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Université Catholique de Louvain
Louvain-la-Neuve, Belgium

MARCUS C. CHRISTIANSEN
Department of Actuarial Mathematics and Statistics

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh, United Kingdom

June 21, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/287494652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

The present paper proposes an evolutionary credibility model that describes the joint
dynamics of mortality through time in several populations. Instead of modeling the
mortality rate levels, the time series of population-specific mortality rate changes, or
mortality improvement rates are considered and expressed in terms of correlated time
factors, up to an error term. Dynamic random effects ensure the necessary smoothing
across time, as well as the learning effect. They also serve to stabilize successive mortality
projection outputs, avoiding dramatic changes from one year to the next. Statistical
inference is based on maximum likelihood, properly recognizing the random, hidden
nature of underlying time factors. Empirical illustrations demonstrate the practical
interest of the approach proposed in the present paper.

Key words and phrases: mortality projection; predictive distribution; multi-population
modeling.



1 Introduction

Mortality forecasts are used in a wide variety of fields. Let us mention health pol-
icy making, pharmaceutical research, social security, retirement fund planning and life
insurance, to name just a few.

Following the elegant approach to mortality forecasting pioneered by Lee and Carter
(1992) many projection models decompose the death rates (on the logarithmic scale) or
the one-year death probabilities (on the logit scale) into a linear combination of a limited
number of time factors. See, e.g., Hunt and Blake (2014). In a first step, regression
techniques are used to extract the time factors from the available mortality data. In
a second step, the time factors are intrinsically viewed as forming a time series to be
projected to the future. The actual age-specific death rates are then derived from this
forecast using the estimated age effects. This in turn yields projected life expectancies.

In the first step of the two-step model calibration procedure, the random nature of
the unobservable time factor is disregarded, and this may bias the analysis. As possible
incoherence may arise from this two-step procedure, Czado et al. (2005) integrated both
steps into a Bayesian version of the model developed by Lee and Carter (1992) in order
to avoid this deficiency. After Czado et al. (2005), Pedroza (2006) formulated the Lee-
Carter method as a state-space model, using Gaussian error terms and a random walk
with drift for the mortality index. See also Girosi and King (2008), Kogure et al. (2009),
Kogure and Kurachi (2010) and Li (2014) for related works. However, the practical
implementation of Bayesian methods often requires computer-intensive Markov Chain
Monte Carlo (MCMC) simulations. This is why we propose in this paper a simple
credibility model ensuring robustness over time while keeping the computational issues
relatively easy and allowing for the flexibility of time series modeling. It is worth stressing
that the time factor is here treated as such, and not as a parameter to be estimated
from past mortality statistics using regression techniques before entering time series
models. In this way, we recognize the hidden nature of the time factor and its intrinsic
randomness.

Whereas most mortality studies consider both genders separately, the model proposed
in this paper easily combines male and female mortality statistics. This is particularly
useful in practice when both genders are usually involved. In insurance applications,
for instance, separate analyses could lead to miss this strong dependence pattern, which
considerably reduces possible diversification effects between male and female policyhold-
ers inside the portfolio. In demographic projections, combining male and female data
is necessary to ensure consistency in gender-specific mortality forecast. This problem
has been considered by several authors in the literature. Let us mention Carter and Lee
(1992) who fitted the Lee and Carter (1992) model to male and female populations sep-
arately and then measured the dependence between the two gender-specific time factors.
These authors considered three models for the pair of time factors: a bivariate random
walk with drift, a single time factor common to both genders and a co-integrated pro-
cess where the male index follows a random walk with drift and there exists a stationary
linear combination of both time factors.
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More generally, the credibility model proposed in this paper is able to pool several
populations to produce mortality forecasts for a group of countries. In such a context,
Yang and Wang (2013) assumed that the time factors followed a vector error correction
model. See also Zhou et al. (2013). Other models incorporate a common factor for the
combined population as a whole, as well as additional factors for each sub-population.
The common factor describes the main long-term trend in mortality change while the
additional factors depict the short-term discrepancy from the main trend inside each sub-
population. See Li and Lee (2005) who proposed the augmented common factor model
generalized by Li (2013) to several factors. The model structure proposed in Delwarde
et al. (2006), by Debón et al. (2011), and by Russolillo et al. (2011) only include a single,
common time factor. As argued in Carter and Lee (1992), this simple arrangement
may enforce greater consistency and is a parsimonious way to model both populations
jointly. However, it also implies that the death rates of the two populations are perfectly
associated, an assumption with far-reaching consequences in risk management.

Our paper innovates in that the new multi-population mortality projection model
we propose is based on mortality improvement rates instead of levels. Recently, several
authors suggested to target improvement rates to forecast future mortality, instead of the
death rates. While the time dependence structure of death rate models are dominated
by the continuing downward trend, the improvement rates are already trend adjusted.
See, e.g., Mitchell et al. (2013) or Aleksic and Börger (2011). The model developed in
this paper appears to be useful for studying securitization mechanisms, as shown by the
Kortis bond issued by Swiss Re in 2010. The payoff of this first longevity trend bond is
linked to the divergence in mortality improvement rates between two countries (US and
UK) and thus nicely fits our proposed model.

Furthermore, the model is fitted properly, recognizing the hidden nature of time
factors which are not treated as unknown parameters to be estimated from the mor-
tality data. Mortality projections are derived by means of the predictive distribution
of the time index, i.e. its a posteriori distribution given past observations. This is the
credibility feature of the proposed approach. New data feed this predictive distribution
as they become available and so help to update mortality projections. This recognizes
the dynamic aspect of mortality forecasting and avoids re-fitting the entire model based
on new data. To the best of our knowledge, this dynamic updating approach has not
been used so far and our numerical illustrations demonstrate its advantages compared
to classical frequentist approaches.

The remainder of this paper is organized as follows. Section 2 gives a short introduc-
tion to evolutionary credibility models. Section 3 carefully presents the credibility model
proposed to project future mortality. In Section 4, we discuss the covariance structure
of the model and address the identifiability problem the model may encounter. Sec-
tion 5 describes a two-step model fitting concept, which studies period and age effects
separately. Section 6 is devoted to empirical illustrations. First, we fit the mortality
experience of the G5 countries using our proposed methodology. Then, we study the
index governing the payoff of the Swiss Re Kortis bond. Finally, we perform succes-
sive forecasts for the Belgian population to illustrate how newly available data can be
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incorporated in revised forecasts. We compare the results to the official forecasts pub-
lished yearly by the Federal Planning Bureau, the Belgian agency in charge of mortality
projections.

2 Evolutionary credibility models

Following the book of Bühlmann and Gisler (2005) and focussing on the aspects that
will be needed later on, this section gives a short introduction to evolutionary credibility
modelling.

Consider a time series (rt,Θt)t∈N with a w-variate stochastic observation process
(rt)t∈N and a v-variate stochastic state (or risk profile) process (Θt)t∈N on a probability
space (Ω,F ,P). The state process (Θt) is unobservable but shall follow a known dynam-
ics. We are now at time T ∈ N and the aim is to predict future states ΘT+k, k ∈ N, and
conditional future expected observations E[rT+k | ΘT+k], k ∈ N. The past observations
r1, . . . , rT are the available information at time T .

