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We show that the application of a vertical electric field to the Coulomb interacting system in stacked
quantum dots leads to a 90◦ in-plane switching of charge probability distribution in contrast to a single
dot, where no such switching exists. Results are obtained using Path Integral Quantum Monte Carlo with
realistic dot geometry, alloy composition and piezo-electric potential profiles. The origin of the switching
lies in the strain interactions between the stacked dots hence the need for more than one layer of dots.
The lateral polarization and electric field dependence of the radiative lifetimes of the excitonic switch are
also discussed.

I. INTRODUCTION

Even the simplest circuits need a switch to stop, start
or redirect the flow of current, photons or bits. Switch-
ing the state of a system by interaction of the matter
with a single photon or an external fields opens new
possible applications in measurements1 and quantum
computing.2 Switches based on an electron-hole pair
system (exciton) have been successfully realized in cou-
pled quantum wells and implemented into an exciton
optoelectronic transistor, excitonic bridge or pinch-off
modulator.3 A similar type of excitonic switch can be
successfully realized and controlled in a multiple quan-
tum dot system, which opens up new possibilities for
solid-state based quantum communication devices4–6
and quantum memory cells.7

Self-assembled vertically coupled dots are also excel-
lent candidates for switching. Their complex piezoelec-
tric field interacting with confinement potentials and
external electric fields allows the control of the heavy-
hole (HH) exciton charge distribution. The introduc-
tion of periodic elongation in the vertical direction ad-
ditionally permits the access to light-hole (LH) states,
which opens the way to dynamic switching not only
in the plane of the dots but also between HH and LH
excitons8. A further advantage is the small size of the
device which allows for very dense packaging of the de-
tecting or emitting structures. Currently we are ap-
proaching the regime where electronic properties of few
particle states govern device operations via the interac-
tion with confining potentials, strain, Coulomb forces
and external fields.9 Such low-dimension electronic sys-
tems characterized by modified densities of states en-
able the development of novel devices with optimized
performance, e.g. quantum dot lasers10,11, or light
emitters in qubits for quantum computation devices.12

In this article we report a novel exciton-based switch,
theoretically realized in coupled quantum dots using
Path Integral Quantum Monte Carlo (PI-QMC) simu-
lations. In contrast to a single InGaAs quantum ring
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where lateral switching is seen13, in a single quantum
dot no lateral switching is observed. However for cou-
pled dots, as we show here, the piezoelectric landscape
supports lateral switching.

The impact of the electric field (parallel to the growth
direction) on exciton emission spectra is investigated
and used to determine the lateral switching of the ex-
citon charge distribution and the intrinsic dipole mo-
ment in the coupled dots. Switching of the probability
density of the electron-hole pair in the plane perpen-
dicular to the applied electric field and switching of
the built-in dipole moment allow insight into the rela-
tive localization of charge carriers in the semiconductor
nanostructure. This will plays a significant role when
new devices assembled from densely packed interacting
quantum structures are designed.

The article has the following structure: in Section II
the details of the atomistic strain model of the con-
sidered nano-structure are discussed. The PI-QMC
method is outlined in Section III. Results are presented
in Section IV and physics of the stacked quantum dot
excitonic switch is explained.

II. QUANTUM DOT MODEL

The switching effect we report arises from the inter-
action of the two-body excitonic state with piezoelec-
tric fields in the strained GaAs layers between dots.
To perform a quantitative study of the switching ef-
fect, it is necessary to have a numerical technique that
includes both detailed modeling of the materials prop-
erties of the dots and accurately solves for the corre-
lated two-body excitonic state. We use an atomistic
model of the self-assembled dots to accurately model
the strain fields. Strain-modified band offsets are used
to construct a detailed, three-dimensional effective mass
Hamiltonian for the electron and hole.

The model of the quantum dot used is shown in
Fig. 1. The single structure Fig. 1(a) is a 4 -nm-tall
In0.5Ga0.5As truncated-conical dot of a base radius
10.2 nm and top radius 7.2 nm, located on a 0.9 nm thick
In0.3Ga0.7As wetting layer. A typical simulation con-
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tains approximately 1.7×107 atoms placed in a random
alloy structure as described in Ref. 14, and immersed
in a GaAs matrix. The triple dot system, Fig. 1 (c), is
formed by stacking single structures in the vertical di-
rection with a separation a 3.4 nm between the top and
bottom of the adjacent dots. The figure also shows iso-
surfaces of the piezo-electric fields in the strained GaAs
matrix surrounding the dots. Triple dot structures have
been simulated in a similar fashion.

