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Abstract Situational awareness is achieved naturally by the human senses of sight and hearing in com-
bination. Automatic scene understanding aims at replicating this human ability using microphones and
cameras in cooperation. In this paper, audio and video signals are fused and integrated at different levels
of semantic abstractions. We detect and track a speaker who is relatively unconstrained i.e. free to move
indoors within an area larger than the comparable reported work, which is usually limted to round table
meetings. The system is relatively simple: consisting of just 4 microphone pairs and a single camera.
Results show that the overall multimodal tracker is more reliable than single modality systems, tolerat-
ing large occlusions and cross-talk. System evaluation is performed on both single and multi-modality
tracking. The performance improvement given by the audio-video integration and fusion, is quantified
in terms of tracking precision and accuracy as well as speaker diarisation error rate and precision-recall
(recognition). Improvements vs. the closest works are evaluated: 56% sound source localisation compu-
tational cost over an audio only system, 8% speaker diarisation error rate over an audio only speaker
recognition unit and 36% on the precision-recall metric over an audio-video dominant speaker recognition
method.

Keywords Surveillance · Speaker Diarisation · Security Biometric · Audio-Video Speaker Tracking ·
Multimodal Fusion

1 Introduction

The establishment of the digital era has created applications which combine audio and video to automate
human activity analysis and understanding. We highlight the main areas of interest. First, for surveillance
applications i.e. detecting a person’s biometric features to ensure there are no intruders in a restricted
area [1]. Second, understanding people social behaviour and interaction to determine their “role” and their
intentions [2]. Third, detecting a possible threat in a public place [3] and, consequently, beam-forming and
segmenting a dialogue [4]. Typical surveillance scenarios are characterised by the use of many wide area,
distributed sensors covering unconstrained scenarios. Scene monitoring is often required to be real-time,
thus computationally inexpensive algorithms are fundamental to the development of an effective system,
but this is not always evident in the literature at present, and this is the challenge we address in this
work.
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1.1 Related work

The first step to full audio-video audio-video (AV) human activity analysis and understanding systems is
detecting and tracking speakers through significant occlusions. State-of-the-art sound source localisation
algorithms [5,6] are still computationally expensive, hence they are not suitable for “real-time” (or frame-
rate) applications. Solving large video occlusions is still an inherently challenging research problem: many
existing papers solve the problem by using advanced multi-camera 3-dimensional (3D) systems [7] which
are prone to error when the camera views do not overlap. They are computationally expensive, requiring
GPU/FPGA implementations to function at frame-rate when parallelisation is possible. Complementary
use of audio and video is able to compensate for noisy, missing and erroneous data, reducing the number
of sensors and the computational resources required at the expense of minimal effort in integrating or
fusing signals [2, 3, 8–22].

Audio and video fusion can be achieved in several ways chiefly using variations of sampling techniques
[8, 14, 15, 19, 21]. Existing AV person tracking system architectures work well only in highly sanitised
i.e. constrained and predictable scenarios: principally meeting rooms and diarisation [13, 16, 18, 20] in
which the person motion is either stationary e.g. when people are talking seated around a fixed table.
Existing systems use large sensor networks in which microphones and cameras are often very close or even
attached to people [13–16]. A hierarchical system is more likely to achieve robust situational awareness.
These are more robust, as accurate and require lower algorithmic and hardware complexity [2, 16]. The
weakness is that such systems often treat the two signals as if they were derived from truly independent
processes: assuming one source of noise can affect only one kind of signal. None of the previous work
explores whether an underlying relation between audio and video exists and seeks to exploit it fully.

AV event or anomaly detection literature is generally based on inferring AV signal correlations to
recognise whether a relevant event has happened in some scenario of interest [3, 11, 12, 17]. The same
correlation approach may be used to pick out the dominant speaker from a group of speaking people,
without audio beamforming, filtering, blind source separation and data association [23,24]. The definition
of dominant speaker is clearly useful: a high degree of gesticulation and speaking activity are the funda-
mental cues to define dominance [25–28]. In fact, gesturing is 80%-90% of the time associated to speaking
activity [29]. Focussing on gesticulation detection is particularly suitable for low resolution video, where
fine lip motion detection is not applicable and where close microphones may not be available.

To aid the reader, a schematic is shown in Fig. 1 and links to the different sections of the papers
are explicitly made in the caption. Section 2 presents the integration of audio and video data at the
signal level and their fusion at decision level for speaker detection and tracking (see [30]). A speaker voice
recognition unit is implemented to make the multimodal tracking robust to occlusions (see also [31]). In
Section 3, the experiments and the results related to the first part of the system are described. Here,
the benefits of fusing multimodal data are highlighted remarking that standalone trackers have worse
performances than the AV solution. Then, a possible solution to the problem of tracking the current
speaker identity through occlusions by recognising speakers voices is demonstrated. Section 4 presents
how to visualise in large indoor surveillance-like scenarios the dominant speaker identity when multiple
people speak contemporaneously without resorting to sophisticated algorithms (see also [32]). Finally, in
Section 5 the conclusions of this research study are highlighted and future avenues of research enumerated.

The exact contributions of this work relative to the the published literature are: a) definition of
a new, high accuracy, fast audio source localisation algorithm augmented by video (stochastic region
contraction with height estimation (SRC-HE)) which outperforms the baseline method stochastic region
contraction (SRC) of Do et al. [6]; b) extension of AV techniques for speaker tracking and event detec-
tion where people dynamically move and interact which outperforms the baseline method of Izadinia et
al. [17]; c) exploitation of a small sensor network, deploying only a single camera and 8 microphones,
which operates in open rooms vs. “standard” meeting rooms with constrained participants; d) detection
and tracking of speaker identity through occlusion and speech overlaps in a joint audio-video algorithm
outperforming the state-of-the-art.

Early elements of this work were already presented in [30–32] and this paper makes two additional
contributions relative to these papers. First, we give a unified presentation of the earlier work in a broader
and fuller context; second, in this paper we present additional, new material, specifically graphs (Figs.
1a, 4), tables (3, 4) and original results (Figs 3, 6).