Let all (rt,Θt), t ∈ N be square integrable. Then the credibility estimator for ΘT+k,
given the observations till time T , is defined as the orthogonal projection

µT+k|T := Pro (ΘT+k | L(1, r1, . . . , rT )) (2.1)

with respect to the set

L(1, r1, . . . , rT ) :=

{
a+

T∑
t=1

Atrt : a ∈ Rv, At ∈ Rv,w
}

in the Hilbert space of square integrable random variables. In other words, µT+k|T is
the unique element in the linear space L(1, r1, . . . , rT ) that satisfies

E[(µT+k|T −ΘT+k)(X −ΘT+k)] = 0 for all X ∈ L(1, r1, . . . , rT ).

So µT+k|T is the best linear predictor of ΘT+k in terms 1, r1, . . . , rT .
Furthermore, (rt,Θt) is assumed to have a state-space representation of the form

rt = GΘt +Wt, (2.2)

Θt+1 = FΘt + Vt (2.3)

with G ∈ Rv,v, F ∈ Rw,v and white noise processes (Wt) and (Vt). The two white noise
processes shall be serially uncorrelated and also uncorrelated with each other. Their
joint covariance matrix thus has the structure

Cov

((
Vt
Wt

)
,

(
Vs
Ws

))
=

(
Q 0
0 R

)
, (2.4)

Q ∈ Rv,v and R ∈ Rw,w, if t = s and zero else.
Under all these assumptions, the credibility estimator µT+k|T for ΘT+k can be cal-

culated in a recursive way, see Theorem 10.3 in Bühlmann and Gisler (2005). Starting
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from an initial value µ1|0 = E[Θ1], the estimate is sequentially updated by the newest
observation through the recursive formula

µt|t = µt|t−1 +At(rt −Gµt|t−1) (2.5)

for an appropriate matrix At. The step from t to t + 1 then follows the evolution rule
(2.3), i.e.

µt+1|t = Fµt|t. (2.6)

The credibility estimator µT+1|T is obtained by iterating this procedure for t = 1, . . . , T .
Finally, µT+k|T and the credibility estimator for E[rT+k | ΘT+k] = GΘT+k are given by

µT+k|T = F k−1µT+1|T ,

Pro (GΘT+k | L(1, r1, . . . , rT )) = GµT+k|T ,

respectively. This formula is also known as the Kalman recursion or the Kalman filter
algorithm, cf. Brockwell and Davis (2006), and is implemented in the statistical software
R.

A particular example of a stochastic process that can be expressed as an evolutionary
credibility model is an autoregressive moving average (ARMA) process. Let (∆t) follow
an ARMA(p, q) process with AR parameters φ1, . . . , φp, MA parameters θ1, . . . , θq and
innovation terms (Zt). Let d = max{p, q + 1} and set φk = 0 for k > p and θk = 0 for
k > q. According to Hamilton (1994), (∆t) has the structure of (2.2) and (2.3):

∆t =
(
1 θ1 · · · θd−1

)︸ ︷︷ ︸
G


Ht

Ht−1
...

Ht−d+1


︸ ︷︷ ︸

Θt

(2.7)

with a d-dimensional state process Θt = (Ht, Ht−1, . . . ,Ht−d+1)′ following the state
equation 

Ht

Ht−1
...

Ht−d+1


︸ ︷︷ ︸

Θt

=


φ1 · · · φd−1 φd
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0


︸ ︷︷ ︸

F


Ht−1

Ht−2
...

Ht−d


︸ ︷︷ ︸

Θt−1

+


Zt
0
...
0


︸ ︷︷ ︸
Vt

. (2.8)

3 A credibility model for mortality projection

On the basis of the concepts from the previous section, this section introduces and
discusses mortality modelling within the evolutionary credibility framework. This allows
us to apply credibility techniques and helps to make the forecasting more robust.
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3.1 Age-specific improvement rates

We assume that we observe age-specific mortality statistics over an age range of x1 to xn.
So, n is the number of age groups included in the analysis. The mortality data relates
to calendar years 1 to T , and we are now at the beginning of the year T + 1. For each
age x = x1, . . . , xn and year t = 1, . . . , T , we calculate the crude death rate mx(t) as
the ratio of the number of deaths over the initial exposure-to-risk. Our aim is to project
future rates mx(T + 1),mx(T + 2), . . . from the observed rates mx(1), . . . ,mx(T ).

Mitchell et al. (2013) showed that it is advantageous to model the mortality rate
changes rather than the mortality rate levels, because the dependence structure between
ages of mortality is more accurately captured. Following the approach of Mitchell et al.
(2013), we aim to model the log improvement rates

rxt := logmx(t)− logmx(t− 1)

within the evolutionary modelling framework (2.2) and (2.3). Since Lee and Carter
(1992) introduced their celebrated mortality model, it has become very common in the
literature to assume that the general mortality trend and its effect on different age groups
can be separated in a multiplicative way. So we assume that

rxt = βx∆t + εxt, x = x1, . . . , xn, (3.1)

where ∆t reflects the general development of mortality improvements with respect to
calendar time, the parameters βx ∈ R measure the sensitivity of age group x with
respect to the general mortality development, and εxt is some noise. This multiplicative
separation lets the parameters have very intuitive interpretations. Our model (3.1) looks
similar to the Lee-Carter approach, yet recall that the rxt describe the log mortality
improvements and not the log mortality levels.

Another widespread approach in the mortality modelling literature is to interpret
the general mortality trend ∆t as a stochastic time series. We propose to assume that
∆t is in the class of ARMA(p, q) processes of the form (2.7)-(2.8), i.e.

∆t =
(
1 θ1 · · · θd−1

)
Θt = GΘt

and

Θt =


φ1 · · · φd−1 φd
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

Θt−1 +


Zt
0
...
0

 = FΘt−1 + Vt. (3.2)

Apart from the fact that this is a rich and versatile class of time series processes, this
way we obtain a model within the framework of evolutionary credibility models. Con-
sequently, (rxt) has a state-space representation with an observation equation of the
form rx1t...

rxnt

 =

βx1...
βxn

GΘt +

εx1t...
εxnt

 . (3.3)
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This representation shows that (rxt) still has the form of an evolutionary credibility
model according to (2.2)-(2.3). Let the ∆t be Normally distributed with mean δ and
variance σ2

∆,

∆t ∼ N (δ, σ2
∆).

We assume that the error terms εxt have the distribution

εxt ∼ N (0, σ2
ε )

and are independent and also independent from the age-independent time trend ∆ =
(∆t)t∈N.

Conditional on ∆t, the mortality improvement rates (rxt)
xn
x=x1 are independent for

fixed t, but without conditioning on ∆t, they are serially correlated. Assuming that the
noise is Normally distributed will allow us to obtain also predictive distributions for the
credibility estimates, see Section 4.3.

Credibility estimations of future mortality rates depend on past observations through
the recursive credibility formula and are sequentially updated as new observations enter
the study. This recursive structure has positive implications from both the practical and
the theoretical perspective. From the practical perspective, the updating of forecasts
whenever a new observation arrives is numerically cheap. From the theoretical perspec-
tive, the recursive property means that there will be no extreme changes in the forecasts
when a new data point is added. This means that the model will show some kind of
robustness between successive forecasts.

As the specification (3.1) is not identifiable, some constraints are needed. In the
remainder we always assume that

xn∑
x=x1

βx = 1. (3.4)

Considering (3.1) and the assumptions made so far, we see that the correlation of mor-
tality improvements at different ages,

Corr(rx1t, rx2t) =
βx1βx2σ

2
∆√

β2
x1σ

2
∆ + σ2

ε

√
β2
x2σ

2
∆ + σ2

ε

,

may cover the entire range [−1, 1] when σ2
∆ and σ2

ε vary.

