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Vincent Rahlia, Joe Wellsb, John Pirieb, Fairouz Kamareddineb

aSnT, University of Luxembourg, Luxembourg

bHeriot-Watt University, Edinburgh, UK

Abstract

Compilers for languages with type inference algorithms often produce confusing
type error messages and give a single error location which is sometimes far away
from the real location of the error. Attempts at solving this problem often (1) fail
to include the multiple program points which make up the type error; (2) report
tree fragments which do not correspond to any place in the user program; and
(3) give incorrect type information/diagnosis which can be highly confusing. We
present Skalpel, a type error slicing tool which solves these problems by giving
the programmer all and only the information involved with a type error to
significantly aid in diagnosis and repair of type errors. Skalpel relies on a simple
and general constraint system, a sophisticated constraint generator which is
linear in program size, and a constraint solver which is terminating. Skalpel’s
constraint system can elegantly and efficiently handle intricate features such as
SML’s open. We also show that the Skalpel tool is general enough to deal not
only with one source code file and one single error, but highlights all and only
the possible locations of the error(s) in all affected files and produces all the
culprit multiple program slices.

Keywords: Constraint-based type inference, Automated type inference,
Automated error diagnosis, Type error slicing, Improved error reports.

1. Introduction

Higher-order functional programming languages such as Standard ML (SML),
Haskell, and OCaml rely on type systems which allow automatic type inference,
freeing programmers from explicitly writing types. These type inference algo-
rithms allow one to detect programming errors at compile time. Unfortunately,
these compilers often give confusing type error reports which waste users’ valu-
able time during error correction. We present Skalpel, a type error slicing tool
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which helps programmers by isolating a program slice containing exactly the
parts of the ill-typed program contributing to an error. The produced slice
contains all and only the program parts related to the error.

Milner’s W algorithm [18] is the original type-checking algorithm of the
functional core of ML. Implementations of W generally locate errors at or near
the syntax tree node being visited when unification fails, and this is unsatis-
factory. Also, it blames a single abstract syntax tree node when unification
fails. Following W, other algorithms try to do better by reorganizing the type-
checking algorithm so that it fails at a node that is meant to be closer to the
“real” error location. For example, Lee and Yi proved that the folklore algo-
rithm M [36] finds errors “earlier” (this measure is based on the number of
recursive calls of the algorithm) than W and claimed that the combination of
these two algorithms “can generate strictly more informative type-error mes-
sages than either of the two algorithms alone can”. Similar claims are made
for W’ [39] and UAE [64]. McAdam observes that W suffers a left-to-right
bias and tries to eliminate it by replacing the unification algorithm used in the
application case of W by another operation called unification of substitutions.
McAdam explains that the left-to-right bias in W arises because in the case of
applications, “the substitution from a left-hand subexpression is applied to the
type-environment before traversing the right-hand side expression” [39]. His
unification of solutions allows one “to infer types and substitutions for each
subexpression independently” [39]. Unification of substitutions is then used to
combine the inferred substitutions. Yang claims that UAE’s primary advantage
is that it also eliminates this bias. However, all the algorithms mentioned above
retain a left-to-right bias in handling of let-bindings and they all blame only one
syntax tree node for each type error when in fact a node set is at fault. When
only one node is reported as the error site, it is often far away from the actual
programming error. The situation is made worse because the blamed node de-
pends on internal implementation details such as the order in which the abstract
syntax tree is traversed. The confusion is worsened because these algorithms
usually exhibit in error messages (1) an internal representation of the program
subtree at the blamed location which often has been transformed substantially
from what the programmer wrote, and (2) inferred type details which were not
written by the programmer and which are anyway erroneous and confusing.

Since these early algorithms, many approaches have been proposed to in-
fer types and report type errors. For example, constraint-based type inference
algorithms [43, 47, 48] separate constraint generation and constraint solving.
Many approaches use this idea to improve error reporting. A probably incom-
plete list includes [41, 25, 26, 23, 33, 32, 27, 34, 29, 52, 53, 54, 50, 44, 67, 68].
Independently from this separation, there exist other approaches toward im-
proving errors [66]: error explanation systems [8, 20, 19, 65] which focus on
explaining the reasoning steps leading to a type error, and error reporting sys-
tems [60, 57, 13] which focus on trying to precisely locate errors in pieces of
code. There are also approaches that report type errors together with sugges-
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tions for changes that would solve the errors [28, 38]. Some of these approaches
are discussed in Sec. 8.

