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ABSTRACT

Flow is widely considered one of the primary drivers of instream ecological response. Increasingly, hydroecological models form the basis of
integrated and sustainable approaches to river management, linking flow to ecological response. In doing so, the most ecologically relevant
hydrological variables should be selected. Some studies have observed a delayed macro-invertebrate (ecological) response to these variables
(i.e. a cumulative inter-annual effect, referred to as multi-annual) in groundwater-fed rivers. To date, only limited research has been
performed investigating this phenomenon. This paper examines the ecological response to multi-annual flow indicators for a groundwater-
fed river. Relationships between instream ecology and flow were investigated by means of a novel methodological framework developed
by integrating statistical data analysis and modelling techniques, such as principal component analysis and multistep regression approaches.
Results demonstrated a strong multi-annual multi-seasonal effect. Inclusion of additional antecedent flows indicators appears to enhance
overall model performance (in some cases, goodness of fit statistics such as the adjusted R-squared value exceeded 0.6). These results
strongly suggest that, in order to understand potential changes to instream ecology arising from changing flow regimes, multi-annual and
multi-seasonal relationships should be considered in hydroecological modelling. Copyright © 2017 John Wiley & Sons, Ltd.
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INTRODUCTION

The relationship between flow regime and instream ecolog-
ical health has been the focus of significant recent research
(e.g. Lytle and Poff 2004; Arthington et al. 2006; Dudgeon
et al. 2006; Monk et al. 2008; Worrall et al. 2014). Freshwa-
ter aquatic systems support the provision of many key eco-
system services, including clean (drinking) water, flood
protection, food, recreation, wild species habitat and support
for interconnected systems (UK NEA 2011). Within the
context of the provision of services, there is a clear conflict
between the ecological and anthropogenic demands placed
upon lotic ecosystems. Since the 1940s, efforts have been
made to quantify the minimum flows required to protect
freshwater fluvial ecosystems (Arthington et al. 2006),
leading to the more recent environmental flows research
(e.g. Petts 2009). Environmental flows can be defined as
the ‘quantity, timing and quality of water flows required to
sustain [freshwater ecosystems] and the human livelihoods
and well-being that depend on these ecosystems’ (Hirji
and Davis 2009, pp. 13 and 14). It is understood that natural
variability in flow is critical for the preservation of aquatic
ecosystems (Dudgeon et al. 2006) and maintenance of this

variability is critical to this research. In order to help
balance conflicting requirements often placed on lotic
ecosystems, and to further research in the field, accurate
modelling is essential.
The use of numerical models (both process and data-

driven models) that link flow and freshwater ecological re-
sponse is a well-established technique for investigating
instream response to flow changes (Dunbar et al. 2007).
Hydrological descriptors and ecological data can serve as
the basis for the development of such models (Richter
et al. 1996; Arthington et al. 2006; Monk et al. 2008).
Macro-invertebrates are particularly sensitive to change (in
water chemistry/quality, physical habitat and flow regime)
whilst exhibiting a clear response to environmental pertur-
bations, making them ideal biological indicators (Acreman
et al. 2008; EA 2013). As such, macro-invertebrates
(e.g. through standard scoring techniques) commonly serve
as a proxy for ecological response and can be linked to
hydrological or hydraulic variables in order to test their
response to a changing flow regime (e.g. Extence et al.
1987; Dunbar and Mould 2009). The Lotic-invertebrate
Index for Flow Evaluation (LIFE) is a weighted index taking
into account macro-invertebrate community flow velocity
preferences (Extence et al. 1999), making it well suited for
such applications. Hydroecological data sets are created by
linking the ecological data (such as LIFE score) with
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hydrological indicators (e.g. mean flow, Q10 and Q95) from
the period immediately preceding the sampling. This
method has been employed in many studies over the past
2 decades, for example, see Clausen and Biggs (1997),
Monk et al. (2006), Exley (2006), Monk et al. (2008),
Dunbar et al. (2010) and Worrall et al. (2014).
In models, the flow can be expressed as a continuous time