3.2 Aggregate mortality improvement rates

If we sum up the age-specific mortality improvement rates with respect to age, the
coefficients βx disappear because they add up to 1 according to (3.4). More precisely,
we define the aggregate errors

ε•t :=

xn∑
x=x1

εxt,
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which obey a Normal distribution with zero mean and variance

σ2
• := nσ2

ε .

Aggregate errors are mutually independent and independent of ∆t. Considering (3.4),
summing over x the identity (3.1) gives

r•t :=

xn∑
x=x1

rxt = ∆t + ε•t (3.5)

and it immediately follows that r•t ∼ N (δ, σ2
∆ +σ2

•). In state-space form, regarding (3.2)
and (3.3), (3.5) reads

r•t = GΘt + ε•t =: GΘt +Wt (3.6)

with state equation

Θt = FΘt−1 + Vt. (3.7)

The covariance matrix of the random vector (V ′t ,W
′
t)
′ is given by(

Q 0
0 R

)
,

where

Q :=


σ2
Z 0 · · · 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 , (3.8)

R := σ2
•. (3.9)

Here, σ2
Z denotes the variance of the Gaussian white noise terms Zt.

In a later stage of analysis, we propose a two-step model fitting procedure. We first
consider the observed r•1, . . . , r•T and we fit model (3.5). An analysis of (3.1) then fol-
lows. The advantage of this approach is that we are allowed to study the dynamics of ∆t

describing improvement rates from the aggregate (3.5) involving the global improvement
r•t and not the detailed age structure βx.

3.3 Multi-population mortality improvement factors

The models (3.1) and (3.5) can be easily extended to integrate male and female improve-
ment rates into a single model. This approach enforces consistency between genders, and
in insurance applications it allows the actuary to evaluate potential diversification ben-
efits between male and female future mortality improvements. More generally, several
populations can be jointly modelled in a similar way. To fix the ideas we describe the
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approach for a pair of populations, considering both genders in the same country index
by i = m for males and i = f for females. In general, i = 1, 2 . . . indexes the populations
to be considered.

Our model specification is as follows. Let r
(m)
xt denote the mortality improvement

rates for males and let r
(f)
xt denote the corresponding mortality improvement rates for

females from the same country. We now assume that model (3.1) applies to both genders,
i.e. that

r
(i)
xt = β(i)

x ∆
(i)
t + ε

(i)
xt for i ∈ {m, f} (3.10)

holds with a certain dependence structure between the two ∆(i)-processes specified later

on. The parameters β
(i)
x add up to 1 for each i ∈ {m, f} in accordance with (3.4).

Furthermore, the error terms ε
(i)
xt in (3.10) are assumed to be mutually independent with

distribution N (0, σ2
iε). The corresponding aggregate structure is then given by

r
(i)
•t = ∆

(i)
t + ε

(i)
•t for i ∈ {m, f}, (3.11)

where ∆
(i)
t ∼ N (δi, σ

2
i∆). Define the multivariate process

r•t :=

(
r

(m)
•t
r

(f)
•t

)
=

(
∆

(m)
t

∆
(f)
t

)
+

(
ε
(m)
•t
ε
(f)
•t

)
.

Let
d := max{pm, qm + 1, pf , qf + 1},

where (pi, qi) is the ARMA order of ∆(i), and denote the gender specific ARMA param-
eters by an additional superscript (i). Then, the state-space representations of r•t is
given by observation equation

(
r

(m)
•t
r

(f)
•t

)
=

(
1 θ

(m)
1 · · · θ

(m)
d−1 0 0 · · · 0

0 0 · · · 0 1 θ
(f)
1 · · · θ

(f)
d−1

)


X
(m)
t
...

X
(m)
t−d+1

X
(f)
t
...

X
(f)
t−d+1


+

(
ε
(m)
•t
ε
(f)
•t

)

=: G̃Θ̃t + W̃t (3.12)
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with state equation

Θ̃t =



X
(m)
t

X
(m)
t−1
...

X
(m)
t−d+1

X
(f)
t

X
(f)
t−1
...

X
(f)
t−d+1


=



φ
(m)
1 · · · φ

(m)
d−1 φ

(m)
d 0 · · · 0 0

1 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

...
...

...
0 · · · 1 0 0 · · · 0 0

0 · · · 0 0 φ
(f)
1 · · · φ

(f)
d−1 φ

(f)
d

0 · · · 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 · · · 0 0 0 · · · 1 0





X
(m)
t−1

X
(m)
t−2
...

X
(m)
t−d

X
(f)
t−1

X
(f)
t−2
...

X
(f)
t−d


+



Z
(m)
t

0
...
0

Z
(f)
t

0
...
0


.

=: F̃ Θ̃t−1 + Ṽt. (3.13)

Equations (3.12) and (3.13) combine the state-space representation (3.6) and (3.7) to a
joint structure and dependency between the genders stems from the innovation errors

Z
(i)
t ∼ N (0, σ2

iZ). They are correlated through a gender correlation parameter γ ∈
[−1, 1], i.e.

Cov
(
Z

(m)
t , Z

(f)
t

)
= γ

√
σ2
mZσ

2
fZ .

This defines the covariance matrices of (Ṽ ′t , W̃
′
t)
′ as

Q :=



σ2
mZ 0 · · · 0 γ

√
σ2
mZσ

2
fZ 0 · · · 0

0 0 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0

γ
√
σ2
mZσ

2
fZ 0 · · · 0 σ2

fZ 0 · · · 0

0 0 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0


, (3.14)

R :=

(
σ2
m• 0
0 σ2

f•

)
(3.15)

respectively.
The model allows for different degrees of homogeneity between the genders. A higher

degree of homogeneity can be achieved by one of the following simplifying assumptions
that reduce the number of model parameters.

(S1) ∆(m) and ∆(f) are ARMA processes of the same order (p, q) and share the common
ARMA parameters φ1, . . . , φp and θ1, . . . , θq.

(S2) In addition to (S1), the variance parameters σ2
iZ and σ2

i• do not depend on the
gender i.
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(S3) In addition to (S2), the drift parameter δi does not depend on the gender i.

(S4) In addition to (S3), the gender correlation parameter is fixed at γ = 1.

All these assumptions can be easily incorporated into the above state-space represen-

tation. Activating all of them leads to the particular case ∆
(m)
t = ∆

(f)
t in which the

mortality improvement factors applying to males and females are both functions of a
single ∆t, i.e.

r
(i)
xt = β(i)

x ∆t + ε
(i)
xt , i ∈ {m, f}. (3.16)

This case is of particular interest as Carter and Lee (1992) suggested to use the same
time index for both genders. To avoid long-run divergence in gender-specific mortality
forecasts, Li and Lee (2005) further proposed to use the same βx for all groups. Here,

we nevertheless allow for gender-specific sensitivities β
(i)
x and leave the final decision to

the user.