The problem of automatically finding type errors and of reporting possible
solutions is very difficult and to solve it automatically is even more difficult.
Every bit of the syntax, every part of the program must be automatically labeled
for precise blaming, and in constraint based approaches, constraints need to
be automatically generated and solved, and finding solutions can lead to new
constraints and a combinatorial constraints size explosion.

Skalpel is based on Haack and Wells’ type error slicer [25, 26], which re-
ports all and only the program parts related to errors. Haack and Wells’ system
makes use of intersection types to deal with polymorphic let-bindings. Given
a let-expression of the form let val x = e in b end, their system makes copies
of the constraints generated for e, and this for every occurrence of x in b. Con-
straints associated to identifiers are accumulated using intersection types. This
can therefore lead to the exponential growth of the size of the constraint term
generated for an expression. Instead, to solve this issue, Skalpel adopts variants
of the polymorphic let-constraints and type scheme instantiations of Pottier and
Rémy [48]. These constraints “allow building a constraint of linear size” [47]. In
a concern for efficiency, other error reporting system have also adopted similar
constraints, such as [29].

Skalpel (and its precursor developed by Haack and Wells) differs from the
above systems by reporting all and only the program parts related to errors
without any bias. Skalpel attaches program points (labels) to generated con-
straints, so that when unification of two constraints fails, we can report the
labels responsible for this failure, giving a full description of the error in term of
program points. We annotate constraint syntax forms with these labels, written
〈ct , l〉 to describe that the constraint term ct is involved with the set of program
points l . When Skalpel is asked to check a program for type errors, it runs its
sophisticated constraint generator/solver. If solving the constraints fails, i.e., if
there is an error in the code, Skalpel automatically decides which parts of the
program are responsible for the error. Then, Skalpel generates a type error slice
highlighting the minimum amount of information responsible for the type error
in the code. By looking at the highlighted regions, the user can be confident
that the type error can be fixed in one of the highlighted locations and that non-
highlighted locations do not contribute to any error. Our contributions include
the following:

• Skalpel avoids Haack and Wells’ combinatorial constraint size explosion
using Pottier and Rémy’s-like let-constraints [48].

• Skalpel handles almost all of SML, including structures and signatures,
and intricate features such as open (see our webpage for example for more
details [5]). We achieve this with our novel hybrid constraint/environments.
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• The constraint generator is linear in the size of the program and the con-
straint solver is terminating (Lem. 6.2 and 6.4).

• Skalpel only shows program fragments which originate from the user pro-
gram.

• Skalpel shows all the program locations that contribute to an error.

• If the source code fed to Skalpel contains multiple separate type errors,
Skalpel produces all the culprit multiple program slices (see Fig. 6).

• In order to deal with “real” size programs, the type error slices that Skalpel
reports to the user may involve more than one file of source code and
highlighting is given in all affected files (see Fig. 5).

Sec. 2 discusses the basic notation used. Sec. 3 provides some motivating ex-
amples. Sec. 4 informally describes the overall design of Skalpel. Sec. 6 gives the
technical core of Skalpel. In particular, we discuss our new constraint represen-
tation which was vital for us overcoming the constraint size explosion challenge
when dealing with an entire programming language such as SML. We show that
given a program, our constraint generator produces a constraint of size linear
in the size of the program. We also show that constraint solving terminates. In
addition to this, we present our minimization algorithm, responsible for gath-
ering precise errors, and our enumeration algorithm, which allows us to locate
entirely distinct error slices, sometimes providing different explanations for the
same programming error. We then give our representation for type error slices.
We show that if the user’s program had an error, then at the end of constraint
solving, minimization and enumeration, the user is given a type error slice which
contains all and only the pieces of code relevant to the error. Sec. 7 presents
our design principles for Skalpel. Sec. 5 illustrates with a worked example how
Skalpel automatically carries out error finding and reporting. Related work is
discussed in Sec. 8. Finally, we conclude in Sec. 9.