series or discrete hydrological indicators representing inter-
annual or intra-annual variation (defined as the between year
and within year flow components, respectively). If discrete
indicators are chosen, then the identified variables must be
hydrologically, ecologically, or biologically, relevant. These
indicators are frequently identified and refined through statis-
tical approaches such as principal component analysis (PCA)
redundancy (Olden and Poff 2003; Monk et al. 2008). Where
intra-annual variation has been the focus, such as flooding,
the conditions immediately preceding sampling tend to be
at the exclusive centre of the research (e.g. Greenwood and
Booker 2015). This may overlook the cumulative effects of
antecedent flow conditions in the preceding seasons and
years (Durance and Ormerod 2007), that is, the multi-year,
or multi-annual, effect. This is particularly true for rivers
with higher Base Flow Indices (BFIs) (groundwater-fed)
where there may be a lag in macro-invertebrate community
response following extreme hydrological events (i.e. floods
and droughts) (Boulton 2003; EA 2005). This lag represents
a delayed response of the community to antecedent flow con-
ditions (over seasonal and/or annual timescales). Such lag
has been seen to characterize strong ecological responses,
specifically in the case of extreme flow disturbances (Wood
and Armitage 2004; Wright et al. 2004). To date, limited
work has been carried out to explore the effects of these lags
on the hydroecological relationship (e.g. Clarke and Dunbar
2005). Rivers around the globe derive their streamflow from
a variety of sources, including a significant contribution from
groundwater/aquifers (although this contribution is highly
variable both spatially and temporally). Lags in ecological
response within groundwater dominated systems may there-
fore be of crucial interest.
In order to better model flow variability, and hence im-

prove current understanding of hydroecological relation-
ships for groundwater rivers, this paper aims to examine
the presence of lag in the hydroecological relationship
(using LIFE scores as a proxy). These relationships are
assessed using a long-term (21-year, 1993–2014) paired
hydrological and ecological data set for a groundwater
dominated system (River Nar, Norfolk, UK). Multi-annual
and multi-seasonal flow variables are intended to account
for both the cumulative (inter-annual) and seasonal
(intra-annual) flow effects.
The multi-annual aspect of the hydroecological relation-

ship (lag) is systematically explored within the proposed
statistical modelling framework through the addition of

time-offset hydrological variables. Thus, the key objectives
are the following:

(1) To identify and develop a suitable statistical modelling
framework exploring the multi-annual and multi-seasonal
aspect of the hydroecological relationship (a lag in
response);

(2) To examine the influence of seasonal low/high flows
within the relationship; and

(3) To explore practical channels for wider implementation
of the framework.

METHODOLOGY

Study area

The groundwater-fed River Nar (Norfolk, UK; Figure 1),
one of southern England’s highly valued chalk streams,
serves as the focus for this study. The high BFI of the river,
the length of the hydroecological data set, and prior observa-
tions of lag in ecological response (Visser 2015; Garbe et al.
2016) make the Nar an ideal candidate for study.
The River Nar rises in the Norfolk chalk hills 60-m above

sea level, flowing west for 42 km, transitioning from steep to
a far gentler gradient at Narborough (Figure 1). This topog-
raphy and underlying geology give rise to two very different
ecosystems. Upstream of Narborough, the Nar flows as a
(groundwater-fed) chalk river; thereafter, the chalk has been
eroded forming a fen basin (Figure 1). This distinctive
change at the river’s midpoint has led to its designation as
a Site of Special Scientific Interest. Because of the presence
of the two ‘distinct river units’, the chalk and fen river
sections are considered distinct entities, with the focus of
this paper falling on the chalk reach only. The Nar is subject
to significant low flow stresses, further amplified by over-
abstraction and extensive channel modification, thereby
inhibiting the river’s ecological potential (NRT 2012).
The River Nar has a BFI of 0.91 (CEH 2014). This

dependence on groundwater results in a highly seasonal flow
regime; aquifer recharge primarily occurs in autumn,
resulting in a progressive rise in river flow until
March/April. Chalk rivers are typified by their relatively
low flows (Figure 2). For the available record (1953–2015),
the average mean flow is 1.133m3/s, whereas Q10 and Q95
(the daily streamflow values that are exceeded 10% and
95% of the time) are 2.046m3/s and 0.387m3/s, respectively
(CEH 2014).