3.4 Mortality forecasting

Once the model parameters that enter the state-space representation are calibrated, the
recursive formula according to Section 2 delivers credibility estimators for the future

∆
(i)
T+k, i ∈ {m, f}. Forecasts for the future death rates m

(i)
x,T+k and the corresponding

one-year death probabilities q
(i)
x,T+k then directly follows. Precisely, by iterating the

relationship

m(i)
x (t) = m(i)

x (t− 1) exp
(
β(i)
x ∆

(i)
t + ε

(i)
xt

)
,

we get

m(i)
x (T + k) = m(i)

x (T ) exp

 k∑
j=1

(
β(i)
x ∆

(i)
T+j + ε

(i)
x,T+j

) . (3.17)

Inserting the credibility estimators ∆̂
(i)
T+j gives point predictions

m̂(i)
x (T + k) = m(i)

x (T ) exp

 k∑
j=1

β̂(i)
x ∆̂

(i)
T+j

 (3.18)

of m
(i)
x (T+k). Paths of future m

(i)
x (T+k) can be simulated by (3.17). The corresponding

one-year death probabilities q
(i)
x,T+k and one-year survival probabilities p

(i)
x,T+k are easily

obtained from
q

(i)
x,T+k = 1− p(i)

x,T+k = 1− exp
(
−m(i)

x (T + k)
)
.

Any quantity of interest can then be computed from these life tables.
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4 Covariance structure and identifiability of the model

4.1 Single-population model

The ARMA process ∆ = (∆t)t∈N is stationary Gaussian. The random vector (∆1, . . . ,∆T )′

thus obeys the multivariate Normal distribution with mean vector

δ1T = (δ, . . . , δ)′,

where 1T = (1, . . . , 1)′ ∈ RT , and covariance matrix of the Toeplitz form

Cov(∆t,∆s) = ρ|t−s|σ
2
∆. (4.1)

The ρh ∈ [−1, 1],h ∈ N, with ρ0 = 1 are correlation parameters which are implicitly
given through the underlying ARMA structure. In matrix notation (4.1) reads

σ2
∆CT = σ2

∆


1 ρ1 . . . ρT−1

ρ1 1
. . .

...
...

. . .
. . . ρ1

ρT−1 . . . ρ1 1

 (4.2)

with correlation matrix CT ∈ RT,T . Note that the specification (4.1) has been also
proposed by Sundt (1981) in a credibility context with an autoregressive structure, i.e.
assuming

ρh = ρh, h ∈ N, (4.3)

for some correlation parameter ρ ∈ [−1, 1].
The model specification (3.5) directly implies that (r•1, . . . , r•T )′ is multivariate Nor-

mal with mean vector

δ1T = (δ, . . . , δ)′ (4.4)

and covariance matrix

σ2
•IT + σ2

∆CT . (4.5)

In (4.5), IT denotes the T × T identity matrix. However, the covariance structure (4.5)
may not be identifiable or in other words, not one-to-one with respect to its variance
parameters. Let us make this point clear in the following example.

Example 4.1. Assume that the time factor ∆ obeys the MA(1)-process

∆t = Zt + θZt−1

with independent innovation terms Zt ∼ N (0, σ2
Z). Then, as

Var(∆t) = (1 + θ2)σ2
Z = σ2

∆,

11



we see that σ2
∆ is implicitly given through the error variance σ2

Z and the MA-parameter
θ. Moreover,

Cov(∆t−1,∆t) = θσ2
Z =

θ

1 + θ2
σ2

∆

so that

ρh =

{
θ

1+θ2
if h = 1,

0 if h ≥ 2.

If we replace σ2
∆ by σ̃2

∆, the triples (θ, σ2
∆, σ

2
•) and (θ̃, σ̃2

∆, σ̃
2
•) with

σ̃2
• = σ2

• + σ2
∆ − σ̃2

∆

and θ̃ as the solution of
θ̃

1 + θ̃2
=

θ

1 + θ2

σ2
∆

σ̃2
∆

will produce the same covariance matrix (4.5) provided that σ̃2
• > 0. In fact, it is easy

to verify that

Cov(r•t−1, r•t) = Cov(∆t−1,∆t) =
θ̃

1 + θ̃2
σ̃2

∆ =
θ

1 + θ2
σ2

∆

and

Cov(r•t, r•t) = σ̃2
• + σ̃2

∆ =
(
σ2
• + σ2

∆ − σ̃2
∆

)
+ σ̃2

∆ = σ2
• + σ2

∆.

All autoregressive processes, on the other hand, are identifiable but it is not clear
whether these specifications appropriately explain the true dynamics of r•. The user
should keep this point in mind when he decides to use the single-population model.

4.2 Multi-population model

As before, let us consider two populations to fix the ideas and assume that they consist
in males and females in the same country. Identifiability is granted when considering

(r
(m)
•t , r

(f)
•t ) and when some common structure is assumed.

Lemma 4.2. Assume that (S1) holds, i.e. males and females share common ARMA
parameters. Furthermore, suppose that the ∆(i) are causal. Then,

Cov(∆
(m)
t ,∆(f)

s ) = γρ|t−s|σ
2
∆, (4.6)

where
σ2

∆ =
√
σ2
m∆σ

2
f∆

and ρh is given by the gender individual covariance structure (4.1).

12



Proof. First assume that both ∆(i) follow a MA(q) process with parameters θ0, . . . , θq
with θ0 = 1. Then, for h ∈ N and h ≤ q, the covariance structure (3.14) of the innovation
terms yields that

Cov
(

∆
(i)
t+h,∆

(j)
t

)
= Cov

(
q∑

k=0

θkZ
(i)
t+h−k,

q∑
k=0

θkZ
(j)
t−k

)

=

q∑
k=0

q∑
l=0

θkθlCov
(
Z

(i)
t+h−k, Z

(j)
t−l

)

=

q−h∑
k=0

q∑
l=0

θk+hθlCov(Z
(i)
t−k, Z

(j)
t−l)

=


(∑q−h

k=0 θk+hθk

)
σ2
iZ , i = j(∑q−h

k=0 θk+hθk

)
γ
√
σ2
mZσ

2
fZ , i 6= j.

Taking h = 0 gives

σ2
i∆ = Var

(
∆

(i)
t

)
=

(
q∑

k=0

θ2
k

)
σ2
iZ

and therefore by Cov(∆
(i)
t+h,∆

(i)
t ) = ρhσ

2
i∆,

ρh =

(
q−h∑
k=0

θk+hθk

)(
q∑

k=0

θ2
k

)−1

.

The case (−h) ∈ N works in the same way such that (4.6) holds for any MA(q) process.
The result can be generalized using the moving average representation of ARMA(p, q)

models. Since the ∆(i) are causal, there exist constants ψk ∈ R, k ∈ N, with
∑∞

k=0 |ψk| <∞
such that

∆
(i)
t − δi =

∞∑
k=0

ψkZ
(i)
t−k (4.7)

almost surely and in L2. See Brockwell and Davis (2006) for details. Thus, (4.6) follows
by taking q →∞ and replacing θk by ψk in the above calculations.

Rewriting (4.6) in matrix notation, the covariance matrix between the vectors (∆
(m)
1 , . . . ,∆

(m)
T )′

and (∆
(f)
1 , . . . ,∆

(f)
T )′ is γσ2

∆CT , where CT has been defined in (4.2). The structure di-
rectly follows from Lemma 4.2. Then, the gender-combined random vector

r• = (r
(m)
•1 , . . . , r

(m)
•T , r

(f)
•1 , . . . , r

(f)
•T )′ (4.8)

of past observed aggregate improvement rates is multivariate Normal with mean vector

δ• = (δm, . . . , δm, δf , . . . , δf )′ (4.9)
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and covariance matrix

Σ• =

(
σ2
m•IT + σ2

m∆CT γσ2
∆CT

γσ2
∆CT σ2

f•IT + σ2
f∆CT

)
. (4.10)

Compared to the single-population model, because of the additional parameter γ, there
is no identifiability problem of Σ• and the variance parameters anymore.