2. Notation

Let i, j,m, n, p, q range over the set N of natural numbers. If v ranges over
a class C (proper or small), then vx (where x can be anything) and v′, v′′,
etc., also range over C . Let s range over sets. If v ranges over s, then let
v range over P(s), the power set of s. Let dj(s1, . . . , sn) (“disjoint”) hold iff
for all i, j ∈ {1, . . . , n}, if i �= j then si ∩ sj = ∅. Let s1 � s2 be s1 ∪ s2 if
dj(s1, s2) and undefined otherwise. Let �x, y� be the pair of x and y. If rel is
a binary relation (a pair set), let (x rel y) iff �x, y� ∈ rel , let the inverse of rel
be rel−1 defined as {�x, y� | �y, x� ∈ rel}, let dom(rel) = {x | �x, y� ∈ rel},
let ran(rel) = {y | �x, y� ∈ rel}, let s � rel = {�x, y� ∈ rel | x ∈ s}, and let
s � rel = {�x, y� ∈ rel | x �∈ s}. Let f range over functions (a special case of
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Figure 1 Conditionals, pattern matching, tuples (testcase 121)

fun g x y =

let val f = if y

then fn => fn z => z

else fn z => z

val u = (f, true)

in (#1 u) y

end

binary relations), let s → s′ = {f | dom(f ) ⊆ s ∧ ran(f ) ⊆ s′}, and let x �→ y
be an alternative notation for �x, y� used when writing some functions. Let
f1 + f2 = f2 ∪ (dom(f2) � f1). If f1, f2 ∈ s1 → P(s2) then let f1 � f2 = {x �→ f1 ∪ f2 |
x ∈ dom(f1)∩ dom(f2)}∪ dom(f2) � f1 ∪ dom(f1) � f2. A tuple t is a function such
that dom(t) ⊂ N and if 1 ≤ j ∈ dom(t) then j − 1 ∈ dom(t). Let t range over
tuples. If v ranges over s then let −→v range over tuple(s) = {t | ran(t) ⊆ s}.
We write the tuple {0 �→x0, . . . , n �→xn} as 〈x0, . . . , xn〉. Let @ append tuples:
〈x1, . . . , xi〉@〈y1, . . . , yj〉 = 〈x1, . . . , xi, y1, . . . , yj〉. Given n sets s1, . . . , sn, let
s1, ..., sn be {〈x1, . . . , xn〉 | ∀i ∈ {1, . . . , n}.xi ∈ si}. Note that s1, ..., sn ⊆
tuple(s1 ∪ · · · ∪ sn). We write R∗ for the reflexive transitive closure of reduction
relation R.

3. Motivating Examples

This section gives examples extracted from our testcase database motivating
Skalpel. Our testcase database is distributed with the packages and archives we
provide [5]. Type error slices are highlighted with red. Purple and blue highlight
error end points (sources of conflict).

3.1. Conditionals, pattern matching, records

Fig. 1 shows an untypable piece of code involving, among other things, the
following derived forms: a conditional and a record selector (# u). Derived
forms are syntactic sugar for core or module forms. For example, the condi-
tional if exp1 then exp2 else exp3, is a derived form equivalent to the core
expression case exp1 of true => exp2 | false => exp3. Suppose the program-
ming error in the code presented in Fig. 1 is that we wrote y (the circled one
at the top of Fig. 1) instead of x. We also call the programming error loca-
tion, the real error location. The function g can be used to perform computa-
tions on integers. For example (g true (fn x => x + 1) 2) evaluates to 2 and
(g false (fn x => x + 1) 2) evaluates to 3. This piece of code is untypable
because of the following reasons highlighted in Fig. 1: y, being a parameter
of a function, has a monomorphic type; y is constrained to be a Boolean via
the conditional; and finally, u’s first component is applied to y, where u’s first
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component is the function f which is constrained by the two branches of the con-
ditional to take a function as argument. SML’s compiler SML/NJ (v.110.72) [3]
reports a type constructor clash in line 6 (more precisely, the circled portion of
code (#1 u) y in Fig. 1 is blamed) as follows:

Error: operator and operand don’t agree [tycon mismatch]

operator domain: ’Z -> ’Z

operand: bool

in expression:

((fn {1=<pat>,...} => 1) u) y

Because of the small size of the piece of code, the programmer’s error is not
too far away from the location reported by SML/NJ. It is not always the case.
The real error location might even be in another file. Nonetheless, note that
SML/NJ reports only one location which is far from the real error location w.r.t.
the size of the piece of code. Also, the type ’Z -> ’Z reported by SML/NJ is an
internal type made up during type inference. Finally, the reported expression
does not match the source code1.