Data

Macro-invertebrate biomonitoring data were made available
by the Environment Agency (1993–2014) for 10 sites on the
River Nar (six of which are situated in the chalk reach)
(Figure 1) (EA 2015). For modelling purposes, these data
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were utilized in the form of LIFE scores. Following Dunbar
et al. 2006, species level LIFE scores were utilized for both
the spring (April–June) and autumn (October–December)
seasons, when peaks in macro-invertebrate activity are
observed (Lenz 1997). To effectively accommodate the
different relationships expected for the spring and autumn
macro-invertebrate life cycles, seasons were considered as
two separate scenarios (Figure 3). In order to make the site
data comparable, the seasonal biotic data were ratio
standardized per site.
Daily mean flow data were extracted from the National

River Flow Archive for the Marham gauge (TF723119)

between 1958 and 2014 (CEH 2014). Typically, a multitude
of flow variables is derived (Richter et al. 1997); however,
in the first instance, this work focuses on basic flow exceed-
ance variables (Q10 and Q95) in order to establish simple
interpretation of the hypothesized relationship with multi-
annual antecedent flows. Daily flows for the time period
(1989–2014; Figure 2) are converted into seasonal (summer:
April to September; winter: October to March) flow
variables using flow duration analysis. Flow variables are
statistically standardized (normalized).
The ecological and the four seasonal flow variables

(summer/winter Q10 and Q95) are paired, as is normal (after

Figure 1. The River Nar and its catchment in the Norfolk Downs, East Anglia; the river flows east to west. The biomonitoring sampling
sites are detailed. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 2. River Nar hydrograph over the available period of record (1953–2014). The black line represents the average annual flow, whilst
the red and blue envelopes respectively represent the lowest and highest flows that occurred each year. Inset: flow duration curve for the
study period (1989–2014; this is greater than the ecological data set as a result of the time-offset). The dashed lines mark high (Q10) and

low (Q95) flows. [Colour figure can be viewed at wileyonlinelibrary.com]
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Monk et al. 2008), and the data pooled to produce aggre-
gated regression models. To account for the lag in response,
these flow variables are time-offset by a year (t�1) to a
maximum of 3 years (t� 3) (Table I). Previous work (Visser
2015) trialled a time-offset up to t� 5 and found that the
predictive power of the models plateaued at t�3 years.
Additionally, adding variables significantly increased
computational demands because of an impractical number
of variable combinations (Table I).

Data screening

Pressures, resulting in anomalous data points, are known to
prevent the detection of relationships between antecedent
flow and LIFE score (Clarke and Dunbar 2005). Therefore,
those sites affected by issues such as low water quality, sed-
iment ingress, sampling issues or other sources of variability
were excluded from this work; a total of three sites were

removed. Removal criterion was in accordance with Clarke
and Dunbar (2005, p. 16), Dunbar et al. (2006, pp. 1 and 2)
and Dunbar and Mould (2009, pp. 1–3).

Modelling and statistical analysis

The aim of multistep regression modelling is to assess a
complete suite of candidate models (which can be obtained
from different combinations of response variables in the
modelling runs) and to identify the candidates that are both
statistically significant and offer sufficient predictive power.
Here, a model represents any candidate that achieves signif-
icance (p>0.05). In the context of the present paper, models
should encompass lag in the hydroecological relationship
with LIFE. The potential for a multi-seasonal aspect to the
relationship was assessed via various combinations of the
seasonal flow variables (summer and winter). The putative
multi-annual aspect was considered via the introduction of
their associated time-offset flows.
To effectively integrate multi-seasonal and/or multi-

annual aspects of antecedent flows into the hydroecological
relationship, the proposed modelling framework integrated
up to 16 variables, shown in Table I. The derivation of this
framework is summarized in Figure 3. All analysis was
performed using R, an open source software environment
for statistical programming and graphical analysis (R Core
Team 2016); where a pre-existing package was employed,
it is referenced as appropriate.
Multistep (or multistage) regression modelling is a popu-