3

2 Audio-Video Speaker Tracking

Bayesian inference is the foundation of most of the existing joint AV tracking schemes. The Kalman Filter
and its Extended version [10, 15], the Particle Filter [8, 19, 21] as well as hybrid approaches using Monte
Carlo Markov chains [13] have been all used to tackle the problem. However, these filters work in meeting
room scenarios and use close-field sensors deployed in large array configurations [13–16]. In this section,
an AV speaker identity (ID) localisation and tracking algorithm which works in more unconstrained
situation using a small sensor network is presented. Participants are not forced to wear sensors or to
orient themselves towards the sensor. Audio source position estimates are computed by the SRC sound
source localisation algorithm [6]. The novelty here is that SRC is aided by available video information
which estimates head height over the whole scene and gives a speed improvement of the 56% over the
original SRC algorithm [6]. We call this approach SRC-HE. Finally, audio and video data are combined in
a Kalman filter (KF) which fuses person-position likelihoods and tracks speaker positions and identities
through occlusions demonstrating that the global audio-video tracker (AVT) outperforms single modality
trackers.

2.1 Feature Extraction

Height detection and video tracking. The appearance-based video tracker extracting person height
is based on a GPU-accelerated particle filter with ellipsoid models [33]. Implementation is first described
by Limprasert [34] and we direct the reader there for more details. In our work the video data coming
from a single camera is exploited. Height measurements zh for each detected target i = 1, 2, ..., Nv (Nv

number of detected targets) are extracted to cue the audio localisation algorithm (Fig. 2), since they
directly corresponds to a good estimate of the speaker’s head position. Each detected position zv can be
described at each time step t as a Nv × 2 vector, i.e. zv = {(xvid(t))}.

Audio source localisation cued by video height and audio tracking. A popular method of
audio source tracking is extracting maximal time-difference of arrival (time difference of arrival (TDOA))
values from the generalised cross correlation phase transform (GCC-PHAT) of the signals from a pair of
microphones, in the frequency domain (see Knapp for full details [35]).

A method more robust to reverberation, the Steered Response Power (steered response power (SRP)),
makes use of the GCC-PHAT to build an energy map in a system with multiple microphones [6]. This is
the sum over all pairs (m, n) of microphones of the corresponding value of the GCC-PHAT for the TDOA.
Evaluating the SRP across an entire room is computationally costly. In this work, an enhanced version
of the SRC algorithm to localise quicker and better an audio source is used. SRC works by sampling
the SRP randomly and choosing a subset of the largest samples to form a new region to sample within.
This is repeated until the process has discovered a maximum. In order to further improve upon the SRC,
instead of sampling uniformly over height, a different sampling distribution is used, centred around a
head height.
Around each person, a tracking algorithm can be relatively confident of their height. Further away from
them, the decreasing confidence is modelled by increasing the variance of the sampling probability density
function (PDF). Hence, the variance at a distance l metres from a speaker is chosen to be modelled by a
sigmoid function q, such as (1), which is a scaled error function:

q(l) = α1 erf (α2l) (1)

This function is zero at the origin and asymptotically approaches a constant as its argument tends
towards infinity. All the variances around each detected speaker height are combined to form a global
variance in equation 2:

Lp,T = {l : (∃q ∈ T)(l = pq)},
q̂p,T = min

l∈Lp,T

q(l) (2)

At any point p in space, the appropriate variance q̂ to use will be the sigmoid function q of the
minimum of the set of all 2-dimensional (2D) Euclidian distances pq to known sources, where the set
of known source locations is denoted as T and an element from the set of known sources is denoted as
q. The minimum is chosen to ensure that the change in variance remains smooth even for overlapping
sigmoids from multiple sources.
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Algorithm 1 Finding the Global Maximum using Video Height

Input: video detected heights zh
Output: speaker position SRPp2

1: Initial search for speech source
2: while running do
3: T̂ = T

4: for all room corners do � add corners to T̂

5: n← (xcorner, ycorner, znearest member of T)

6: T̂← T̂ ∪ {n}
7: end for
8: Ĥ← DT(T̂) � Delaunay triangulation
9: for all p2 = (xp2

, yp2
) ∈ A do � whole area

10: Ĥ0 ← hsub ∼ ϕ(zh | p2) � video cueing
11: end for
12: Perform SRC-HE
13: T̂← T̂ ∪ � new speaker position
14: end while
15: return SRPp2 = maxzh [S(xp2

, xp2
)]

From a sparse set of people, the head height at every x-y co-ordinate in the SRP map needs to be
defined. This is achieved using interpolation and extrapolation. When doing the interpolation, there is a
trade-off between the smoothness of the curve produced and the size of ripples produced. The interpolation
should not contain severe ripples as they would lead to large errors in the head height estimation across
the room. Ideally, it should be monotonic and one way to achieve this is to use Delaunay triangulation [36]
on the set of speakers, which creates a surface which can be evaluated at any 2D point.

To choose head height, existing knowledge of the current positions and heights of people in a room
which is obtained from a camera (Fig. 2), is used (SRC-HE). In particular, the height data is updated
on each iteration to the height of the last SRP peak found. Finally, the height hsub to use at each time
step for every 2D point p = (xp2

, yp2
) is drawn from (3) where, as said, T is the set of known speaker

locations and H is the set of interpolated heights:

ϕ(zh | p2) = α0N
(
μh, σ

2
h

)
+ (1− α0)U (0, hr)

μh = H[p2]

σ2
h = q̂(p2, T)

(3)

This mixes a Gaussian with a Uniform distribution across hr, the entire height of the room. The
resulting SRP value for the point p2 then is given by: SRPp2 = maxzh [S(xp2

, yp2
)] (see Algorithm 1

and Fig. 1b). The SRC-HE algorithm allows for direct speaker position calculation. Nevertheless, speaker
position estimations are characterised by missing and false detections. This is mostly due to speech pauses
and room reverberation respectively.

Thus, SRC estimated positions are filtered by a KF. The signal vector obtained za can be written as
za =

{
(xaud(t), yaud(t))

T
}
, to which the speaker ID at any given time t, SA(t), is assigned.

2.2 Fusion of Audio and Video Decisions

As previously stated, to speed up SRC search time, the speaker’s height (computed by the video particle
filter (PF)) is input into the audio unit to drive height sampling (SRC-HE). Then, after the audio and
video data have been aligned, the posteriors of the KF audio tracker and of the video PF, xa and xv

respectively, are fused in a common KF node. As data are gathered simultaneously and used all at once
in a centralised fashion, audio and video pdfs are assumed to be independent of one another. On the basis
of the a priori local estimates for the state predicted by the single-modality trackers at each time step,
we evaluate the joint state estimate (Algorithm 2).