Lattice mismatch strain generates strong induced
piezoelectric potentials. The valence force field method
(VFF)15 is used to relax the atoms from their initial
zinc-blende lattice distribution to their equilibrium po-
sitions, and the resulting relaxed positions and resid-
ual forces are then used to compute the stress tensor
for grid. The contribution to the stress tensor is cal-
culated for each atom from the VFF potentials. We
approximate the local strain field from the stress ten-
sor averaged over eight-atom cubic cells and bulk elas-
tic constants.16 The piezo-electric fields are then cal-
culated from the strain field including both linear and
non-linear terms,17

pµ =

6∑
i=1

eµiηi +
1

2

6∑
i,k=1

Bµikηiηk, (1)

where eµi is the third-rank proper piezoelectric tensor
of the unstrained compound, Bµik describes the first-
order change of the piezoelectric tensor due to strain
and ηi represents six independent components of the
strain tensor (in the Voigt notation)17. We calculate the
piezoelectric charge densities by taking the divergence
of these fields, then calculate the resulting piezoelectric
potential, Φpz. While detailed comparisons are hard to
make given the number of material parameters involved
the piezoelectric potentials thus obtained are in good
agreement with the analytic approach of Davies18.

Typical piezo-electric potentials for single and triple
dots are shown in Fig. 1 and these, as will be shown,
significantly perturb the electronic states in the struc-
ture. The strong piezo-electric field in the GaAs barrier
region is also crucial to the lateral switching operation.

Electrons and holes experience different confining po-
tentials in the [110] and [11̄0] directions. Similarly in
coupled structures confinement varies not only on two
perpendicular diagonals but also from dot to dot. In
Fig. 2 the valence band profile across the single and
triple dots structure is plotted. The LH energy calcu-
lated from the biaxial strain shift is also indicated and
compared to the ground and first excited state of the
HH in the single and triple nanostructure.

For clarity the lateral confinement potential in Fig. 2
is averaged over the vertical extent and over [110] and
[11̄0] directions. In the single dot the mean value on two
diagonals is plotted. It is evident that in the triple dot
the biaxial strain drives the LH states towards the bot-
tom of potential well. In the single structure the impact
of the LH is also weakened as the LH branch is local-
ized in the surrounding matrix away from the dot. It is
worth mentioning that in both types of structures the
spin-orbit splitting energy band ∆ = 0.3 eV19 greatly
exceeds the range of confining potential and similarly to

(a) Dot structure

(b) Single dot

(c) Triple dot

FIG. 1. Cross-section of model quantum dots with piezo-
electric potentials of truncated-conical dot. The calculated
piezoelectric potential iso-surfaces are also shown.

the LH branch, do not affect our calculations. We con-
clude, in agreement with7,8 that the HH exciton domi-
nates in InGaAs dot structures.

In order to illustrate the profile of the valence and
conduction band in the single and triple quantum struc-
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ture the band profile is plotted in the growth direction
[001] along the axis of the dot in the inset to Fig. 2
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FIG. 2. Lateral valence band profile of (a) single dot and
(b) triple dot structures averaged over the vertical extent,
and over [110] and [11̄0] directions. Also indicated are the
ground state (gs) and the first excited state (1st es) of the
single particle heavy-hole in the single and vertically stacked
structure. Insets shows (c) single dot and (d) triple dot
conduction (c.b.) and valence band (v.b.) profile in the
growth direction along the axis of the dot.

These confining and piezoelectric potentials are used
in a two-band effective mass Hamiltonian,

H =
p2
h

2m∗h
+

p2
e

2m∗e
+ Vh(rh) + Ve(re)−

e2

4πε0εr | reh |
+ eΦpz(re)− eΦpz(rh)− eEEE · reh,

(2)

where the effective masses are me = 0.067me and mh =
0.144me, reh = re− rh and the dielectric constant εr =
12.5 . The uniform external electric field, EEE, is used to
drive the excitonic switching.