lar technique for reducing the number of predictor variables
in large data sets (Wasserman and Roeder 2009). In each
step, regression of different variable combinations is consid-
ered, resulting in a number of candidate models. The vari-
able combinations are determined by the method applied:
forward, backward or stepwise selection. Forward selection
is the simplest of the three, where variables are added one at
a time and the variable’s contribution to the candidate model
is assessed against a threshold or stopping point. When a
variable has been added to the candidate model, it cannot
be removed. In backwards selection, the variables are
removed one at a time, but here, the variable with the
smallest contribution is removed at each step. Stepwise
selection is the most exhaustive of the three, where variables
may be both added and removed at each step.
Here, three different approaches were considered, using

both forward (approach 1) and stepwise selection
(approaches 2 and 3) on three subsets of the hydrological
variables; these are summarized in Figure 3 and discussed
next. The presence of any lag in the hydroecological rela-
tionship was first identified using the simplest and broadest
statistical methods. The initial variable subset provides an
overall view, consisting of the combinations of two seasonal
variables (and their associated time-offsets), summarized in

Figure 3. Flow chart detailing the modelling framework employed.
BIC, Bayesian information criterion; PCA, principal component

analysis

Table I. Summary of the number of variables, and subsequent
possible combinations, for each additional year of time-offset
antecedent flow

No. of variables No. of combinations

t 4 15
t� 1 8 225
t� 2 12 4095
t� 3 16 65 535

Each year features four variables: summer/winter Q10 (high flow) and Q95
(low flow).
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Table II. These candidates are considered through the
application of forward selection.
This was followed by two, more sophisticated, stepwise

approaches (Figure 3), with the focus on optimizing the
modelling. The stepwise selection was applied using the
R package ‘leaps’ (Thomas Lumley using Fortran code by
Alan Miller 2009), using the object ‘ leaps. exhaustive ’ to
determine the best model variable combinations. One of
the first tasks in hydroecological modelling is to reduce the
level of hydrologic variable redundancy, thereby simplifying
the analyses. To this end, PCA for variable selection (after
Olden and Poff 2003) was applied, using broken-stick as
the stopping rule (Jackson 1993). This PCA-reduced
variable subset was modelled in the second approach
(Figure 3).
Monk et al. (2007, p. 113) cast doubt over the use of PCA

for hydrological variable selection, stating that it is
necessary to ‘exercise caution when employing data

reduction/index redundancy approaches, as they may reject
variables of ecological significance’. Greater scepticism
arises because the approaches taken here depart markedly
from other work. Therefore, seeking completeness, the full
set of 16 variables was considered for the final iteration
(Figure 3, approach 3).
Multistep regression techniques are often criticized be-

cause of their (frequently) automatic nature and concerns
over the robustness of the selection algorithm (Wasserman
and Roeder 2009). For example, this lack of user interaction
can lead to convergence on a poor model. Here, model
selection was assessed semi-automatically via a custom
algorithm requiring user input; this dialogue helps retain the
awareness of the user during the multistep process. The ‘best’
models were then selected on the basis (in order of
importance) of their Bayesian information criterion (BIC)

score, the power of the model ( R
2
) and the data input

requirements. BIC is an assessment of the relative ‘goodness’
of models based upon log-likelihood and penalty terms
(Raftery 1995), thereby allowing the selection of the simplest
model whilst not sacrificing accuracy excessively. The
criterion provides a measure of the weight of evidence in
favour of particular models. The goodness of fit, R-squared
(R2), is not presented because of a tendency for overfitting
in multiple regression models (Yin and Fan 2001). To

account for this, the adjusted R-squared (R
2
) [based upon

the frequently used Wherry formula-1 (Yin and Fan 2001)]
is quoted instead.
The power or fit of models can potentially be improved

through the removal of redundancy and/or noise using
PCA, where it allows the user to retain most of the
variability in the data through the first few components.