Fig. 1 highlights a slice for the type error described above. This highlighting
contains the minimal amount of information necessary to understand and fix
the type error. Also, it highlights the real error location. Note that the fact
that most of the piece of code is highlighted is due to the small size of the piece
of code. We present below larger examples where a smaller percentage of the
pieces of code is highlighted2.

3.2. Datatypes, pattern matching, type functions

Fig. 2 shows how Skalpel helps for intricate errors. The code declares the
datatype t and the function trans to deal with user defined colors. This function
is then applied to an instance of a colour (the first element of the pair x).
Suppose the programming error is that we wrote ’b instead of ’c in Green’s
definition at location 1©. SML/NJ (v.110.72) reports a type constructor clash

1SML/NJ has transformed the code because the derived form #1 is equivalent to

the function (fn {1=y,...} => y) in SML. Note also that (fn {1=<pat>,...} => 1)

is SML/NJ’s pretty printing of #1, but the two functions are different because

(fn {1=<pat>,...} => 1) returns always 1 while #1 takes a record and returns the field of

field name 1 in the record, which is confusing. SML’s compilers MLton [1] and Poly/ML [6]
do not transform the code.

2 A slice for a type error will always contain exactly the portion of the program required
to explain the error. We do not influence how much or how little of a piece of code is included
in a type error slice. The type error itself decides which parts are included. In our experience
in using Skalpel, the size of slices does not vary much depending on the size of the program
but it varies mainly depending on the kind of error.
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Figure 2 Datatypes, pattern matching, type functions (testcase 114)

datatype (’a,’b,’c) t = Red of ’a * ’b * ’c

| Blue of ’a * ’b * ’c

| Pink of ’a * ’b * ’c

| Green of ’a * ’b * ’b 1

| Yellow of ’a * ’b * ’c

| Orange of ’a * ’b * ’c

fun trans (Red (x, y, z)) = Blue (y, x, z)

| trans (Blue (x, y, z)) = Pink (y, x, z)

| trans (Pink (x, y, z)) = Green (y, x, z)

| trans (Green (x, y, z)) = Yellow(y, x, z)
2 3

| trans (Yellow(x, y, z)) = Orange(y, x, z)

| trans (Orange(x, y, z)) = Red (y, x, z)

type (’a, ’b) u = (’a, ’a, ’b) t * ’b
5

val x = (Red (2, 2, false), true)

val y : (int, bool) u = (trans (#1 x), #2 x)
4

at 4© as follows:

operator domain: (int,int,int) t

operand: (int,int,bool) t

in expression:

trans ((fn {1=<pat>,...} => 1) x)

The reported code is far from the actual error and does not match the source
code. SML/NJ gives the same error message if, instead of the error described
above, one writes x instead of z in the right-hand-side of any branch of trans.
Thus, one might need to inspect the entire program to find the error.

Fig. 2 highlights a slice for this error. The programming error location being
in the slice, we track it down by considering only the highlighted code, starting
from the clashing types on the last line. The type annotation (int, bool) u

constrains the result type of trans’s application. The part of trans in the slice
is about Green. At 1©, Green’s second and third arguments are constrained to
be of the same type. At 2©, y is therefore constrained to be of the same type
as z. At 3©, because y and z are respectively Yellow’s first and third arguments
and using Yellow’s definition, we infer that the type of Yellow’s application to
its three arguments (returned by trans) is t where its first and third parameters
have to be equal. At 4© and 5© we can see that trans is constrained to return
a t where its first (int) and third (bool) parameters differ.