III. THE PATH INTEGRAL METHOD

The switching behavior relies on (i) details of the
three dimensional geometry, (ii) the strong piezoelectric
fields inside and outside the dots, and (iii) electron-hole
correlation from strong electron-hole Coulomb interac-
tion. The PI-QMC method allows an essentially exact
treatment of the model Hamiltonian, Eq. 2. As there
is no basis-set expansion or trial-wavefunction needed,
shifting of the quantum state between dots, in the inter-
dot barrier region, and the cusp as the electron and
hole approach each other are all represented without
variational or basis-set bias. This allows an accurate
prediction of experimentally observable excitonic polar-
izabilites and radiative recombination rates, quantities
which are known to require treatment of quantum cor-
relations.

(a) Conduction band single dot (b) Conduction band triple dot

(c) Valence band single dot (d) Valence band triple dot

FIG. 3. Strain and piezoelectric field modified conduction
and valence band the model quantum dots.

The essence of the PI-QMC method is to write the
excitonic thermal-density matrix as a path integral,

ρ(re rh, r
′
e r
′
h;β) =

1

Z

∫
R(0) = {r′e, r′h}
R(βh̄) = {re, rh}

DR(τ) e−SE [R(τ)]/h̄,

(3)
whereR(τ) is the imaginary-time trajectory of the elec-
tron and hole, SE is the Euclidian action for the model
Hamiltonian, Eq. 2, and β = 1/kbT with temperature
T . This path integral is evaluated with Monte Carlo
sampling as described in Ref. 16. We perform the cal-
culations at a low temperature (12K) so that the ther-
mal density matrix describes the ground state excitonic
wavefunction.

A. Calculation of exciton energy, probability density, and
pair correlation functions

Properties of the excitonic wavefunction are calcu-
lated from the thermal density matrix as the path inte-
gral is sampled. We give a brief description here, and
further details can be found in Ref. 16.

The energy is calculated from the thermodynamic
energy estimator, E = −(1/Z)(dZ/dβ). Potential en-
ergy contributions arise from the physical location of
the electron and hole trajectory. Kinetic energy contri-
butions come from quantum confinement, the extent to
which the confining potential and Coulomb forces pre-
vent the trajectories from extending as much as they
would for free particles.

The probability density and pair correlation func-
tions can be calculated directly from the electron and
hole trajectories in imaginary time. This is very similar
to how the quantities would be calculated in a classical
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simulation, yet the path integral includes all quantum
confinement and quantum correlation effects. This in-
tuitive aspect of path integrals is particularly appealing
for studies of quantum nanostructures.

B. Calculating polarizability

The effect of an external electric field may be treated
by the direct inclusion of an electric field in the Hamil-
tonian, in which case energies, charge densities, pair
correlation functions, and radiative rates may be col-
lected as a function of applied electric field. There are
two difficulties with the direct application of an elec-
tric field. First a separate PI-QMC calculation must
be performed for each electric field choice. Second,
the estimation of the polarizability requires an accu-
rate calculation of the total energy of the exciton, since
the polarizability is the quadratic dependence of the
recombination energy with the applied field.

Linear response theory may also be used to compute
polarizabilites of exciton in the presence of modest elec-
tric fields17,20. In linear response theory, the polariz-
ability is given by the imaginary-time fluctuation of the
electron-hole dipole moment. This allows the polariz-
ability tensor to be calculated from a single PI-QMC
simulation without an applied field. Further, linear re-
sponse theory uses the electric dipole moment, which
has much less Monte Carlo noise than energy differ-
ences, allowing a faster determination of accurate po-
larizabilites. One limitation of linear-repose theory is
that it may miss non-linear effects of stronger electric
fields.

In this work, we combine both approaches. We ex-
plicitly include the strong vertical ([100]) electric fields
that drive the switching. This is important because the
interesting switching behavior is non-linear. This also
allows us to calculate charge densities, pair correlation
functions, and radiative recombination rates as a func-
tion of the vertical field strength. For comparison to
experiments, we also calculate the lateral polarizabil-
ity of the exciton in its two different switched states.
We use dipole-dipole fluctuations and linear response
theory to calculate the lateral polarizability. Thus, we
obtain the response of the exciton to a weak, probing
electric field as a for a range of strong vertical fields.