Table II. The sets of seasonal variable combinations considered for
approach 1, the initial variable subset

Set Seasonal variables No. of combinations

1 Summer Q10 — 4
2 Summer Q95 — 4
3 Winter Q10 — 4
4 Winter Q95 — 4
5 Summer Q10 Summer Q95 16
6 Winter Q10 Winter Q95 16
7 Winter Q10 Summer Q95 16
8 Winter Q95 Summer Q10 16
9 Winter Q95 Summer Q95 16
10 Winter Q10 Summer Q10 16

Table III. Summary statistics for the best models from each approach for the spring scenario

Best models Factor models

Model Flow data (years) R
2

ΔBIC Weight of evidence R
2

ΔBIC Weight of evidence

S1.1 2 0.28 6.2 Strong 0.28 6.2 Strong
S1.2 2 0.25 4.7 Positive 0.25 4.7 Positive
S1.3 2 0.27 3.5 Positive 0.30 7 Strong
S2.1 2 0.28 6.1 Strong 0.28 6.1 Strong
S2.2 2 0.21 5.5 Positive
S2.3 2 0.20 5.2 Positive
S2.4 1 0.20 5 Positive
S2.5 2 0.24 4.3 Positive 0.26 7.8 Strong
S3.1 4 0.60 17.6 Very strong 0.23 0.0 Weak
S3.2 4 0.58 17.4 Very strong 0.19 0.0 Weak
S3.3 4 0.63 17 Very strong 0.20 0.0 Weak
S3.4 4 0.57 16.9 Very strong 0.18 0.0 Weak
S3.5 4 0.63 16.7 Very strong 0.21 0.8 Weak

TheR
2
column is the adjusted R-squared, and the weight of evidence is Raftery’s (1995) grading of model quality based on ΔBIC. The reduced dimension factor

models for each of these are presented on the right; where models consist of only one variable, no factor model is possible.
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The stopping point was determined using the broken-stick.
Factor selection modelling, essentially regression models
composing of the principal components, was then applied
as before.

RESULTS

Three approaches to the modelling were considered. Each
approach was applied to two distinct scenarios, spring and
autumn; results from these scenarios should be considered
as distinct. Because of the large numbers of models pro-
duced, only the five ‘best’ models are discussed (selected
by the supporting weight of evidence, ΔBIC). The first
approach is an exception, because of the reduced number
of candidates, and only the three best models are presented.
The model naming convention references the scenario,
approach number and model ranking. For example, model
S3.1 is a model from the spring scenario, derived using
the third approach, and is the best model from that
approach.

Approach 1—initial variable subset

The first approach was based upon a subset considering all
of the hydrological variables. The number of candidates
was limited to 112 (Table II) as the purpose of this first
approach was to determine the presence of lag in the
hydroecological relationship. The summary statistics associ-
ated with the three best models are summarized in Tables III
and IV, for the spring and autumn scenarios, respectively.
The model structures are summarized in Figure 4.
Principal component analysis was applied to the best

models from each scenario. Factor models were then
produced from the most relevant principal components
(determined using the broken-stick method). The associated
summary statistics are also included in Tables III and IV.

Approach 2—principal component analysis-reduced
variable subset

In this iteration, PCA for variable reduction was applied.
The spring and autumn scenarios variable subsets were
reduced from 16 to 6 as follows:
Spring:

QS10(t), QS95(t� 1), QW10(t�1), QW10(t�3), QW95(t� 1)
and QW95(t�3);
Autumn: QS10(t), QS10(t� 3), QS95(t), QS95(t� 3),

QW10(t� 1) and QW95(t� 1).
The total number of candidate models was reduced to 63,

this time considered through stepwise selection. The sum-
mary statistics associated with the five adjudged best models
for the spring scenario are summarized in Table III; the
model structures are summarized in Figure 4. No models
were derived for the autumn scenario. The summary statis-
tics for the reduced dimension factor models are also avail-
able in Table III.

Approach 3—all variables

This final approach considered all 16 hydrologic variables,
for a total of 65 535 possible candidates. Stepwise selection
reduced this to a manageable scale. The summary statistics
associated with the five best models, from each scenario,
are summarized in Tables III and IV. The model structures
are summarized in Figure 4. The summary statistics for the
reduced dimension factor models are available in Tables III
and IV.