Theorem 4.3. In addition to the conditions of Lemma 4.2, assume that the ARMA
order (p, q) satisfies T − 1 > p + q. If γ 6= 0, then Σ• is uniquely determined by the
model parameters, i.e Σ• = Σ̃• implies

(σ2
m•, σ

2
f•, σ

2
m∆, σ

2
f∆, γ, ρ1, . . . , ρp) = (σ̃2

m•, σ̃
2
f•, σ̃

2
m∆, σ̃

2
f∆, γ̃, ρ̃1, . . . , ρ̃p)

where Σ̃• is the covariance matrix corresponding to the alternative parameters.

Proof. Assume that Σ• = Σ̃• and recall structure (4.2) of the correlation matrix CT .
The structure of the diagonal block matrices of (4.10) implies that

σ2
i∆ρh = σ̃2

i∆ρ̃h (4.11)

for i ∈ {m, f} and h = 1, . . . , T − 1. The ρh and ρ̃h are the entries of CT and C̃T re-
spectively. Multiplying (4.11) for males and females and taking the square roots provide
the identities √

σ2
m∆σ

2
f∆ρh =

√
σ̃2
m∆σ̃

2
f∆ρ̃h, (4.12)

h = 1, . . . , T − 1. On the other hand, also the off diagonal matrices γσ2
∆CT and γ̃σ̃2

∆C̃T

agree. Therefore,

γ
√
σ2
m∆σ

2
f∆ρh = γ̃

√
σ̃2
m∆σ̃

2
f∆ρ̃h,

h = 1, . . . , T − 1, and it follows from (4.12) and γ 6= 0 6= γ̃ that γ = γ̃. The condition
T − 1 > p + q enures that ρh1 6= ρh2 and ρ̃h1 6= ρ̃h2 for some h1 6= h2. The identities of
the further parameters follow step by step. Considering the diagonal entries of γσ2

∆CT

and its counterpart, we obtain

γ
√
σ2
m∆σ

2
f∆ = γ̃

√
σ̃2
m∆σ̃

2
f∆

Since γ = γ̃, √
σ2
m∆σ

2
f∆ =

√
σ̃2
m∆σ̃

2
f∆

holds, which in turn proves

ρh = ρ̃h, h = 1, . . . , T − 1, (4.13)
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using (4.12). Relation (4.11) then provides

σ2
i∆ = σ̃2

i∆, i ∈ {m, f}

and σ2
i• = σ̃2

i• follows from
σ2
i• + σ2

i∆ = σ̃2
i• + σ̃2

i∆,

which are the diagonal entries of σ2
i•IT + σ2

i∆CT and that of the alternative parameters
respectively.

4.3 Predictive Distribution

In this part, we assume that ∆(m) and ∆(f) are ARMA processes of the same order
with gender-specific parameters δi, σ

2
i∆ and σ2

i•. This corresponds to assumption (S1).
The predictive distributions under the stronger assumptions (S2) to (S4) can be similarly
obtained by making the parameters gender-common and/or setting γ to 1. For the single
gender model, the appropriate submatrices must be chosen.

In applications, we are interested in the prediction of the future k years(
∆

(m)
T+1, . . . ,∆

(m)
T+k,∆

(f)
T+1, . . . ,∆

(f)
T+k

)
given the past observed aggregate mortality improvement factors (r

(m)
•1 , . . . , r

(m)
•T , r

(f)
•1 , . . . , r

(f)
•T ).

We have already seen that credibility estimators, i.e. point predictions, follow from the
recursive formula presented in Section 2. In the present setting of Normally distributed
error terms, we can even specify the predictive distribution. This allows us to compute
distribution related values, for instance confidence intervals of future mortality rates.
To identify the predictive distribution we will need the following property of a Normal
distribution.

Lemma 4.4. Let (Y1, Y2) ∼ N ((µ1, µ2),Σ) be a joint Normal distribution with

Σ =

(
Σ1 Σ′21

Σ21 Σ2

)
.

Then, conditional on Y1 = y1, Y2 follows a Normal distribution with mean vector

µ2 + Σ21Σ−1
1 (y1 − µ1) (4.14)

and covariance matrix

Σ2 − Σ21Σ−1
1 Σ′21. (4.15)

The conditional expectation (4.14) indeed agrees with the recursive formula (2.5).
Consider structure (2.2) and (2.3) with Normal white noise terms. Then for t = 1, we
have Θ1 = V1 and r1 = GΘ1 +W1, i.e.

Θ1 ∼ N (E[Θ1], Q) and r1 ∼ N (GE[Θ1], GQG′ +R)
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with Cov(Θ1, r1) = QG′. Assigning r1 and Θ1 the roles of Y1 and Y2 respectively, the
conditional expectation of Θ1 given r1 has the structure (4.14), which equals here

E[Θ1] +QG′
(
GQG′ +R

)−1
(r1 −GE[Θ1]) .

This is exactly the recursive formula (2.5) for µ1|1 = Pro(Θ1 | L(1, r1)) with initial value
µ1|0 = E[Θ1]. The general structure µt|t follows inductively.

In order to apply Lemma 4.4 to our mortality model, we require the distribution of
the random vector(

r
(m)
•1 , . . . , r

(m)
•T , r

(f)
•1 , . . . , r

(f)
•T ,∆

(m)
T+1, . . . ,∆

(m)
T+k,∆

(f)
T+1, . . . ,∆

(f)
T+k

)
(4.16)

gathering past aggregate mortality improvement factors and future time indices. The

T × k correlation matrixCT,k of the past (∆
(i)
1 , . . . ,∆

(i)
T ) and the future (∆

(i)
T+1, . . . ,∆

(i)
T+k)

up to horizon T + k is given by

CT,k =


ρT ρT+1 . . . ρT+k−1

ρT−1 ρT . . . ρT+k−2
...

... . . .
...

ρ1 ρ2 . . . ρk

 .

The (t, l)-th entry in CT,k is Corr(∆
(i)
t ,∆

(i)
T+l) = ρT+l−t and can be calculated by equa-

tion (5.2).
Further, define Ck,T = C ′T,k. The random vector (4.16) is multivariate Normal with

mean vector δ12T+2k and covariance matrix
σ2
m•IT + σ2

m∆CT γσ2
∆CT σ2

m∆CT,k γσ2
∆CT,k

γσ2
∆CT σ2

f•IT + σ2
f∆CT γσ2

∆CT,k σ2
f∆CT,k

σ2
m∆Ck,T γσ2

∆Ck,T σ2
m∆Ck γσ2

∆Ck

γσ2
∆Ck,T σ2

f∆Ck,T γσ2
∆Ck σ2

f∆Ck


and Lemma 4.4 can now be applied.