The final, joint AV output is fed back into the individual audio and video trackers as the best estimate
of the previous time step to improve the single modality estimation. It is important to note that, since
the assumption that people speak alternatively (which is a strong assumption for a normal conversation)
has been made, a single audio signal, corresponds to several video measurements at a time, one for
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Algorithm 2 Audio Video Tracking Algorithm

Input: Audio za and video zv measures
Output: Position xav and identity SAV of actual speaker

1: for every time step t do
2: xav = Pav

{
P−1

a xa +P−1
v xv

}
� Pav = P−1

a +P−1
v

3: SAV = argmaxi

{
p
(
za, zv(i)

∣∣ x)}
4: if ‖zv(i)

− zv(j)
‖ ≤ D then � occlusion

5: xav = xa

6: if ‖za − zv(i)
‖ ≥ A then

7: SAV = SA � speaker change
8: end if
9: end if

10: end for
11: return xav and SAV

each of the detected targets. By basing the audio-to-video data association step on spatial proximity,
i.e. nearest neighbour (NN) (more than one speaker cannot exist at the same point in space) speaker
segmentation and ID recognition can also be obtained as long as people are resolved by the AV tracker.
Its measurements can be considered robust with respect to the speaker motion model (see Algorithm 2).

In particular, the speaker ID inferred by the joint AVT is equal to the one of the i-th target if

SAV = argmax
i

{
p
(
za, zv(i)

∣∣ x)}, i = 1 , ...,Nv .

Once a visual ID i has been assigned to every target in an image, the speaker change detection output
by the audio unit is used to solve video occlusion. In particular, when a pair of video detections fall within
a certain region D which depends on the video tracker accuracy (‖zv(i)

− zv(j)
‖ ≤ D) for each pair i, j of

video detected targets), audio only contributes to KF filter innovation. If audio and video do not both
fall within a certain region A, based on both audio and video tracker accuracy, (‖za− zv(i)

‖ ≥ A), then a
new speaker is conservatively considered to be detected according to the audio ID guess (SA), successfully
resolving occlusions (Algorithm 2). However, in a large reverberant room audio false positives do exist
and compromise the speaker ID recognition based on positional data only. The integration of an speaker
recognition (SR) module is proposed to make the multimodal AVT more robust to video occlusions in
reverberant rooms where people move around.

2.3 Dealing with Occlusion

In Section 2.2 it is pointed out that when people occlude each other, as in normal social interactions
behaviours, Bayesian multimodal speaker tracking based on audio and video position detections in certain
situations cannot distinguish the actual speaker ID in a conversation. This mainly occurs when the video
tracks merge or cross over and the signal to reverberation ratio (SRR) is too low. As long as the video
target ID recognition is based on general properties such as characteristic clothing, the natural dynamic
and ambiguous behaviour of such a feature may lead to situations like occlusions in which they are
completely useless, e.g. two people who wear clothes of the same colours will have an associated histogram
of colours very similar (see Fig. 9 for an example of such a situation). In literature, this is normally solved
either by using proximity models or placing physical constraints on people. However, if target ID is decided
on the basis of a more specific feature such as voice, the fact that it is seldom observable could reduce
the number of cases in which visual ID determination is compromised, representing a more elegant and
less invasive solution. Voice spectral features are now calculated for each speaker and such information is
incorporated into the AVT, so as to simplify the video-to-audio data nearest neighbour association step.
By doing so, it is demonstrated that the AVT ID tracking performance improves. In turn, when speakers
are distant from the microphones, recognising a speaker by their voice can be very complicated [37, 38].
Thus, exploiting audio-video positional cues also benefits the speaker voice recognition task at a distance
(see 2.5).
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2.4 SRC-HE vs. GCC-PHAT Audio Tracking

Despite the fact that SRC-HE reduces the number of FEs, audio measurements extraction based on SRC
would still be not suitable for real-time applications [39]. The previous SRC-HE module is then replaced
by the generalised cross correlation phase transform (GCC-PHAT) introduced in Section 2.1, as this does
not involve cumbersome point function estimations. The drawback is that the basic GCC algorithm can
only detect one source at a time and it is known to be sensitive to room reverberations [5], however it
is still effective under moderate reverberant environments (T60 ≈ 0.3 s) [40]. For these reasons, at first
experiments where only a speaker is active at any given time are carried out, as it often happens in a
polite conversations between two or more people. Speech segments using a voice activity detector (VAD)
[41] are further extracted and processed using a GCC-PHAT step, for the signal to be more robust to
reverberations. Thus, the measure vector obtained za (see 2.1) can now be rewritten as za = {τm(t)},
where each component τm is the TDOA collected at the m-th microphone pair at each time step t. Since
TDOAs are not linear in the speaker position, they must be input into an extended Kalman filter (EKF),
as in [10] to get an audio position estimation.

2.5 Text-Independent Speaker Recognition

We propose that, since the microphones already gather audio information for tracking purposes, the
temporal spectral content of the signal can be used to extract speakers voice features and recognise
their ID. Specifically, a SR module is chosen which performs text-independent speaker identification
based on Gaussian mixture model (GMM) [42], under the assumptions that there exist Nv possible
speaker identities (as many as the detected video targets), whose “voiceprints” models p (si) are learned
beforehand 1. In particular, speaker voice models are calculated on the base of 60s training signal for
each speaker. From every voice sequence 12 sets of Mel-frequency cepstral coefficients (MFCC) [43] are
extracted. Each model is represented by a 32-mixture GMM, whose parameters are estimated on the base
of the extracted MFCC vectors by expectation maximisation (EM) [44]. The test conversation sequences,
not recorded in matching conditions, as it would be in a surveillance scenario characterised from different
noises day by day, are framed in small speech-only subsegments which are considered to be long enough
to detect a speaker change. For each speech subsegment its MFCCs are extracted and compared to the
available database of speaker models to determine the likelihood p (S | si) of a particular speaker ID to
be the one who uttered the actual speech subsegment S. Finally, the speaker ID opinion is output as:

SSR = argmax
i

{
p (S | si)

}
, i = 1 , ...,Nv and its GMM’s likelihood is used as a confidence measure. Our

experiments here are characterised by just one speaker change detection point. The performance of the
SR unit is better evaluated in terms of speaker verification [45]. Hence, Fig. 3 shows the comparison of
each voice in our database against each other voice model. Fig. 3a illustrate performances for 1 close
microphone pair recording (2 channels) and Fig. 3b for 3 far microphone pairs recording (6 channels)
to highlight the difficulties of detecting speaker at a distance despite the increased number of channels.
In particular, the equalisation error rate (EER) [46] is 0 in the first case whereas it raises to 5.12% in
the second. Finally, Fig. 3c shows results from all 8 channels; note that despite adding in the 2 more
close recordings used for the first measure (Fig. 3a), the far distance microphones detrimentally affect
the global performance whose EER is still as high as 4.96%.