C. Calculating radiative recombination rates

We calculate radiative recombination rates as de-
scribed in Ref. 14. The mathematical formalism follows
directly from Fermi’s golden rule for spontaneous pho-
ton emission. For excitonic recombination in quantum
dots, there are two physical aspects to the radiative re-
combination rate: (1) the electron and hole must meet
each other to recombine, and (2) quantum coherence
of the electron-hole contact across a large volume en-
hances the radiative recombination. The first consider-
ation leads to larger rates when the electron and hole

have higher overlap, for example, in a small dot, or be-
cause of strong electron-hole correlation. The second
consideration leads to larger rates if electron-hole cor-
relation allows the exciton to maintain coherence across
a larger nanostructure. For the present stacked-dot ge-
ometry with external fields, the asymmetry of the elec-
tron and hole confining potential diminishes the second
effect, so radiative recombination rates are primarily
affected by the amount of electron-hole contact in the
wavefunction.

The radiative rate is sampled by allowing the path
integral, Eq. 3, to include two configurations: (1) a
direct contribution with closed electron-hole paths that
that samples the trace of the density matrix, and (2)
a radiating contribution where the electron and hole
connect at a single point at imaginary times τ = 0
and τ = βh̄. The rate follows directly from the ratio
the path integral for the two configurations. Further
details of the radiative recombination rate calculations
are given in Ref. 14.

IV. RESULTS

We begin with a discussion of the charge distribution
in a single-dot structure, with and without an applied
electric field. Next, we discuss the switching effect in
the triple-dot structure, which is much richer due to
both the the additional vertical structure as well as the
strong piezoelectric fields between the dots. To gain
further insights into the switching we show pair corre-
lation functions for the excitonic states in single and
triple dots, as a function of applied electric field. We
have also completed calculations for double dots (not
shown) whose behaviour is found to lie between those
of the single and triple dots described below. Finally,
we present calculations of radiative recombination rates
for the correlated excitonic states.

A. Charge distribution in single and stacked dots

The simplest way to understand the switching behav-
ior in stacked dots is to visualize at the charge distri-
butions of the electron and hole. As will be shown, for
single dots, these charge distributions are unremarkable
and serve as a baseline for the absence of switching. For
stacked dots, the charge distributions are interesting in
both the vertical and lateral distribution. The switch-
ing behavior can be seen as a 90◦ rotation of the lateral
charge density, driven by a vertical applied field.

1. Charge distribution in single dots: Absence of switching

Electrons and holes are subject to different confin-
ing potentials in the growth direction, Fig. 3(a) and
(b). This results in a spatial separation of electrons and
holes producing a permanent dipole moment21–24. The
dipole couples to any external electric field which will
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pull(push) the electron-hole system apart(together) in
the vertical direction and affects its oscillator strength.
The size of the dipole depends strongly on the dot com-
position profile, in particular on the In concentration.25

We theoretically study the influence of two oppo-
site orientations of a static electric field, E, along the
growth direction on the bound states in the quantum
dot.

FIG. 4. Single quantum dot. Volumetric cross-section of
electron and hole charge distributions with and without the
applied vertical ([001]) electric field. We include isosurfaces
of the piezoelectric potential and the outline of the quan-
tum dot structure. In panels (a)-(f) the horizontal extent
corresponds to the [110] direction and the vertical one to
the [11̄0] direction. In panels (g)-(i) the height of picture
represents the [001] direction and the width [11̄0] direction,
and for clarity the hole isosurface is shown on the left(grey)
and electron isosurface on the right(blue).

The slice through the centre of a single dot in the
[11̄0] direction, Fig. 4(g)-(i), shows the charge density
profile of the heavy-hole exciton as a function of the ap-
plied field. It can be seen that the quantum dot has an
small inverted (electron-over-hole) dipole with 0 kV/cm
applied electric field. The wider lateral confinement
near the bottom of the conical pyramid is more effec-
tive in localizing the heavy hole than the light electron
inducing this small dipole. Stronger dipoles induced by
In gradients and the resulting strain profiles are well-
known25. The piezoelectric potential adds to the strain
fields and perturbs the valence band which enhances
localisation of the hole wave function in the [110] direc-
tion, Fig. 3(c). The conduction band is only weakly
affected by biaxial strain allowing the electron charge
distribution to be delocalised in the structure and even
tunnel into the barrier material. The piezoelectric po-
tential interacts with conduction band, but as shown
in Fig. 3(a) the minima are shallower and appear to
not directly overlap with the confining potential in the
structure. The vertical electric field applied to the sys-
tem stretches the electron-hole pair reducing the exci-
ton binding energy. The orientation of the electric field

has also a significant impact on the polarity of the ex-
citon in the quantum dot as shown in Fig. 4(g),(i). In
the lateral direction there is little effect of switching the
electric field as seen in Fig. 4(a)-(f).