Theorem 4.5. The predictive distribution for (∆
(m)
T+1, . . . ,∆

(m)
T+k,∆

(f)
T+1, . . . ,∆

(f)
T+k) given

(r
(m)
•1 , . . . , r

(m)
•T , r

(f)
•1 , . . . , r

(f)
•T ) is multivariate Normal with mean vector(

δm1k
δf1k

)
+

(
σ2
m∆Ck,T γσ2

∆Ck,T

γσ2
∆Ck,T σ2

f∆Ck,T

)
(
σ2
m•IT + σ2

m∆CT γσ2
∆CT

γσ2
∆CT σ2

f•IT + σ2
f∆CT

)−1
(
r

(m)
• − δm1T

r
(f)
• − δf1T

)
(4.17)

and covariance matrix(
σ2
m∆Ck γσ2

∆Ck

γσ2
∆Ck σ2

f∆Ck

)
−
(
σ2
m∆Ck,T γσ2

∆Ck,T

γσ2
∆Ck,T σ2

f∆Ck,T

)
(
σ2
m•IT + σ2

m∆CT γσ2
∆CT

γσ2
∆CT σ2

f•IT + σ2
f∆CT

)−1(
σ2
m∆CT,k γσ2

∆CT,k

γσ2
∆CT,k σ2

f∆CT,k

)
. (4.18)
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In fact, (4.17) coincides with the credibility estimator. Since (4.17) equals

E
[(

∆
(m)
T+1, . . . ,∆

(m)
T+k,∆

(f)
T+1, . . . ,∆

(f)
T+k

)∣∣∣ r(m)
•1 , . . . , r

(m)
•T , r

(f)
•1 , . . . , r

(f)
•T

]
,

it is the Bayes estimator for the future ∆-variables. Furthermore, it is also an affine
function of r•, i.e. a particular element of the Hilbert space L(1, r•1, . . . , r•T ). Thus,
the claim follows from the definition of the credibility estimator (2.1).

5 Two-step model fitting concept

5.1 Model selection

As our models are fully specified, with Normally distributed components, the maximum
likelihood approach is expected to deliver accurate estimations of the model parameters.
We describe the fitting concept on the basis of the gender-combined model. As moti-
vated in Section 3, we first fit the age-aggregate model to study period and age-effects
separately. Let r• gather the observed aggregate improvement rates as defined in (4.8).
The log-likelihood function

logL = −1

2
log |Σ•| −

1

2
(r• − δ•) Σ−1

• (r• − δ•)′ (5.1)

of a 2T -variate Normal distribution with mean vector δ• and covariance matrix Σ• has
to be maximized with respect to the model parameters. Notice that the input variables
for the optimization are the ARMA parameters and the innovation variances σ2

iZ , which
appear in the state-space representation (3.12) to (3.15), rather than the correlation
parameters ρh and the variance terms σ2

i∆. The latter quantities can be deduced from
the input variables using the identities

ρh =

∑∞
j=0 ψjψj+h∑∞

j=0 ψ
2
j

(5.2)

and

σ2
i∆ = σ2

iZ

∞∑
j=0

ψ2
j ,

where (ψj)j∈N comes from the corresponding MA(∞)-representation.
The model selection procedure in the gender-combined model then follows a backward

approach. We start from a first model allowing for dynamics specific to each gender and
we simplify it by activating the assumptions (S1) to (S4) step by step. In each step,
ARMA(p, q) models of low orders are fitted to the underlying data. The candidate
models are evaluated by using the Akaike information criterion with correction for finite
samples (AICc), which is given by

AICc = −2 logL+ 2k +
2k(k + 1)

T − k − 1
,
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where k is the dimension of the parameter space. The AICc-best models proceed to the
second stage of fitting. Nested models can be compared by means of likelihood-ratio
tests. Simple models should be preferred if the difference of the log-likelihoods is not
significant.

5.2 Age-specific structure

Given the parameters of the age-aggregate model, we calibrate the age-specific coef-

ficients β
(i)
x and the residual variances σ2

iε appearing in the age-specific model (3.10),
which was

r
(i)
xt = β(i)

x ∆
(i)
t + ε

(i)
xt .

Notice that for each age x, the random vector (r
(i)
x1 , . . . , r

(i)
xT ) is multivariate Normal with

mean vector
β(i)
x δi1T = (β(i)

x δi, . . . , β
(i)
x δi)

′

and covariance matrix
σ2
iεIT + β2

xσ
2
i∆CT .

The corresponding Normal log-likelihood function can thus be maximized with respect

to the mean β
(i)
x δi for each age x separately, which gives

β̂
(i)
x δi =

1

T

T∑
t=1

r
(i)
xt .

As the analysis of the aggregate mortality improvement rates r
(m)
•t and r

(f)
•t gives

δ̂i =
1

T

T∑
t=1

r
(i)
•t ,

we finally choose a plug-in estimator for β
(i)
x = β

(i)
x δi
δi

as

β̂(i)
x =

(
T∑
t=1

r
(i)
•t

)−1 T∑
t=1

r
(i)
xt , (5.3)

which add up to 1. Hence, constraint (3.4) is satisfied. For σ2
iε = 1

nσ
2
i•, we choose

σ̂2
iε =

1

n
σ̂2
i•. (5.4)
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Country (S1) (S2) (S3) (S4) optimal model

France - - - X AR(1)
Germany - - X - MA(3)

Japan - - X - ARMA(1,2)
UK - - - X MA(1)

USA - - X - AR(2)

Table 6.1: Results of the model selection procedure.

6 Empirical studies

6.1 Mortality projection models for the G5 countries

This section aims to analyze the pattern of mortality decline in the G5 countries (France,
Germany, Japan, UK and US). We consider mortality data provided by the Human-
Mortality-Database (2015). The analysis includes the ages x1 = 21 to xn = 100 (n = 80)
and the years from 1970 to the latest available time point. Observations before 1970
are not included since there is a structural break in the 70s as documented in Coelho
and Nunes (2011). Thus, t = 1 corresponds to the mortality improvement from calendar
year 1970 to 1971 whereas T corresponds to the latest observation period. These choices
are for illustrational purposes and our model is generally applicable for any choices of
ages and years in fit.

Figure 6.1 displays the observed age-aggregated mortality improvements r
(i)
•t where

i = m for males and i = f for females of all G5 countries. Both series appear to
be strongly correlated. Mortality statistics depicted in Figure 6.1 indicate negative

correlation between r
(i)
•t and r

(i)
•t+1. This property is a consequence of the typical zigzag

pattern, i.e. large improvements in mortality rates are followed by small improvements
(or even declines) and vice versa. This apparent behavior also rules out time-invariant

random effects in (3.1), i.e. ∆
(i)
t = ∆(i) for all t ∈ N, as this specification implies

Cov(r
(i)
•t , r

(i)
•s ) = Var(∆(i)) > 0 for all t 6= s. Hence, ∆

(i)
t = ∆(i) would constrain r

(i)
•t

and r
(i)
•s to be positively correlated among all years t and s which contradicts empirical

evidence in Figure 6.1

Results

The optimal models, i.e. the AICc-minimum models, for each country are summarized in
Table 6.1 and Table 6.2. The checkmarks in Table 6.1 indicate which of the simplifying
assumptions (S1) to (S4) is used in the final model. The corresponding model parameters
are given in Table 6.2. We see that the flexibility of our model catches up the country-
specific mortality characteristics. It is worth to mention that the simple white noise
model, i.e. ARMA(0,0), is never optimal. This has great consequence for mortality
forecasts as we point out next.
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France

Year

1971 1981 1991 2001 2011

−
6

−
4

−
2

0
West Germany

Year

1971 1981 1991 2001 2011

−
4

−
2

0
2

Japan

Year

1971 1981 1991 2001 2011

−
8

−
6

−
4

−
2

0
2

4
6

UK

Year

1971 1981 1991 2001 2011

−
4

−
3

−
2

−
1

0
1

2

USA

Year

1971 1981 1991 2001 2011

−
4

−
3

−
2

−
1

0
1

2

Figure 6.1: Age-aggregated mortality improvements r
(i)
•t of males (solid line) and females

(dashed line).
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Country δm δf σ2
m∆ σ2

f∆ σ2
m• σ2

f• γ ARMA parameters

France −1.410 1.636 0.328 1 φ1 = −0.388
Germany −1.564 1.999 0.026 0.808 θ1 = −0.290, θ2 = −0.089, θ3 = 0.646

Japan −1.770 5.113 0.004 0.862 φ1 = 0.93, θ1 = −1.492, θ2 = 0.686
UK −1.212 1.703 0.348 1 θ1 = −0.384

USA −0.996 1.899 0.015 0.882 φ1 = −0.282, φ2 = 0.258

Table 6.2: Model parameters.