3.3. Chained opens and nested structures

The most challenging feature for full SML was the open declaration, which
splices another structure into the current environment (see example below),
and has been criticized in the literature [7, 9, 10, 30]. Harper writes [30]: “it is
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Figure 3 Chained opens and nested structures (testcase 450)

structure S = struct

structure Y = struct

structure A = struct val x = false end

structure X = struct val x = false end

structure M = struct val x = true end

end

open Y

val m = M.x

val x = if m then true else false

end

structure T = struct

structure X = struct val x = 1 end

open S

open X

val y = if m then 1 else x

end

hard to control its behaviour, since it incorporates the entire body of a structure,
and hence may inadvertently shadow identifiers that happen to be also used in
the structure”. Blume [9] shows that certain automatic dependency analyses
become NP-complete in the presence of open, and writes: “Programs are not
only read by analysis tools; human read them as well. A language construct like
open that serves to confuse the analysis tool is also likely to confuse the human
reader”. We believe open is one of the most difficult programming language
features to analyze, but our constraint/environments make it easy and simple,
and we believe this highlights the generality of our machinery. Skalpel clarifies
otherwise obscure type errors involving open and enhances its usability.

Fig. 3 has an intricate type error involving chained opens. Let us describe
what the code was meant to do. Structure T declares structure X declaring
integer x. Structure S is opened to access the Boolean m. Then, X is opened to
access the integer x. Finally, if m is true then we return 1 otherwise we return
x. This is untypable and SML/NJ blames y’s body as follows:

Error: types of if branches do not agree [literal]

then branch: int

else branch: bool

in expression:

if m then 1 else x

The programming error, as our type error slice shows, is that opening S

causes S’s declarations to shadow the current typing environment. Because Y is
opened in S, the structures A, X and M are part of S’s declarations. Hence, when
opening S in T, the structure X, which was in our current typing environment,
is shadowed by the one defined in Y. If the programmer’s intent is as described
above, one can solve this error by replacing “open S open X” by “open S X”,
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Figure 4 Type error slice highlighted using our Emacs interface (testcase 1)

which opens S and X simultaneously. Opening X results in the opening of X

declared in T because it is not shadowed by the one declared in Y declared in S.

Our type error slice rules out x’s declarations in X and S, and clearly shows
why x does not have the expected type. Traditional reports leave us to track
down x’s binding by hand.

3.4. Emacs interface

Fig. 4 shows an example of Skalpel running with our Emacs user interface.
The type error slice is at the bottom of the figure (bottom Emacs buffer), and
the error locations found by Skalpel are highlighted in the original user code at
the top of the figure (top Emacs buffer).
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Figure 5 Example of Skalpel handling multiple source files

3.5. Multiple files

Fig. 5, shows an example of how Skalpel deals with errors involving multiple
files. We have a special control file, which we call a tes file. This file contains
all of the source files the user wishes to run Skalpel on, in the order they should
be run. Fig. 5 shows Skalpel’s output when run on files.tes which contains
two lines: file1.sml and file2.sml. Users can use such files to run Skalpel
on their entire codebase.

Fig. 6 shows that Skalpel can show multiple program slices to the user which
exist in the same source code file. We do this by highlighting only one at a
time, leaving any additional slices in a different colour to indicate they are not
highlighted. To the right hand side of the image, we can see that we also present
each program slice to the user as a formal type error slice as described in Sec. 6.7
below.

4. Skalpel’s Design

Fig. 7 informally presents how the different modules of Skalpel interact with
each other. We use different colors to differentiate the different components of
Skalpel. The green parts are user interface related. The red parts are related
to slicing. The purple parts are related to constraint generation. These parts
are external language related. The blue parts are related to the enumeration
of type errors. These parts are external language unrelated. Boxes represent
algorithms and ovals represent data.

Given an SML structure declaration strdec (see Sec. 6.1), the initial con-
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Figure 6 Example of Skalpel showing multiple slices

Figure 7 Overall design of Skalpel
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straint generator3 defined in Sec. 6.4 generates a constraint/environment e (see
Sec. 6.2). Then, the type error enumerator defined in Sec. 6.6.5 enumerates
the type errors of e. Each error found by the enumerator is minimized by the
minimizer defined in Sec. 6.6.3. Enumerating all errors in a piece of code is an
iterative process: see the blue loops in Fig. 7. From each minimized error and
strdec, the slicing algorithm defined in Sec. 6.7 computes a type error slice. Both
enumeration and minimization rely on the constraint solver defined in Sec. 6.5.
The computed type error slices are finally reported to the user. A type error
report includes a type error slice, a highlighting of the slice directly in the SML
user code, and a message explaining the kind of the error. Formally, our overall
algorithm skalpel is defined as follows (the undefined relations, functions, and
other syntactic forms used in this definition of Skalpel’ overall algorithm are all
defined in the remaining sections):

skalpel(strdec) = {〈strdec′, ek〉 | �strdec� = e

∧ enum(e) →∗
e errors(er ∪ {〈ek , l〉})