In summary, and by way of context setting for the
triple dot case presented below, we have shown that the
interplay between electric field and piezoelectric poten-
tial with an exciton in a single, self-assembled quantum
dot is insufficient to induce spatial localisation of the
charge distribution in the plane perpendicular to ap-
plied field. This contrasts with the case of a single ring
which does exhibit switching13.

2. Charge distribution in stacked dots: Lateral switching

In contrast to single dots, a stacked system made
of two or three, vertically stacked dots demonstrates
the interesting phenomena of lateral switching of charge
distribution as we now show.

FIG. 5. Coupled quantum dot. Volumetric cross-section of
electron and hole charge distributions with and without the
applied vertical ([001]) electric field. We include isosurfaces
of the piezoelectric potential and the outline of the quan-
tum dot structure. In panels (a)-(f) the horizontal extent
corresponds to the [110] direction and the vertical one to
the [11̄0] direction. In panels (g)-(i) the height of picture
represents the [001] direction and the width [11̄0] direction,
and for clarity the hole isosurface is shown on the left(grey)
and electron isosurface on the right(blue).

In Fig. 5 the charge distribution of electron, hole and
exciton in a triple quantum dot is presented, to contrast
with Fig. 4 for the single dot. In contrast to the single
dot, the most striking feature of triple quantum system
is a strong, diagonal localisation of the charge distri-
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bution which we can accurately switch in the plane of
the quantum dot by changing the direction of the per-
pendicular electric field, Fig. 5(a)-(f). It is important
to note that probability distribution in the top dot for
the electron and the hole is 90◦ rotated with respect
to the bottom one. This affects the picture and dilutes
the sharp diagonal distribution. In fact we are looking
down through all three quantum structures from the
top, therefore we see the residues of the distribution in
middle and bottom quantum dots.

The much larger volume of alloy in the coupled struc-
ture compared to the single quantum dot induces a
stronger piezoelectric potential. The piezoelectric field
perturbs the confinement for the electron and hole,
Fig. 3(c) and (d). An interesting characteristic of the
triple dot system is that the piezoelectric field originat-
ing from the central dot is canceled by fields from the
top and bottom structures. This leads to the symmetry
along the [110] and [11̄0] diagonals for the middle dot.
The piezoelectric potential penetrates into the top and
bottom structures creating local minima and maxima
in the dot confining potential, Fig. 3(c) and (d).

In Fig. 5(b) the top view of the electron charge proba-
bility distribution can be compared to the electron dis-
tribution in the vertical cross-section Fig. 5(h) in the
absence of external electric field. We see strong de-
localisation of the electron probability density in the
whole dot volume and uniformly in all three quantum
dots. The hole charge distribution however, is strongly
confined to the central region of each of the dots, Fig.
5(e). In Fig. 5(h) it is also apparent that the hole
charge distribution is shifted toward the base of each
dot with highest probability to be found in top and bot-
tom dots. As already indicated the confinement differs
in all three structures and also along diagonals in the
plane of the dots. The top and bottom dots are char-
acterised by deeper wells compared to the middle one.
The repelling action of positive piezoelectric lobes and
different strength of confinement on the diagonals nat-
urally favours localisation of the hole in an outer dot,
as much more energy is required to overcome the bar-
rier and transit to the central structure. This is clearly
visible in Fig. 5(h).