6.2 Modelling Kortis Bond payoff

In December 2010, Swiss Re issued an index-linked bond through the Kortis Capital
special purpose vehicle, paying quarterly floating coupons (at a margin of 5% above
the three-month LIBOR value) and returning (part of) the principal at maturity. The
principal is linked to an index measuring the divergence in mortality rates between male
populations in England & Wales (representing about 90% of the UK population) and
the US. Precisely, if the so-called Longevity Divergence Index Value (LDIV) is greater
than 3.4%, then the principal of the bond is reduced linearly until full exhaustion of the
principal if the LDIV is greater than 3.9%. The LDIV is computed as follows. First, an
averaging period of eight years is used to calculate the observed improvement in death
rates in each population for men at different ages, i.e.

1−

(
m

(i)
x (t)

m
(i)
x (t− 8)

) 1
8

= 1− exp

1

8

7∑
j=0

r
(i)
x,t−j

 where i ∈ {US,UK}.

Second, an improvement index is calculated for each year and country over a specific
age range using

I
(UK)
t =

1

11

85∑
x=75

1− exp

1

8

7∑
j=0

r
(UK)
x,t−j


and

I
(US)
t =

1

11

65∑
x=55

1− exp

1

8

7∑
j=0

r
(US)
x,t−j

 .

Finally, the LDIV is calculated for year t as

LDIVt = I
(UK)
t − I(US)

t .

The principal of the Kortis bond is then reduced by

PRF = max

{
min

{
LDIV (2016)− 3.4%

3.9%− 3.4%
, 1

}
, 0

}
,
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Figure 6.2: Historical path of the Kortis bond LDIV and forecast until 2030.

also known as principal reduction factor. For a detailed analysis of the Kortis bond, we
refer the reader to Hunt and Blake (2015).

Let us now use the joint modelling of UK and US male population to calculate the
performances of this bond. Specifically, the mortality projection model is used to forecast
mortality for both populations and we calculate the LDIV in each case. The forecast is
based on a joint US-UK model consisting in an ARMA(1,3) model with gender-specific
mean and variance parameters and γ not fixed at 1, i.e. model assumption (S1) holds.
Following Hunt and Blake (2015), the fit is based on observations of the years 1950 to
2008 and the ages 50 to 100. Then, forecasts are updated by including the observations
for 2009 and 2010 respectively. The projection depicted in Figure 6.2 is very similar to
the one displayed in Figure 8 of Hunt and Blake (2015). As these authors, we anticipate
that the LDIV reaches a maximum near the end of the observation period and will
decrease in value from that point. However, it is interesting to compare the impact
of including new observations on this forecast. We see that the peak at the maximum
becomes more marked when newly data are included in the analysis, without modifying
the decreasing path after the maximum has been reached.

6.3 A detailed analysis for Belgium

In most countries, governmental agencies regularly publish mortality projections. In
Belgium, the Federal Planning Bureau now produces projected life tables on an annual
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basis, based on the most recent observations. However, standard forecasting approaches
do not incorporate any smoothing procedure over time and this may cause some insta-
bility from one forecast to another. This is due to the fact that the model is entirely
re-fitted based on an extended data set and that no connection is made between the
successive projections. In this section, we show that the model proposed in this paper
easily incorporates newly available data to revise current longevity forecasts.

We use Belgian data available from Statistics Belgium (http://statbel.fgov.be/),
which also publishes official forecasts for the remaining life expectancy at the age of 65.
To be considered is mortality after retirement age 65 for the calendar years 1970 to 2010.
In a later stage of analysis we supplement these observations with calendar years 2011
and 2012 to study the robustness over successive forecasts.

Calibrating the gender-combined model leads to the model where all simplifying
assumptions (S1) to (S4) are activated. In the optimal model, ∆(m) and ∆(f) are
ARMA(1,1) processes with parameters φ1 = −0.999 and θ1 = 0.429. Further model
parameters are shown in Table 6.3.

Table 6.3 also demonstrates estimates for the age-aggregate mortality improvement
model implicitly given by the Lee-Carter model. Recall that in the Lee-Carter frame-

work, the log death rates logm
(i)
x (t), i ∈ {m, f}, are decomposed by a principal compo-

nent analysis into α
(i)
x + β

(i)
x κ

(i)
t where the time factor κ

(i)
t obeys an ARIMA dynamics.

Therefore,

xn∑
x=x1

(
logm(i)

x (t)− logm(i)
x (t− 1)

)
=

xn∑
x=x1

β(i)
x (κ

(i)
t − κ

(i)
t−1) = κ

(i)
t − κ

(i)
t−1

for i ∈ {m, f}. As in the majority of empirical studies conducted with the Lee-Carter

model, we assume that κ
(i)
t obeys the random walk with drift model

κ
(i)
t − κ

(i)
t−1 = δiκ + S

(i)
t

with independent error components S
(i)
t ∼ N (0, σ2

iκ). Furthermore, the residual variance
between the observed and fitted model is denoted by σ2

i◦ which is the analog term to σ2
i•

in our model. Even though both models are based on a similar structure, the differences
in the estimated values are remarkable. Drift parameters clearly vary from those of the
Lee-Carter model. What is even more important is how the total variances σ2

i•+σ
2
i∆ and

σ2
i◦ + σ2

iκ are allocated in the two models. While the Lee-Carter mortality improvement
model gives more weight to the measurement variance σ2

i◦, the innovation variance σ2
i∆

is dominating in our model. Notice that the innovation error affects all ages through the

sensitivity factor β
(i)
x .

6.4 Forecasts of period life expectancies

We illustrate the forecasts of our mortality model on the basis of period life expectancies.
Given the predicted survival probabilities p̂x,T+k, see Subsection 3.4, the period life
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δm δf σ2
m∆ σ2

f∆ σ2
m• σ2

f•

Our model −0.554 1.920 0.180
Lee-Carter −0.434 −0.522 0.330 0.664 1.790 0.699

Table 6.3: Estimated mean and variance parameters. For the Lee-Carter models, the
values are the estimates for δiκ, σ2

iκ and σ2
i◦ respectively.

Our model Lee-Carter Lee-Carter
with mx(2010) with αx

male 22.5540 21.9329 19.5003
female 25.3981 25.3079 23.2666

Table 6.4: Point forecasts of period life expectancy in 2050

expectancy ê65(T + k) at age 65 in calendar year T + k can be calculated using the
formula

ê65(T + k) =
1

2
+
∑
j≥1

j−1∏
l=0

p̂65+l,T+k. (6.1)

The predicted mortality improvements are applied on the last observation m
(i)
x (2010).