2.6 Speaker Conversation Model

A new speaker switching probability is now introduced to model the amount of time that has to be elapsed
before a person stop talking and hand over to the next speaker. This acts as a smoothing prior on person ID
recognition. In particular, this is defined by an exponential probability density function, i.e. p (si(δt);λ) =
λe−λδtH(δt), whereH(δt) represents the Heaviside step function. The remaining Nv−1 potential speakers
are characterised by a probability of starting the conversation which is the complementary speaking
probability scaled by Nv − 1. We call this a conversation model (CM). The CM is initially triggered
by the i-th speaker ID detection obtained as a weighted speaker score fusion of the AVT and the SR

modules [38]. The actual speaker ID in this case is given by: SCM = argmax
i

{
p (SCM | si)

}
, i = 1 , ...,Nv .

1 13 close microphone English recordings in our database from native and non-native speakers in different background
conditions
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Algorithm 3 Audio Video Tracking aided by Speaker Recognition Algorithm

Input: Audio za and video zv(i)
measurements, SSR and SCM (i = 1, 2, ..., Nv)

Output: Position xav and identity S of actual speaker

1: for every time step t do
2: if t = 1 then � initialisation
3: SCM ← wAV SAV + wCM SCM

4: end if
5: xav = P−1

a xa +P−1
v xv

6: if ‖zv(i)
− zv(j)

‖ ≤ D then
7: S = wSR SSR + wCM SCM

8: S ↔ id =⇒ zv(i)t
← zv(id)t

� id = 1, .., Nv

9: end if
10: SAV = argmaxi

{
p
(
za, zv(i)

∣∣ x)}
11: S ← wAV SAV + wSR SSR + wCM SCM

12: end for
13: return xav and S

2.7 Fusion of Audio-Video Tracking and Speaker Recognition Scores

Once a video ID i has been assigned to every target in each frame, the person recognition score derived
from a SR+CM combination may be used in order to recover tracking ID data when occlusions occur.
In such a case, competitive association hypotheses exist for the AVT, i.e. the AVT confidence drops
below a certain threshold; thus, the SR and the CM opinions ratify the actual speaker ID, according to
a weighted sum fusion rule [47] where weights are decided on the base of their estimate confidences [38].
Hence, the speaker ID is first fed back into the AVT to aid resolving the nearest neighbour AV association
and successively to correct the wrongly-inferred speaker ID. Secondly, it is sent to the video tracker
to indirectly re-assign the correct appearance models to the targets thus resolving the occlusion (see
Algorithm 3 and Fig. 1c).

3 Experimental Evaluation

Since the presented overall system (Fig. 4) is composed of several modules, in order to show the validity of
the proposed approach, results are now presented separately to aid readability. Nevertheless, a summary
of the overall conducted experiments is already presented in Table 3 to clarify the evolution of their
rationale.

It is worth nothing that, given the wide range of human activity analysis applications, scenarios of
interest and sensors configurations are varied, hence no standard data set has yet been collected for
general purpose benchmarking. Systematic evaluation and comparison of the different fusion techniques
for the specific AV speaker localisation and tracking is not possible and for this work it has been decided
to develop a custom setup with less constraint on people, in contrast to classic meeting room applications.

1 camera and 4 directional microphones pairs are used to record AV data in a typical open office
room, whose size is 11 m × 10.1 m, where the area considered of interest is 3 m × 4 m and where
people can freely move. A picture of the room and the sensor layout are presented in Figure 5 and a
graphical explanation of why the microphones where placed has shown is presented in Fig. 6. Such a
positioning for the microphones pairs was chosen to maximise the performance of the TDOA estimation
in the analysed room. In particular, three configurations of microphones were compared i.e. a) 1 linear
array of 8 microphones (1 × 8), b) 2 arrays composed of 4 microphones (2× 4) at two sides of the area,
c) and 4 pairs of microphones (4 × 2) at the four sides of the analysed area, among which the winning
solution is the one proposed (4 pairs of microphones). Figure 6, shows the contours maps of the room in
the xy plane. As it can be seen, the contours for the 4 microphone pairs are the most dense and distinct
all around the room unlike the other configurations.

Ground-truth data were hand labelled on a ground plane common to camera and microphones. Audio
signals were sampled by the audio interface with a 24-bit precision resolution at 44.1 kHz, whereas the
camera recorded the 640 × 480 RGB video frames at a rate of ≈ 7.5 Hz. No attempt to reduce normal
background noise (desk fans, footsteps, talking etc.) was made and a reverberation time T60 ≈ 0.5 s was
measured [48]. Synchronisation of the data was achieved by processing audio and video streams according
to the camera frame rate i.e. each 133 ms. Filters were initialised using the video detected position of
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their correspondent targets and static matrices Q and R [10], whose values were chosen on the basis of
an optimisation step.

Results are described in terms of multiple object tracking precision (MOTP) and multiple object
tracking accuracy (MOTA) [49].

MOTP =
Σi

td
i
t

Σtct
, (4)

MOTA = 1− Σt(mmet + fpt +mt)

Σtgt
, (5)

The tracker is considered to have correctly hit the target if the distance between its output and the
ground truth is within 0.5 m. Furthermore, the ability of the system to detect speaker ID by localising
their voice is measured in terms of Diarisation Error Rate diarisation error rate (DER) [46], expressing
the speaker error only parameter i.e. percentage of speech assigned to the wrong speaker. 2

3.1 Experiments and Results

The first set of experiments is designed to simulate a 60 s long personal and intimate conversation between
two people, according to Hall’s classification of the social interpersonal distance in relation to physical
interpersonal distance [50]. Specifically:
Experiment ‘Formal Conversation’ (Fig. 7a) considers two people whom throughout the experiment
are separated by a distance of approximately 1 m.
Experiment ‘Informal Conversation’ (Figg. 7b, 7c) considers two people whom throughout the ex-
periment are at a distance of approximately 0.4 m, resulting in an occlusion for the video tracker.