∧ sl(strdec, l) = strdec′}

We define our constraint generator and our slicing algorithm as deterministic
total recursive functions, while our constraint solver, minimizer and enumerator,
which are deterministic partial recursive functions in our implementation, are
defined here as non-deterministic relations presented as rewriting systems. We
do so in order to avoid providing implementation details that would complicate
the presentation of these algorithms. For example, our constraint solver non-
deterministically generates “fresh” renamings in rule (A1) in Fig. 22, and we
thus do not have to provide a deterministic algorithm that generates such “fresh”
renamings.

5. Worked Example

We now illustrate how Skalpel works using the piece of code (EX1) defined
below. This section uses the labeled syntax introduced in Sec. 6.1, and refers to
our constraint generation (see Sec. 6.4 below), constraint solving (see Sec. 6.5
below), enumeration (see Sec. 6.6 below), and slicing (see Sec. 6.7 below) algo-
rithms all defined below in the technical Sec. 6. This piece of code is untypable
because f is defined as taking a ’a t and is applied to a ’a u. The labelled
version of this piece of code, which we call strdecEX, is as follows:

3We sometimes refer to our constraint generation algorithm as the “initial constraint gen-
erator” in order to distinguish with our constraint solver, which also generates constraints.
We will sometimes refer to our initial constraint generator simply as our constraint generator.
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(EX1)

structure X
l1= structl2

structure S
l3= structl4 datatype �’a u�l6 l5= U

l7

c
end

datatype �’a t�l9 l8= T
l10

c

val rec f
l12

p

l11= fn T
l14

p

l13⇒ T
l15

e

val rec g
l17

p

l16= letl18 openl19 S in �fl21
e

U
l22

e
�l20 end

end

5.1. Constraints generated for (EX1)

The environment generated for datatype ’a u = U, which we call e0, is as
follows:

e0 = ∃〈α1, α2, ev4〉.((ev4 = ((α1
l5=α2);e′′0 ;e

′
0));ev

l5
4 )

such that

⎧⎨
⎩

e′0 is poly(�U
l7= α2)

e′′0 is ∃〈α′
1, γ1〉.(α1

l6=α′
1 γ1);(�u

l6= γ1);(�’a
l6= α′

1)

The environment generated for structure S = struct datatype ’a u = U end,
which we call e1, is as follows:

e1 = ∃〈ev1, ev2〉.[∃〈ev3〉.((ev2
l4= ev3);(ev3 = e0))];(ev1 = (�S

l3= ev2));ev
l3
1

The environment generated for datatype ’a t = T, which we call e2, is as fol-
lows:

e2 = ∃〈α3, α4, ev5〉.((ev5 = ((α3
l8=α4);e′′2 ;e

′
2));ev

l8
5 )

such that

⎧⎨
⎩

e′2 is poly(�T
l10= α4)

e′′0 is ∃〈α′
3, γ2〉.(α3

l9=α′
3 γ2);(�t

l9= γ2);(�’a
l9= α′

3)

The environment generated for val rec f = fn T => T, which we call e3, is as
follows:

e3 = ∃〈α5, α6, ev6〉.(ev6 = poly((�f
l12= α5);e′3;(α5

l11= α6)));ev
l11
6

such that e′3 = [∃〈α7, α8, ev7〉.(ev7 = (�T
l14= α7));ev

l13
7 ;(�T

l15= α8);(α6
l13= α7 � α8)]

The environment generated for val rec g = let open S in f U end, which we
call e4, is as follows:

e4 = ∃〈α9, α10, ev8〉.(ev8 = poly((�g
l17= α9);[∃α11.e′4;e

′′
4 ;(α10

l18= α11)];(α9
l16= α10)));ev

l16
8

such that

⎧⎨
⎩

e′4 is ∃ev9.(�S
l19= ev9);ev

l19
9

e′′4 is ∃〈α12, α13〉.(�f l21= α12);(�U
l22= α13);(α12

l20= α13 � α11)