B. Electron-hole pair correlation functions

Further insight into the electron-hole distribution in
the single and coupled quantum dot systems can be
obtained from the pair correlation function g(r). In
Fig. 6 the pair correlation data are plotted for the sin-
gle and triple dot, with and without an electric field.
We study two opposite direction of the electric field at
±30 kV/cm. As before, we start with the single dot
system without an electric field and compare it to the
coupled structure. In Fig. 6(b) the pair correlation
function (PCF) for the single and triple system is plot-
ted in the absence of an electric field. The exciton in the
single dot is strongly bound by the Coulomb interaction
and the particle separation is close to physical height of
the structure. This separation can be slightly greater,
as the electron is free to tunnel into the surrounding

material, and the hole favors the wider bottom of the
structure. An increase of the electric field pulls the ex-
citon apart, this weakens the Coulomb interaction and
confinement, allowing the charge distribution to spread
across and even outside the dot.
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FIG. 6. Pair correlation function for the single and triple
quantum dots for three electric field values.

The PCF of the triple dot structure, Fig. 6(b), shows
some additional features not present in the single quan-
tum dot. One can see two distinguishable maxima at
4 nm and 8 nm, Fig. 6(b). The first, lower maximum,
corresponds to the spatially direct exciton when the
particles occupy the same structure. The second one
indicates the spatially indirect exciton when the elec-
tron and the hole occupy neighbouring dots.

The application of a vertical electric field to the sys-
tem affects the single and multiple structures in a com-
pletely different ways, The plot of the PCF, Fig. 6(a)
for the single quantum dot hardly changes when the
external field is applied. The strong confining poten-
tial of the structure keeps the exciton localised in the
dot. The hole, which is much heavier than the electron,
localises towards the base of the quantum dot. The
electron on the other hand is delocalised in the whole
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structure, including tunnelling into the barrier mate-
rial. The positive hole and the negative electron form
the electric dipole. Application of an external electric
field stretches/compresses the electron-hole pair in the
vertical direction. Changing the orientation of the field
flips the system’s overall polarity, however the electron-
hole separation is only marginally affected.

The coupled quantum dots are far more sensitive to
the change of environment compared to the single one,
Fig. 6(a). We see that even small changes in applied
field, yields substantial variations in the charges’ rela-
tive position. For E=+30 kV/cm the most energetically
favourable configuration is the one in which the elec-
tron and hole are confined to neighbouring dots. The
charge carriers tunnel between the middle and outer
quantum dots, however the lowest to middle transition
dominates. The electric field creates a dipole by stretch-
ing the exciton towards the top and base of opposite
dots, promoting inter-dot tunnelling. The electron and
the hole tend to occupy neighboring structures, Fig.
6(c), in this case the bottom and the middle dot(see
Fig. 5(i)). When the sign of E is negative (Fig. 6(a))
the occupancy of the middle and top dots dominates.

In the above section we have shown that an exact
treatment of the electron-hole Coulomb potential, as
well as a full description of the strain and piezoelec-
tric fields, in the PI-QMC simulations, demonstrates
that lateral switching, hitherto only predicted to oc-
cur in quantum rings, may also be found in stacked
quantum dots. The charge distributions clearly demon-
strate the switching between two perpendicular diago-
nals of the couple quantum dot systems in response to
the change of orientation of the vertical electric field.
This effect is absent in the single quantum dot due to
the much weaker piezoelectric potential within the dot.
The localised charge distribution functions for the elec-
tron and hole are in excellent agreement with the pair
correlation results.

C. Lateral polarizability as a probe of switching

One possibility to measure the lateral switching effect
described here would be to monitor the lateral polariz-
ability of the quantum dot. This could be achieved e.g.
by use of surface contacts to apply a small fixed lateral
electric field and monitor the shift in the photolumin-
scence as a function of this field. The shift will be pro-
portional to the lateral polarizabilty hence will change
with the exciton switch described earlier. This would
be accompanied by an increase in the exciton lifetime
as the electron and hole are separated. (see Section D)
The observation of these two effects at the same verti-
cal field value would confirm the lateral switching. An
second strong indicator of the lateral switching would
be to observe a switching in the optical polarization
of the photoluminscence emission however, because of
band-mixing effects, a quantitative estimate of the ef-
ficiency of such switching is beyond the single valence
band calculations adopted here.

