) =
f(x) + f(−x)

2
and fo(x) =

f(x)− f(−x)

2
,

the even and odd parts of f , respectively. The family {cosp(nπp·)}∞n=0 com-
prises only even functions, the family {sinp(nπp·)}∞n=1 comprises only odd
functions and they are Schauder bases of the corresponding subspaces of
Ls(−1, 1) for p ∈ [p0, p1]. This implies that there exist two unique scalar
sequences (αk)

∞
k=0 and (βk)

∞
k=1, such that

f(·) = α0 +
∞∑
k=1

αk cosp(kπp·) + iβk sinp(kπp·)

in Ls(−1, 1). In order to see this, one expands fe in {cosp(nπp·)}∞n=0 and fo
in {sinp(nπp·)}∞n=1, in the corresponding even and odd subspaces.

By letting c0 = α0,

ck =
αk + βk

2
and c−k =

αk − βk
2

∀k ∈ N,

we get

f(·) =
∞∑

k=−∞
ck expp(ikπp·)

in Ls(−1, 1). Since there is a 1:1 correspondence between the scalar se-
quences via

αk = ck + c−k and βk = ck − c−k,

then in fact (ck)
∞
k=−∞ is unique for the given f . Thus, F̃ satisfies the

definition of a Schauder basis for the Banach space Ls(−1, 1).
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The regularity of the p-sine functions

Let r > 0 and denote by Hr ≡ Hr(0, 1) the (Hilbert) Sobolev space of order
r. Let 1 < p < 2. According to the formula [5, (4.4)], it follows that the
Fourier coefficients of the p-sine function are such that

|aj(p)| ≤
16π2

pcp

π3
j−3 ∀j ∈ N.

Then, sinp(πp·) ∈ Hρ for all ρ < 5
2 .

Numerical estimates for the Sobolev regularity of sinp(πp·) for 2 < p <
100 were reported in [3, Figure 2]. From that picture, one may conjecture
that for p > 3, sinp(πp·) /∈ H2. Moreover, the regularity appears to drop
asymptotically to 3

2 for p large. By contrast, it appears that sinp(πp·) ∈ H2

for 2 < p < 3. The following statement, which is a consequence of Lemma 7,
settles this conjecture.

Corollary 3. For p > 2 set r(p) = p′ + 1
2 . Then sinp(πp·) ∈ Hρ for all

0 ≤ ρ < r(p).

Proof. According to Lemma 5,

|aj(p)| = πp
jπ

|bj(p)|.

Then, by virtue of Lemma 7,

|aj(p)| ≤ 2πpπp′

π3(p− 1)

[
2 +

π2

2
(p− 2)

]
j−(p′+1) ∀j ≥ 3.

Let 〈j〉2 = 1 + j2. For ρ < p′ + 1
2 ,

∞∑
j=1

〈j〉2ρ|aj(p)|2 ≤ 2ρa1(p)
2 + c(p)

∞∑
j=3
j≡21

1

j1+ε(p)
< ∞

where

c(p) =
2πpπp′

π3(p− 1)

[
2 +

π2

2
(p− 2)

]
and ε(p) = 1− 2ρ+ 2p′ > 0.

Hence sinp(πp·) ∈ Hρ as claimed.

The recent paper [8] includes various intriguing results connected to
Corollary 3.
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The paper [7]

The recent paper [7] seems to be the only one in the existing literature which
conducts an analysis of the basis properties of the p-cosine functions. In the
notation of [7] we fix α = 1 and p = q > 1. The Fourier coefficients of the
p-cosine functions are

τj(p, p, 1) = bj(p) ∀j ∈ N ∪ {0}.

The condition [7, (2.2)] as well as the criterion for determining whether
{cosp(nπp·)}∞n=0 is a Schauder basis of Ls are exactly the same as (12). Let
us compare some of the results of [7] with those of the present work.

In [7, Proposition 2.5], the estimate [7, (2.20)] is equivalent to the fol-

lowing. There exists p∗0 =
72(π−2)−2π3

96(π−2)−3π3 , such that

(25) τ1(p, p, 1) ≥
{

π(p−1)
2p−1 − (π−2)(p−1)

3p−2 1 < p < p∗0
π(p−1)
2p−1 − π3(p−1)

24(4p−3) p∗0 < p < ∞.

Here p∗0 satisfies the identity

4p− 3

3p− 2
=

π3

24(π − 2)
.

Note that p∗0 ≈ 1.22.
Let us consider firstly the regime 1 < p < 2. From [7, Proposition 2.2]

it follows that

(26)
∞∑
k=1

|τ2k+1(p, p, 1)| ≤ πp(π
2 − 8)

π2
∀p ∈ (1, 2).

As cp < 1 whenever 1 < p < 2 in (6), then (14) is sharper than (26) in this
regime.

If 1 < p < p∗0, then

πp(π
2 − 8)

π2
>

π(p− 1)

2p− 1
− (π − 2)(p− 1)

3p− 2
,

and no conclusion about the validity of (12) can be derived in this case from
(25) and (26). For p∗0 < p < 2, on the other hand,

πp(π
2 − 8)

π3
<

p− 1

2p− 1
− π2(p− 1)

24(4p− 3)
⇐⇒ p ∈ (p†0, 2),

where p†0 ≈ 1.75. In order to see this, note that πp is decreasing and
limp→1+ πp = ∞, while the right hand side of this identity is increasing
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for 1 < p < 2. Thus, a combination of [7, Proposition 2.2] and [7, Proposi-
tion 2.5], only guarantees that {cosp(nπp·)}∞n=0 is a Schauder basis of Ls for

p ∈ [p†0, 2) where p†0 >
3
2 > p0.

As it turns, it is not possible to deduce from the results of [7] any basis
property of the family {cosp(nπp·)}∞n=0 in the complementary regime p > 2.
Here is how the different estimates on the Fourier coefficients compare in
this case.

From [7, Proposition 2.4], we gather that

(27)

∞∑
k=1

|τ2k+1(p, p, 1)| ≤ 2πp′

π2(p− 1)
[4 + π(p− 1)]

[(
1− 1

2p′

)
ζ(p′)− 1

]
.

Since

4 + π(p− 1) ≥ 2 +
π2

2
(p− 2) ∀p ≤ 4 + 2π2 − 2π

π2 − 2π
,

the upper bound (23) is sharper than (27) for 2 ≤ p ≤ 3. The latter is the
relevant regime in the proof of Theorem 1.

Since πp < π for p > 2, the lower bound (24) is sharper than [7, (2.19)].
Moreover,

8

ππp
>

π(p− 1)

2p− 1
− π3(p− 1)

24(4p− 3)
∀p > 2.

Hence the estimate (25), which is [7, (2.20)], is also superseded by (24) for
p > 2.
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