DISCUSSION

Approach 1—initial variable subset

The primary aim of the first approach was to detect if lag in
the hydroecological relationship for LIFE was present.
Tables III and IV show this to be true. In fact, out of 224

Table IV. Summary statistics for the best models from each approach for the autumn scenario

Best models Factor models

Model Flow data (years) R
2

ΔBIC Weight of evidence R
2

ΔBIC Weight of evidence

A1.1 2 0.44 10.7 Very strong 0.44 10.7 Very strong
A1.2 2 0.45 9.3 Strong 0.45 9.3 Strong
A1.3 2 0.40 9.0 Strong 0.40 9 Strong
A3.1 2 0.46 13.6 Very strong
A3.2 2 0.48 12.8 Very strong 0.29 6.6 Strong
A3.3 2 0.46 11.5 Very strong 0.47 14.2 Very strong
A3.4 2 0.49 11.2 Very strong 0.26 5.4 Positive
A3.5 2 0.44 10.8 Very strong 0.44 10.8 Very strong

TheR
2
column is the adjusted R-squared, and the weight of evidence is Raftery’s (1995) grading of model quality based on ΔBIC. The reduced dimension factor

models for each of these are presented on the right; where models consist of only one variable, no factor model is possible. The second approach (principal
component analysis-reduced variable subset; A2) featured no models.
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combinations (for both scenarios), there were 147 of the
candidates represented viable models (i.e. achieved
significance).
In the case of the spring scenario, the weight of evidence

is relatively low for models S1.2 and S1.3, whereas the
adjusted R-squared is similar for all three (Table III). This
example clearly illustrates the important role of BIC in
selecting the best models. Regarding the model structure
(Figure 4), summer Q10 flows feature most strongly,
whereas the presence of winter Q95 variables illustrates
the critical nature of winter low flows.
The factor models composed of the principal components

may or may not improve the interpretability of the data. In
this case, the models were identical for S1.1 and S1.2

(Table III), whereas S1.3 showed improvement both in the
weight of evidence and adjusted R-squared. This improve-
ment suggests that it is the strongest model available for
the spring scenario. By reducing redundancy, a more effi-
cient model is produced. This is particularly encouraging
as it is a purely procedural change with no further data
requirements.
For the autumn scenario, the weight of evidence in

favour of the three best models is considerably increased
(Table IV). This represents the best possible outcome in
terms of confirming the presence of lag in the hydro-
ecological relationship. It should be noted that although
model A1.1 achieves the highest BIC weighting, it does
not feature the highest adjusted R-squared (as seen

Figure 4. Heatmap detailing the structure (i.e. which variables are included) and scale of coefficients for the best models from each approach
(per scenario). (Note: model y-intercepts are approximately equal to 1.) Model names correspond to Tables III and IV. [Colour figure can be

viewed at wileyonlinelibrary.com]
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previously for the spring scenario). The autumn models
show no relationship with winter flows, rather they relate
more strongly with summer (Figure 4). The factor models
show no change, being identical to the best models
(Table IV).

Approach 2—principal component analysis reduced
variable subset

After confirmation of the presence of the hypothesized rela-
tionship, this first iteration sought to improve upon the
methods and models via reduced redundancy. The redun-
dant variables were removed through Olden and Poff’s
(2003) ‘PCA redundancy approach’, reducing the number
of variables from 16 to 6 for both scenarios. For this ap-
proach, a broader range of candidates is considered through
stepwise selection.
Here, the models for both scenarios are unsatisfactory

(Tables III and IV). They exhibit no overall improvement
over those produced using the more limited methodology
of approach 1. Only the factor model for S2.5 shows an im-
provement in the weight of evidence. There is limited value
in a lengthy consideration of these models because of their
poor quality. Examination of the variable subsets for spring
in approaches 1 and 2 (see Table II and section on Approach
2—Principal Component Analysis-reduced Variable Sub-
set) suggests that the PCA did not capture the ecologically
relevant variables, a concern cited by Monk et al. (2007)
previously. (Monk concluded that subtle factors beyond
the dominant sources of statistical variation may be more in-
fluential.) This argument is further bolstered by the fact that
the autumn candidates were unable to present any significant
combinations.