As the exciton transition goes from spatially direct

to indirect, the oscillator strength varies for different
values of the external field. Due to the different poten-
tials on planes [110] and [11̄0] the measured oscillator
strength is not symmetric around the 0 kV/cm point, as
the exciton is attracted by local minima and maxima in
top and bottom structure in a different way. Changing
the direction of the electric field in the vertical direction
lowers the energy on one of the diagonals and promotes
the lateral switching between the [110] and [11̄0] direc-
tions, (Fig. 5). As a result, an increase in the lateral
polarizability tangential to the direction of the confin-
ing potential is observed as shown in Fig. 7.
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vertical electric field for different heterostructures.

It is important to note that the lateral switch op-
erates only for values of electric field in the range
±30 kV/cm. Stronger fields, more than ±40 kV/cm,
break the exciton. The unbound charge carriers are
then attracted and trapped by the piezoelectric ex-
trema and the lateral polarizability remains constant in
the triple dot structure. Orientation of vertical electric
field still swaps their spatial distribution in the cou-
pled quantum dot, however the lateral switching is not
possible anymore, due to its Coulombic nature.

The situation is a little different in a double dot, in
which the lateral switching is preserved even for higher
values of an electric field. The smaller volume of the
alloy in double dot creates a weaker piezoelectric po-
tential which attracts the charges. The electron and
the hole are able to tunnel between the top and bottom
structures as the dots are relatively close. From a dif-
ferent point of view a strong electric field tries to pull
the electron-hole system apart and extend the electric
dipole in the surroundings forcing it out of the struc-
ture. The sum of the piezoelectric and confining poten-
tials is however strong enough to preserve the Coulomb
interaction and sustain the lateral switching. When the
orientation of the external electric field is changed the
polarizability in the [11̄0] direction is much larger. It
is clear, Fig. 7, that the response of the exciton to the
electric field in a single dot is extremely weak compared



8

1.34

1.32

1.30

1.28

1.26

1.24

E
n
er

g
y
 [

eV
]

-80 -40 0 40 80

Applied electric field [kV/cm]

 single dot 

 triple dot

 best fit

FIG. 8. Energy of PL emission for an exciton as a function
of applied electric field in the growth direction in single and
triple quantum dot.
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FIG. 9. Exciton recombination rates as a function of applied
electric field in the vertical direction with the lines of best
fit. The error bars arise from the statistical uncertainty of
the PI-QMC calculation.

to the multiple-dot structures. This is caused by the
electron and the hole occupying of the same structure.
The small vertical separation between the electron and
the hole creates a much weaker dipole, which in addi-
tion is tightly bound by the confining potential of the
single quantum dot, and is perturbed less by the asso-
ciated weaker piezoelectric fields of the single dot. A
coupled structure’s bright states can be examined ex-
perimentally by measuring the lateral polarizability of
the exciton, which determines the sensitivity of exci-
tonic energy to an electric field, Fig. 7, and can be
used to confirm the lateral switching phenomenon.

D. Effect of lateral switching on photoluminescence

We have also calculated the emission energy (Fig. 8)
and radiative recombination rate (Fig. 9) of the single
and triple dots. Such calculations are important as if
the switched exciton is optically dark due to the spatial
switching, detecting the switching phenomenon would
be difficult.

In the single dot the radiative recombination rate and
the transition energy is rather insensitive to the applied
field due to the strong confinement. By contrast in the
triple dot the electron-hole radiative recombination rate
drops off as the applied field is increased and the exciton
is essentially dark at fields higher than ±40 kV/cm. For
the stronger fields e.g.: ±80 kV/cm, the fields overcome

the Coulomb attraction splitting the exciton apart. At
this point the electron and hole occupy different struc-
tures, wave functions do not overlap any more and the
oscillator strength drops essentially to zero.

V. CONCLUSIONS

We have used Path Integral Quantum Monte Carlo
calculations to study a heavy-hole exciton in single
and multiple quantum dots. We found that the lat-
eral switching of the charge distribution in the vertical
electric field, previously reported for quantum rings, is
also clearly present and highly tuneable in the system
of stacked quantum dots. On the other hand it cannot
be observed in a single quantum dot structure. We have
also investigated the lateral switching in dots of differ-
ent shapes, sizes and composition profiles. It was found
that this generic phenomena is caused by the interplay
of piezoelectric field deformation of conduction and va-
lence bands and the coulomb interaction. Switching
was observed for applied fields sufficiently small that
exciton dissociation was not a factor hence an optical
observation of this phenomenon should be feasible.
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