3.1.1 Results

are shown in Table 5a for 2 off-line cycles of the SRC-HE detection algorithm against the original SRC.
sound source localisation (SSL) accuracy changes by 4% when adding up extracted video height info.
More interesting is the number of functional evaluations (FEs) which on average is reduced by 56% (FEs
56, 281 vs 24, 797) for the SRC-HE implementation, meaning that narrowing down the space of search
our algorithm effectively speeds up the localisation task. In Table 5b performances of the multimodal
AVT against single modality trackers are introduced. Results averaged over both the experiments and
100 Monte Carlo runs performance comparison shows fusion of audio and video data improves on single
modality trackers when an occlusion occurs (see ‘Informal Conversation’ results). In particular, by fusing
audio and video the AVT results in a 53% higher MOTA, which is reflected also in a far higher MOTP
(80%) with respect to the video-only solution which just half the time of experiments tracks the correct
person ID. In fact, the video tracker on its own can not resolve occlusions. At last, note that the DER
is 8% better as expected for the multimodal AVT solution with respect to the audio only system in the
‘Formal’ experiment, whereas in the ‘Informal’ one is slightly worst. This is due to the fact that the
appearance based video ID estimations are completely wrong and they corrupt the multimodal decision.
This motivated the further integration of the speaker voice features in the system. Hence, next experiments
demonstrate how this algorithm can more robustly maintain and recover tracking ID through occlusions
by recognising people voice signatures.
In the following experiments, every dataset is normally 2 to 5 minutes long and features people speaking
in turns in a non meeting scenario. The focus is on ID recognition results, rather than on the precision
ones, which are obviously not high in such a challenging scenario if any further signal processing is used,
as stated also in [51]. Note that we have deliberately recorded our unique set of audiovisual data. This
choice was made as classical AV datasets [51,52] are not suitable for our purposes: none provide speaker’s
voices recording for recognition purposes, as their principal aim is tracking people ID by mean of video
cues only.
Experiment ‘Single Speaker’ (Fig. 8) considers a person speaking along a rectangular trajectory for
two times its perimeter, appearing and disappearing from behind an occlusion. His trajectory is shown

2 Note that all, but the last following experiments, are characterised by only one speaker change throughout the entire
recorded spoken signal, therefore no clustering technique, typical of SR systems, is used to detect speaker changing points [2].
Hence, a small diarisation error in proximity of the only speaker change point is expected. Nonetheless, it will be taken into
account into the final system analysis.
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in the lower left corner of Fig. 8 as detected by the video tracker.
Experiment ‘Abandoning’ (Fig. 9) shows a person walking and talking along a rectangular trajectory,
as in the previous experiment, disappearing behind an occlusion. Then a second person, who looks like
the first one and who is speaking as well, reappears from behind the occlusion and walks along the same
trajectory till the point he disappears again.
Experiment ‘Crossing’ (Fig. 10) shows two people with very similar appearance walking while having
a conversation. They meet along a diagonal where they keep on walking past each other causing an
occlusion in the resulting image. Again, trajectory is shown in the lower right corner of Fig. 10.

Results are now presented in Table 6 3. Here, it is worth noting that there is no real improvement
between the AVT, AVT+SR and AVT+SR+CM tracking results as the final decision on the speaker
voiceprint influences the AVT performance only when their confidences ratio is large. In this case, as the
audio tracker is quite confident in its estimation, this ratio is close to 1 for almost the whole trajectory,
therefore the DER is the index which shows the benefits of adding speaker voice to the system. Results
averaged over all the experiments and 100 Monte Carlo runs show that AVT+SR is better by 13% than
AVT, whereas AVT+SR+CM outperforms the AVT by 27% because of the conversation smoothing prior.
Furthermore, a very good result when detecting speaker ID from far-field microphones is achieved, i.e.
almost 5% in the worst case. In fact, a 2 m distant microphone normally shows a ≈ 20% DER [38]. In
the presented experiments instead, an average 8% DER improvement of the AVT+SR+CM multimodal
system over the SR only results (very first column of Table 6) is measured.

4 An Indoor Surveillance Scenario

In Section 2 it is highlighted that the generalised cross correlation audio localisation function is not
useful for cross-talking situations such as general security and surveillance (e.g. see 2.4). Automatic
speaker recognition fails when two people are talking at once [23]. In fact, as the CLEAR 2007 evaluation
proved [51], temporal overlaps accounted for more than 70% of error for the speaker ID recognition task.
However, the grand aim of automatic surveillance applications is to correctly detect the “dominant”
speaker in a large scenario where speech overlaps are highly probable. A speaker is dominant in that
their speaking energy is higher with respect to the other people who are talking whom can be instead
considered as babble noise. This for example, may be the case of a bank where isolating individual sources
is useful for safety reasons. Audio wise, such a task would normally require filtering techniques, beam-
forming, non-trivial data association and blind source separation [23, 24]. The concept of dominance in
literature has multiple definitions often used as equivalent [53]. Nevertheless, many studies do agree that
speaker loudness or energy and speaking time and rate, as well as gesture based cues are the fundamental
features to define dominance [26,54]. In this section, a novel method to automatically detect and localise
the actual (dominant) speaker in an enclosed and cluttered scenario is introduced. Specifically, one more
video feature is added on top of the system presented in 2.7, i.e. optical flow velocity and acceleration and
Δ - MFCC, and audio and video are finally combined across semantic data levels. The motivating insight
is that gesturing means speaking. This implies that observing strong motion implies an audio signal may
be causally linked to such a video signal. We seek the correlation between the optical flow in a scene and
its associated audio MFCC coefficients (see 2.5). Furthermore, audio and video position estimates of the
actual speaker given by the AVT+SR+CM (see 2.2) are used and combined with correlation cues at the
feature level to narrow down the visual space of search of the correlation algorithm, hence reducing the
probability of inferring a wrong sound-to-pixel region association. Using this solution we further improve
on ID recognition-at-a-distance in a surveillance scenario.

4.1 Feature Extraction

4.1.1 Optical flow video features.

The video features for AV correlation computation are at first computed as the forward and backward
dense optical flow of each image. Then, velocity and acceleration of two adjacent frames motion is cal-
culated. If U+(p, t) represents the optical flow (u, v) at pixel position p = (i, j), at time t, calculated
between frames Ft and Ft+1 and analogously U−(p, t) the flow vector computed over time between Ft

3 For illustrative video results please refer to http://visionlab.eps.hw.ac.uk/AV.

http://visionlab.eps.hw.ac.uk/AV
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and Ft−1, then the velocity and acceleration vectors are defined as:

vel = U+(p, t), acl = U+(p, t)− (−U−(p, t)). (6)

Hence, we combine the RGB colour, velocity and acceleration of each pixel p in a frame into a single
feature vector: vij = (p, col, vel, acl). Thus, we spatially segment every frame using the QuickShift [55]
algorithm with γ = 0.25, σ = 1 and τ = 15, i.e. the same as in [17]. Furthermore, we compute across
frames a K-means [56] spatio-temporal segmentation where K = 30. In consequence of that, when the
processing ends, every pixel in a frame can be ascribed to the spatio-temporal centre of mass of the
k-th segment found by K-means. The K final segments Sk(k = 1, ...,K) are described by the averaged
normalised velocity and acceleration of the pixels they enclose, in addition to their mean RGB colour
: vij = (μp, μcol, μvel, μacl). Finally, the m1 top segments for velocities and the m2 top for acceleration
are chosen to compose the final video features vector v. In practice, v is a m× t matrix whose columns
correspond to frames.