Approach 3—all variables

In light of the results from approach 2, and for the sake of
completeness, a final iteration considering all 16 variables
was applied. The weight of evidence in favour of the best
models produced in this final iteration shows it to be the
most successful in capturing the LIFE-correlated lagged
hydroecological relationships (Tables III and IV). The
models for the spring scenario are most notable, with the
BIC weight of evidence exceeding Raftery’s (1995) highest
grading. The corresponding adjusted R-squared for each
model is similarly positive. This is particularly interesting
when compared with corresponding values presented in
the literature: multiple catchment studies such as Clarke
and Dunbar (2005), Dunbar et al. (2006) and Monk et al.
(2007) achieved values of between 0.2 and 0.3; despite
focussing on the River Itchen exclusively, Exley (2006) also
achieved values of around 0.3. For this scenario, again, the
factor models provided no improvement.

The approach 3 spring scenario models were best overall.
In particular, they show considerable improvement over
those from approach 1. In light of this, it is not surprising
that variable inclusion in the models has evolved
(Figure 4). However, the focus on summer high flows
remains, featuring the largest coefficients (Figure 4). Given
that spring and summer months tend to be a very active
period for macro-invertebrates (Lenz 1997), it therefore
follows that summer flows have a strong influence over
spring LIFE scores, and by extension, ecosystem health.
The observed negative relationship with summer flows
(beyond the immediately preceding antecedent flow, t)
suggests that naturally occurring high and low flows exert
a moderating effect on LIFE scores (Lytle and Poff 2004).
As discussed prior, the emphasis on winter flows highlights
their importance for aquifer recharge and, by extension,
LIFE scores.
The best models for the autumn scenario also occur as a

result of the third approach (Table IV). Despite a lower
overall quality of models, the reduced number of variables
(Figure 4), and hence data requirements, is appealing.
Again, the models retain a very strongly positive predication
upon summer high flows, here some orders of magnitude
greater than the others. The models also reveal a strongly
inverse influence of winter low flows (t� 1) (Figure 4). This
flow is that which occurs at the time of the autumn macro-
invertebrate sampling.
The autumn factor models exhibit an improvement for

one case, S3.3, resulting in the best overall model. This
highlights that, although there are no guarantees that factor
models will improve model quality, there is some value in
its implementation, particularly as it requires no additional
data requirements.

Implications

This work illustrates clearly the significance of accounting
for lag (in the form of multi-annual and multi-seasonal flow
variables) in the LIFE hydroecological relationship (in the
River Nar). Of the 26 best models identified, only three re-
lied on the direct antecedent flow (i.e. utilized one previous
year of flow data). Further, overall, these were some of the
poorest models produced (in terms of the model quality,
BIC). This suggests that, in this case of a groundwater-fed
river, it could be presumed that a single year of antecedent
flows overlooks critical information.
The principal difficulty in the use of the multi-annual and

multi-seasonal flow variables could be the potential data re-
quirements. This work suggests that, for effective modelling
of the spring scenario, a consistent suite of 4 years of data is
required (Table III). In contrast, the autumn scenario
requires much less input with just 2 years (Table IV).
However, it is made clear that, by accounting for the
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multi-seasonal multi-annual variation in flow in the model-
ling framework, the models can be significantly improved
through better representation of the natural variability of
the river system. An understanding of which is fundamental
to active maintenance of any riverine system’s ecological
integrity (Petts 2009).
Incidentally, the methods employed also highlight the

need to consider more comprehensive statistical approaches
when embarking on modelling of this type. The failure of
approach 2, where PCA was used to identify variable
redundancy, further stresses the need to exercise caution.
The authors would thus promote consideration of modelling
both with and without this redundancy technique. This is not
to say that PCA techniques have no application potential;
the factor models did (on occasion) provide some improve-
ment to the best models.
Considering the wider impact of the present work, model-