Table 6.4 shows point predictions ê65(2050) and the same point forecasts obtained by the
Lee-Carter model. Considering the Lee-Carter forecast, applying the mortality reduction
factors to the last observations mx(2010) greatly affects the projected e65(T +k). In the

remainder, Lee-Carter forecasts use m
(i)
x (T ) as an initial value instead of the offsets α

(i)
x .

In this case, the forecasts roughly agree.
To conclude, let us show that the model proposed in the present thesis solves the

robustness issue mentioned in the introduction, when applied sequentially over the years.
To this end, we fit the model using data up to 2010 and update the predictive distribu-
tion by using data up to years 2011 and 2012. This provides three forecasts of future
mortality that we compare together as well as to the Lee-Carter forecasts and the three
official forecasts published by Statistics Belgium over the same period. Figure 6.3 shows
the forecasts for e65(T + 1), . . . , e65(2015) with T = 2010, 2011 and 2012, starting from
the latest available e65(T ). It can be clearly seen that differences in the initial values
are stabilized over time for our model, whereas forecasts by Lee-Carter are just straight
lines starting from the different initial values. The robustness is a consequence of the
underlying ARMA structure, i.e. mortality improvements not being independent in time.
More precisely, the estimated autocorrelation function of the time index is negative for

lags of size one. Thus, ∆
(i)
t is likely to be followed by ∆

(i)
t+1 going into the opposite direc-

tion. By (3.17), the deviations cancel out. On the other hand, mortality improvements
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Figure 6.3: Comparison of predicted paths of period life expectancies. In the top figure
we compare predictions of our model (solid line) to Lee-Carter (dashed line). In the
bottom figure, our predictions are compared to the predictions of Statistics Belgium
(dashed line). The three consecutive lines are based on data up to 2010, 2011 and 2012
respectively.

are independent under the Lee-Carter model or under any random walk model. Thus,
outliers remain and strongly impact the future life expectancy.

7 Conclusion

We showed how evolutionary credibility modeling can be successfully applied for the
forecasting of mortality in single and multiple populations. The focus on mortality
improvements rather than mortality levels combined with the recursive ARMA structure
that we used leads to robustness of the forecasts for successive years. Our empirical
analysis of Belgian data confirms this advantage compared to models of Lee-Carter type.
With the Kortis bond we gave another example where such robustness is a desirable
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property. By using Normal distribution assumptions, the credibility estimator exactly
equals the Bayes estimator in our model. Relaxing the distribution assumptions would
require sophisticated estimation techniques for the Bayes estimator, while the credibility
estimator keeps its nice and simple form. Therefore we think that credibility theory is
a very useful technique for mortality forecasting of multiple populations, far beyond the
scope of this paper.
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Bühlmann, H. and A. Gisler (2005). A course in credibility theory and its applications.
Springer.

Carter, L. R. and R. D. Lee (1992). Modeling and forecasting us sex differentials in
mortality. International Journal of Forecasting 8 (3), 393–411.

Coelho, E. and L. C. Nunes (2011). Forecasting mortality in the event of a struc-
tural change. Journal of the Royal Statistical Society: Series A (Statistics in Soci-
ety) 174 (3), 713–736.

Czado, C., A. Delwarde, and M. Denuit (2005). Bayesian poisson log-bilinear mortality
projections. Insurance: Mathematics and Economics 36 (3), 260–284.

Debón, A., F. Montes, and F. Mart́ınez-Ruiz (2011). Statistical methods to compare
mortality for a group with non-divergent populations: an application to spanish re-
gions. European Actuarial Journal 1 (2), 291–308.

Delwarde, A., M. Denuit, M. Guillen, A. Vidiella, et al. (2006). Application of the
poisson log-bilinear projection model to the g5 mortality experience. Belgian Actuarial
Bulletin 6 (1), 54–68.

Girosi, F. and G. King (2008). Demographic forecasting. Princeton University Press.

26



Hamilton, J. D. (1994). Time series analysis, Volume 2. Princeton university press
Princeton.

Human-Mortality-Database (2015). University of California, Berkeley (USA),
and Max Planck Institute for Demographic Research (Germany). Available at
www.mortality.org or www.humanmortality.de (data downloaded on May 2nd, 2015).

Hunt, A. and D. Blake (2014). A general procedure for constructing mortality models.
North American Actuarial Journal 18 (1), 116–138.

Hunt, A. and D. Blake (2015). Modelling longevity bonds: Analysing
the swiss re kortis bond. Insurance: Mathematics and Economics,
http://dx.doi.org/10.1016/j.insmatheco.2015.03.017.

Kogure, A., K. Kitsukawa, and Y. Kurachi (2009). A bayesian comparison of models for
changing mortalities toward evaluating longevity risk in japan. Asia-Pacific Journal
of Risk and Insurance 3 (2), 1–22.

Kogure, A. and Y. Kurachi (2010). A bayesian approach to pricing longevity risk
based on risk-neutral predictive distributions. Insurance: Mathematics and Eco-
nomics 46 (1), 162–172.

Lee, R. D. and L. R. Carter (1992). Modeling and forecasting us mortality. Journal of
the American statistical association 87 (419), 659–671.

Li, J. (2013). A poisson common factor model for projecting mortality and life ex-
pectancy jointly for females and males. Population studies 67 (1), 111–126.

Li, J. (2014). An application of MCMC simulation in mortality projection for populations
with limited data. Demographic Research 30 (1), 1–48.

Li, N. and R. Lee (2005). Coherent mortality forecasts for a group of populations: An
extension of the lee-carter method. Demography 42 (3), 575–594.

Mitchell, D., P. Brockett, R. Mendoza-Arriaga, and K. Muthuraman (2013). Modeling
and forecasting mortality rates. Insurance: Mathematics and Economics 52 (2), 275–
285.

Pedroza, C. (2006). A bayesian forecasting model: Predicting us male mortality. Bio-
statistics 7 (4), 530–550.

Russolillo, M., G. Giordano, and S. Haberman (2011). Extending the lee–carter model:
a three-way decomposition. Scandinavian Actuarial Journal 2011 (2), 96–117.

Sundt, B. (1981). Recursive credibility estimation. Scandinavian Actuarial Jour-
nal 1981 (1), 3–21.

27



Yang, S. S. and C.-W. Wang (2013). Pricing and securitization of multi-country longevity
risk with mortality dependence. Insurance: Mathematics and Economics 52 (2), 157–
169.

Zhou, R., J. S.-H. Li, and K. S. Tan (2013). Pricing standardized mortality securiti-
zations: A two-population model with transitory jump effects. Journal of Risk and
Insurance 80 (3), 733–774.

28


	Introduction
	Evolutionary credibility models
	A credibility model for mortality projection
	Age-specific improvement rates
	Aggregate mortality improvement rates
	Multi-population mortality improvement factors
	Mortality forecasting

	Covariance structure and identifiability of the model
	Single-population model
	Multi-population model
	Predictive Distribution

	Two-step model fitting concept
	Model selection
	Age-specific structure

	Empirical studies
	Mortality projection models for the G5 countries
	Modelling Kortis Bond payoff
	A detailed analysis for Belgium
	Forecasts of period life expectancies

	Conclusion