Organisation of MFCC audio features. To compute AV correlation, audio features are now
represented by the first n/2 MFCC (see Subsection 2.5) coefficients i.e. signal velocity and their n/2
derivatives i.e. signal acceleration. The audio feature vector a is a n× t matrix whose columns correspond
to frames. Note that for the following experiments also the audio signal MFCC derivatives (Δ - MFCC)
have been computed.

4.2 Audio Video Correlation

canonical correlation analysis (CCA) is used to seek audio and video feature vectors correlation, hypoth-
esising that a hidden correspondence between the image motion velocity and the audio MFCC exists, as
well as between the image motion acceleration and the MFCC derivatives (Δ-MFCC) [57]. CCA computes
a common coordinate system where a and v can be projected, and where their maximised correlation is
immediately known. This ensures the retrieved video segment to be the one which maximises the correla-
tion between audio and video data, hence to be associated with the dominant audio source. Specifically,
the CCA problem between two random variables has the closed form solution:{

C−1
vv CvaC

−1
aa Cavwv = λ2wv

C−1
aa CavC

−1
vv Cvawa = λ2wa,

where Ĉ =
(
Cvv Cva

Cav Caa

)
represents the total covariance matrix and wv and wa are the canonical basis of

v and a. The largest CCA eigenvectors wv1 and wa1 , which correspond to the largest eigenvalue λ2
1 are

the ones which give the larger contribution to the maximum audio and video correlation, hence they
maximise athe canonical variates v

′
1 = wT

v1v and a
′
1 = wT

a1a. If we assume that only a single dominant
audio source exists, the first of these eigenvectors wv1 is chosen and the corresponding frame segments
Skv1 (iv1 , jv1) are said to be the ones where the sound is originating. Only the normalised elements of wv1

largest then a predefined threshold are selected, thus those segments are identified by a binary confidence
map Q(Skv1 ) smoothed over space and time by a Gaussian kernel G(iv1 , jv1), whose variance is σ = 5.
Finally a heatmap HCCA(iv1 , jv1) is overlaid on the selected segments to visually locate sound in an
image frame.

4.3 Fusion of Audio-Video Correlation and Audio-Video Tracking Decisions

The integration of the speaker trajectory and the CCA result is carried out at confidence map level.
For every frame Ft we project the actual audio source trajectory calculated by the AVT xav (Section 2)
onto the pixel domain p(t). Then, said trajectory points are associated to the k-th segmented region to
which they belong Skp(ip, jp). Successively, a second confidence map Q(Skp) is set for Skp(ip, jp), other
than the ones already given by the first base eigenvector coefficients as described in 4.2. Furthermore, a
smoothing Gaussian kernel on the segment Skp is defined, which we denote with G(ip, jp). By doing this,
the heatmap HAV T (ip, jp) is finally obtained; this has to be overlaid on the image according to the AVT
estimation. That done, such a map (HAV T (ip, jp)) is obtained as if it was resulting from an extra first
base eigenvector coefficient adding up its contribution to the CCA result, i.e. HCCA(iv1 , jv1), according
to a sum decision rule (see Algorithm 4 and Fig. 1d).



11

Algorithm 4 Dominant Speaker Detection Algorithm

Input: Audio a and video v features, AVT positions xav and identities SAV � see 2.2
Output: A visual heatmap HF showing the dominant speaker in video

1: Calculate CCA between a and v � see 4.2
2: for each frame Ft do
3: Find wv1 which maximise correlation
4: wv1 → Skv1 (iv1 , jv1)
5: Define binary map Q(Skv1 )
6: HCCA(iv1 , jv1)← Q(Skv1 ) ∗G(iv1 , jv1)
7: xav(t) → p(t) � image plane projection
8: p(t) → Skp(ip, jp)
9: Define binary map Q(Skp)

10: HAV T (ip, jp)← Q(Skp) ∗G(ip, jp)
11: HFt

← HCCA(iv1 , jv1) +HAV T (ip, jp)
12: end for
13: return video HF

4.4 Experiments and Results

Results of dominant speaker detection on real data are now presented and evaluated against audio-only
and video-only methods as well as against the baseline method presented by Izadinia et al. [17]. An indoor
room, where people can freely move and talk together is our experimental region.
Experiment ‘Crossing’ (Fig.11), is used again (see 3.1) to demonstrate in this case that extending cor-
relation techniques to scenarios where distracting motion and occlusion exist can be done if more cues,
as speaker positions, are used.
Experiment ‘Surveillance’ (Fig. 12), is a recording of several people having a conversation in groups
and some passer-by. Speakers are at least 0.5 m far from the microphones. They stand still and move
around. The ground-truth consists on the left and right people in the foreground who are having a con-
versation. Meanwhile a third person, frontal facing in the foreground, is just listening to the conversation
and producing some distracting fine motion slightly moving his body on a side. Note that another group
of speaking people is in the background. In total, at every moment, 4 to 5 people are speaking contempo-
rary, resulting in challenging speech interferences. This experiment is designed to demonstrate the power
of the method to detect the loudest (dominant) source among a group of speaking people in a cluttered
scenario.