ling the ecological season plays an important role. This
choice is typically made based upon the goals of the model-
ling. For example, brown trout is a key species in the River
Nar, being valued highly by the local fisherman (Garbe et al.
2016). One of their primary food sources is the Mayfly
(Ephemeroptera baetidae) that hatch during the spring
season. Therefore, in the Nar, if environmental flows were
to be set to promote brown trout population, the focus of
the modelling efforts should surround spring. It may also
be possible that the consideration of additional, more
ecologically relevant, hydrological variables [selected
through the Indicators of Hydrologic Alteration method
(Richter et al. 1996)] may reduce data requirements. (The
application of the Indicators of Hydrologic Alteration forms
part of the body of future work.) However, this may simply
be dependent upon the type of river under consideration.
The outcomes of this work appear particularly pertinent to

water resource planning and environmental flows research.
Better understanding of longer-term hydroecological rela-
tionships allows for enhanced resilience. This is particularly
relevant in the case of climate change where the outlook is
uncertain. The simple application of the methods applied
herein, easily replicated using R, or another programming
language, makes it both accessible and replicable. It is
hoped that this can be simplified further still in the future
through a framework or package. However, before it can
be considered for general use, there is need for further work
considering other more ecologically relevant hydrologic
variables as well as application to other rivers.

CONCLUSIONS

The variability of the natural flow regime, particularly floods
and droughts, is known to be critical to ecological health
(Lytle and Poff 2004). For rivers with a higher BFI (ground-
water-fed), there may be lags in ecological response to this

variability (Boulton 2003). Currently, the majority of re-
search focuses on the inter-annual hydrologic variation that
immediately precedes ecological sampling, and in
neglecting a broader temporal view, may be failing to pres-
ent a true picture of the reality. The research presented
herein has taken a multi-annual (cumulative inter-annual)
and multi-seasonal (direct intra-annual) approach, using a
groundwater-fed river with a high BFI to explore these
patterns (using simple hydrological variables as proof of
concept).
The first aim of this study was to identify whether there

was a multi-annual LIFE-correlated hydroecological rela-
tionship in evidence in the case study river, the River Nar.
The dimensionality of the data set required the derivation
of a new methodology, explored through three approaches.
Two scenarios were considered in order to account for the
different macro-invertebrate life cycles. The best and stron-
gest relationships were seen to occur for the spring scenario,
using the third approach. Relative to other studies (e.g.
Clarke and Dunbar 2005; Dunbar et al. 2006; Exley 2006;
and Monk et al. 2007), the strength end of these relation-
ships is strongly suggestive of a positive multi-annual
hydroecological relationship.
The second priority was to examine which flows resulted

in the strongest relationships. Throughout, the best models
featured primarily high flows. It is thought that the reasons
for this could be due to the relatively high variation of high
flows when compared with low flows. Unexpectedly, the
most critical high flows appeared to occur in summer as
opposed to winter when aquifer recharge occurs. However,
these findings do not suggest that winter aquifer recharge
is unimportant as the magnitude of summer high flows is
ultimately dependent upon this recharge. The importance
of low flows is also evident.
Finally, the findings suggest that the additional

hydroecological data requirements may vary. For the spring
scenario, a total of 4 years of antecedent flow data would be
required, whereas for autumn, only 2 years were required.
This reduction in data input was however at the cost of
model power. This study focussed on simple hydrological
variables. Further work should broaden this data set, and
consider further river types, and in so doing, the ecological
relevance of the lag may differ.
An incidental conclusion of the work was the role of PCA.

PCA is frequently used to reduce hydrologic variable redun-
dancy. Concerns regarding this approach have been raised in
the past (Monk et al. 2007) with the findings here supporting
this (approach 2). However, the use of factor models
(principal component regression modelling; approach 3)
showed positive results in some situations. This is of
particular interests because it requires no additional data.
Overall, this research has demonstrated the presence of a

positive multi-annual hydroecological relationship. These
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results confirm that current methods that focus on inter-
annual and intra-annual relationships in their current format
(immediately preceding ecological sampling) relationships
may underestimate the response. Consideration of a broader
temporal scale, with a more comprehensive statistical
approach, appears likely to result in a more complex under-
standing of ecological response.
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