At first a qualitative evaluation of results performance against the baseline [17] is given. Fig. 11a shows
results of the baseline method applied to the first dataset at the moment of occlusion. The segments
corresponding to the AVT tracked position of the actual speaker are given in Fig. 11b, whereas Fig. 11c
shows the results of the proposed method. In Fig. 11d knowing the information about the speaker ID,
i.e. using the AVT+SR+CM output, the results are ascribed at the current speaker. Fig. 12a shows one
frame of ‘Surveillance’ for the baseline method results. The actual speaker is about to raise his hand while
the listener has been moving his body resulting in false positive detections. This can be only mitigated by
the AVT speaker position xav (see 2.2) corresponding segment (12b), so that the fusion results, despite
pointing out the correct speaker, still presents false detection trails corresponding to the other people
movements (12c). When it is possible to recognise the speaker ID from the AVT+SR+CM, these trails
can be actually further filtered out as shown in Fig. 12d.
To measure quantitatively performances of the presented method against [17], the precision-recall measure
given in their paper is calculated. Specifically, the moving pixel ground truth is manually defined by
selecting those regions of the video which correlated with the dominant speaker’s voice. In practice, as this
method is ultimately meant to be used for recognition and tracking purposes this is always represented by
a bounding box including the speaker’s body pixel. This region is denoted as Rc , whereas Rd is the pixel
region detected by the method. Hence, the two curves are defined as: Pr = Rc ∩ Rd/Rd , Rec = Rc ∩ Rd/Rc.
Note that, for detection for tracking purposes the size of the ground truth regions cannot be restricted
to just the physical (anatomical) joint of a person. Hence, by defining Rd as the detected pixels which
actually belong to the current speaker, the goodness of the method in recognising the dominant speaker
among other potential speakers can now be evaluated using this metric rather than the DER, as the
last is more specific to diarisation systems. The precision-recall curve is given by letting vary a threshold
between zero and one for every frame, thus we present the average curve for all the video frames. At
last, to capture the temporal aspect of the methods performances we calculate their hit-ratio curves; we
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assumes a hit occurs in a frame if Pr > 0.5.
Precision-recall curve and hit-ratio curves are shown in Fig. 13. The proposed method+speaker recognition
(PM+SR), i.e. the CCA+ AVT+SR+CM precision is higher than the one of both the proposed method
(PM), i.e. the CCA+AVT, and the baseline method (BM) over the entire range of recall, although when
the recall value increases all curves drop dramatically. However, this is largely expected as the ground
truth size is larger if compared to the recovered segments size, which decreases the accuracy of the methods
by definition. On the other hand, the size of the segments cannot be increased, as clutter will take over
the segmentation phase and foreground region would be blended in to the background. Nevertheless, the
PM+SR solution improves on average on speaker ID recognition through occlusions and interferences by
23%, 59% over audio-only and video-only systems and by 36% over the baseline method [17].

5 Conclusion

In this paper a hierarchical AV tracking and recognition system based on novel audio and video feature
integration and fusion is introduced. Specifically, the system carries out a finer independence-based AV
localisation and a coarser AV correlation-based scene analysis to robustly track the dominant speaker
through general (babble) noise in an open room scenario using a small sensor network. This can be useful
in a number of general contexts which range from surveillance applications to the prototypical “cocktail
party”. Results show that we can rely on low complexity techniques even in unconstrained scenarios,
without resorting to more cumbersome audio-only or video-only methods.

5.1 Future work

We highlight that the problem of detecting a speaker in a non obtrusive fashion and in a natural envi-
ronment is extremely challenging. And so a number of assumptions had to be made in order to make the
problem tractable. We therefore suggest the following future work could be undertaken: a) defining a
sounding calibration procedure independent from sensors movement, b) learning gestures associated with
specific person roles in a conversation, c) speeding up optical flow computation using variational methods
or sparse techniques, d) developing an improved speech overlap recognition system to further decrease the
diarisation error rate and, consequently, on the dominant speaker detection error, e) developing a fully
probabilistic scheme, i.e. a dynamic Bayes network (DBN) where Fig. 1a would represent one-time slice
of the system. The hidden variables would be the speaker position and identity whilst the observables
would be the audio and video detected speaker locations, spatio-temporal features and optical flow. With
such a fully probabilistic model, any further features may be integrated.
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Table 1
Test bed comparison to closest works. Abbreviation mic denotes microphones. Abbreviation cam denotes

cameras.

Room Type Reference Room Size (m) Analysed Area (m) Sensor Equipment

Meeting
[13] 8.2× 3.6 4.8× 1.2 6 cam, 2× 8 mic
[13] 8.2× 3.6 3.75× 1.2 6 cam, 2× 8 mic
[16] 8× 3.6 4.8× 1.2 4 cam, 6× 4 mic

Open
[8] - 2× 4 4 cam, 4× 4 mic
[58] 8× 3.6 4.8× 1.2 4 cam, 5× 4 mic
Us 11× 10.1 3× 4 1 cam, 2× 4 mic
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Table 2
How the presented system compares to the literature.

Room Type Reference Tracking algorithm Occlusion Overlaps

Meeting
[13] MCM-PF YES(partial) YES
[16] MID+HMM YES NO

Open
[8] PF NO NO
[58] MID YES NO
Us EKF YES YES
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Overall Schematic
Arrow (a)

Arrow (b) Arrow (c)

Fig. 1: A detailed schematic diagram of the overall system presented in this paper. The schematic in Fig.
1a shows how the audio and video features cooperate at different level of semantic abstraction. Block cooperations is
represented by highlighted arrows which coincides with the novelties of this work. In Fig. 1b an audio localisation algorithm
is cued by video data which becomes faster and no less accurate (see 2.1). In Fig. 1c it is shown how Mel-frequency cepstral
coefficients (MFCC) voice signature recognition helps video ID tracking to be consistent through occlusions and identity
swaps (see 2.7). In Fig. 1d the system describes how the correlation between optical flow associated with gesturing and
sound signature of the scene helps the speaker ID recognition through speech interferences (see 4.3). Fundamentally, this
systems represents the combination of the detections of three “weak” classifiers into one robust process.



16

Fig. 2: Video detected height data is used to reduce the search space for the audio sound source localisation (SSL) algorithm
SRC [6]. Please note that the third person is not picked up from the height estimation algorithm as she was part of the
background right form the start of the video signal processing. In fact, the last updates on the basis of a background
subtraction algorithm.
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Speaker Verification LL (6 far channels)
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(b)

Speaker Verification LL (8 channels)
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(c)

Fig. 3: The speaker verification confusion matrix for close and far microphone setups. The speaker verification
confusion matrix for close and far microphone setups. This figure shows the ability of the implemented SR unit to verify ID
of people in the recorded pool of voices for: (a) 2 close microphones (1 close field microphone pair); (b) 6 far microphones
(3 far field microphone pairs); and (c) the total 8 channels (4 microphone pairs: 1 in the close field plus 3 in the far field).
Results show that the best performance is obtained for close distance recording, i.e. (a), whereas in (b) and (c) speaker
recognition is severely compromised due to the 3 pairs of far distance microphones.
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Fig. 4: A high level schematic diagram of the overall system presented in this paper. The presented high level
diagram depicts the combination of the detections of three AV “weak” classifiers into one robust AV speaker recognition
process.
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(a) (b)

Fig. 5: In (a) a picture of the room used for our set of experiments is shown. (b) illustrates its layout and sensor setups.
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(a) One linear array (8 microphones). (b) 2 linear arrays (4 microphones each). (c) 4 microphone pairs.

Fig. 6: Isolines i.e. hyperbolas loci. An isoline indicates all points of a constant difference in distance from two points. 2D
contour maps in the xy plane when z = 1.7 m for the (a) linear array of microphones, (b) 2 linear arrays of 4 microphones
on two sides of the room, (c) 4 pairs of microphones of the 4 sides of the room. The last, has the more dense number of
intersecting isolines i.e. a higher number of possible solutions.
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Table 3
A tabular summary of the following experiments and their rationale.

Experiment
Name

Figure Algorithms Rationale

’Formal
Conversation’

7(a)
AVT + SRC

Audio source localisation improves
using video localisation.

’Informal
Conversation’

7(b)(c)

’Single
Speaker’

8

AVT+ SR
Speaker ID recognition improves using

audio-video tracking. Conversely, video ID
tracking improves using speaker ID recognition.

’Abandoning’
9

’Crossing’
10

’Crossing’
11

CCA + AVT + SR
Detecting the dominant speaker in babble
noise using classical correlation algorithms

can be aided by audio-video ID tracking systems.
’Surveillance’

12
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(a) (b) (c)

Fig. 7: ‘Formal Conversation’ and ‘Informal Conversation’ localisation results. In (a) a ‘Formal Conversation’ is
shown, the video tracker as well as the multimodal AVT can detect and recognise there are two targets speaking alternatively
and their output is the same. (b) shows an ‘Informal Conversation’, targets are so close the video tracker cannot distinguish
them. In (c) the AVT instead correctly localises the actual speaker despite the occlusion. Please note (c) showing two
speakers talking contemporary is only for an illustration purpose to highlight AVT can discriminate identities. In reality, as
said, speakers talk in turns.
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Table 4
Simplified synoptic table of symbols used to defined the MOTP and MOTA indexes first defined for the

CHIL meetings [2] as a benchmark for the CLEAR2007 datasets and others.

oi audio-video object position
hj tracking hypothesis
(oi, hj) one possible mapping between an object and a track
dit distance between object i and the mapped hypothesis
ct # current matching pairs at time t
mmet # mismatches errors made at time t
fpt # false positives at time t
mt # missed objects at time t
gt # objects present at time t



24

Table 5
Performance comparison for ’Formal Conversation’ and ’Informal Conversation’ experiments. In (a) we

enumerate SRC vs SRC-HE raw speaker position detections. Results are shown in terms of sound source

localisation (SSL) accuracy and number of functional evaluations (FEs) calculations. In (b) we present

MOTP, MOTA and DER of the joint AVT against single modality trackers.

Experiment System SSL Accuracy (%) FEs

‘Formal’
SRC-HE 69.07 23601
SRC [6] 62.50 56742

‘Informal’
SRC-HE 51.22 25992
SRC [6] 47.30 55821

(a)

Experiment System MOTP (m) MOTA (%) DER (%)

‘Formal’

AVT 0.34 90 7
Audio Tracker 0.46 72 15
Video Tracker 0.06 100 −

‘Informal’

AVT 0.10 99 18
Audio Tracker 0.30 80 16
Video Tracker 0.53 46 −

(b)
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(a) (b) (c)

Fig. 8: ‘Single Speaker’ tracking results. In (a) the video tracker only loses the speaker track when a long occlusion
occurs. In turn, (b) shows the AVT correctly locating the speaker through the occlusion at the same time instant of (a).
Finally (c) shows speaker track recovering (the video tracker alone is not capable of achieving this result).
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(a) (b) (c)

Fig. 9: ‘Abandoning’ tracking results. (a) Shows the AVT locked onto Speaker1. In (b) the other person appears while
Speaker1 has left the scene. The ID assessed by the AVT is still Speaker1 meaning the AVT cannot make a distinction
between IDs. In fact, the video tracker features for the two people, i.e. the histogram of colours at the bottom of Fig. (a)
and (b), are very similar. In (c) instead, the AVT+SR+CM solution correctly the person ID is Speaker2.
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(a) (b) (c) (d)

Fig. 10: ‘Crossing’ tracking results. In (a) the AVT correctly identifies both people ID. In (b) a short term occlusion
leads track to merge. This results in (c) in an ID swap as the ellipses colors have exchanged. On the other hand (d) presents
the AVT+SR+CM result for the same situation, i.e. correct ID recovering after the occlusion.
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Table 6
Joint audio-video tracking aided by speaker recognition experiment results. Please note that, as it can be

inferred in [51] which report the results of the CLEAR 2007 evaluation in real-word interactive seminar

scenarios, perfect tracking of multiple people in such challenging situations is still unrealistic. Moreover,

this statement refers to meeting room scenarios equipped with large sensor networks, thus more

constrained and densely covered with sensors than scenes such as ours. Most significant here are the

MOTA the DER indices which express the ability of the system to maintain the correct speaker ID.

Experiment System MOTP (m) MOTA (%) DER (%)

‘Single Speaker’ AVT + SR 0.25 94 4.7
SRDER = 17.68% AVT 0.25 94 4.7

‘Abandoning’
AVT + SR + CM 0.25 91 2.2

SRDER = 23.5%
AVT + SR 0.30 84 23.5
AVT 0.30 84 43.7

‘Crossing’
AVT + SR + CM 0.47 72 2.1

SRDER = 20.6%
AVT + SR 0.55 55 9.6
AVT 0.56 55 14.8
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(a) (b) (c) (d)

Fig. 11: ‘Crossing’ Results. In (a) the results of the baseline method [17] are presented; (b) shows the result for the
tracking results projected onto the image plane. In (c) the output of the proposed method is displayed, whereas (d) presents
results when the information about the speaker ID is given. Ground truth is shown in red.
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(a) (b) (c) (d)

Fig. 12: ‘Surveillance’ Results. This figure shows the Second Speaker talking while the other two people are listening
without moving. In (a) the results of the baseline method [17] are given whereas (b) shows the result for the tracking
algorithm. (c) presents the output of the proposed method. Finally, (d) shows what is the results when the information
about the speaker ID is given. Ground truth is shown in red.
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(a) (b)

Fig. 13: Comparison to baseline method (BM) [17]. Precision-recall and Hit Ratio curves for the testing videos
averaged over the total number of frames. Results of the proposed method (PM) are compared first against audio and video
only results, then against the baseline method (BM) of [17]. Besides, the proposed method aided by the information about
the speaker ID, i.e. PM+SR is given, showing that the method is actually suitable for diarisation purposes in cross-talking
scenarios whenever a record of the speaker ID over time is kept.
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