13



Finally, the environment generated for the entire piece of code is the following
environment, which we call eEX:

eEX = ∃〈ev11, ev10〉.
[∃〈ev12〉.(ev11

l2= ev12);(ev12 = (e1;e2;e3;e4))];(ev10 = (�X
l1= ev11));ev

l1
10

5.2. Solving of the constraint generated for (EX1)

We present below how our constraint solver solves the environment (e1;e2;e3;e4),
which is part of eEX. First, let us solve e1, which was generated for the dec-
laration structure S = struct datatype ’a u = U end. The solved version (see
Sec. 6.5.1) of e1 is as follows:

ev l3
1 such that

⎧⎪⎨
⎪⎩

ev1 �→ �S
l3= ev2

ev2 �→ ev l4
3

ev3 �→ ((�u
l6= γ1);(�’a

l6= α′
1);(�U

l7= ∀{α′
1}. (α′

1 γ1)
{l5,l6}))l5

As mentioned in the “Recursive datatypes” paragraph in Sec. 6.4.1, ev3 is
mapped to an environment containing a binder for ’a because we have not
yet introduced any mechanism to partially export environments (we want a
mechanism other than e1;e2 that exports, e.g., the binders of e1 but not those
of e2). This issue is resolved in [49] using local environments.

Let us now solve e2, which was generated for datatype ’a t = T. The solved
version of e2 is as follows:

ev l8
5 such that ev5 �→ (�t

l9= γ2);(�’a
l9= α′

3);(�T
l10= ∀{α′

3}. (α′
3 γ2)

{l8,l9})

We now solve e3, which was generated for val rec f = fn T => T. The
solved version of e3 is as follows:

ev l11
6 such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ev6 �→ (�f
l12= ∀{α′′

3 , α
′′′
3 }. τ1)

τ2 = ((α′′
3 γ2)

{l8,l9,l10,l14})
τ3 = ((α′′′

3 γ2)
{l8,l9,l10,l15})

τ1 = ((τ2 � τ3)
{l11,l13})

Note that in the binder generated at constraint solving for f, l15 only labels
(α′′′

3 γ2) and does not label the whole binder. Having dependencies on types as
well as on environments allows a precise blaming (dependency tracking).

We now solve e4, which was generated for val rec g = let open S in f U end.
We start by solving e ′4. Its solved version is as follows:
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ev l19
9 such that ev9 �→ ev

{l3,l19}
2

Then, we solve e ′′4 . The dependent accessor (�f
l21= α12) accesses f’s binder

through ev6. It leads to the generation of the following mapping:

α12 �→ ((α′′
4 γ2)

{l8,l9,l10,l14} � (α′′′
4 γ2)

{l8,l9,l10,l15}){l11,l12,l13,l21}

The dependent accessor (�U
l22= α13) accesses U’s binder through ev9, ev2, and

ev3. It leads to the generation of the following mapping:

α13 �→ (α′′
1 γ1)

{l3,l4,l5,l6,l7,l19,l22}

Finally, our constraint solver returns a type error (terminates in an error state)

when dealing with the equality constraint (α12
l20= α13 � α11), because γ1 �= γ2.

The error found is erEX = 〈ekEX, lEX〉, where ekEX = clash(γ1, γ2) and lEX =
{l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l19, l20, l21, l22}.

5.3. Enumerating all the errors in example (EX1)

It turns out that (EX1) has only one minimal type error which is erEX .
This error is already minimal when found by the enumeration algorithm and
therefore the minimiser does not do anything in this case, but is still called
by the enumerator. Therefore we obtain the following enumeration steps (we
superscript →e and →∗

e with the names of the rules used to obtain the provided
enumeration steps):

enum(eEX)

→(ENUM1)
e enum′(eEX,∅, {∅})

→(ENUM4)
e enum′(eEX, {erEX}, {{l} | l ∈ lEX})

→∗
e
(ENUM3) enum′(eEX, {erEX},∅)

→(ENUM2)
e errors({erEX})

5.4. Generating type error slices for (EX1)

We saw in Sec. 5.1 that given (EX1), our constraint generator generates
the environment eEX. We saw in Sec. 5.3 that given eEX, our enumeration
algorithm enumerates only one error, namely erEX. Sec. 5.2 defines erEX =
〈ekEX, lEX〉 where lEX = {l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l19, l20, l21, l22}.
Let us present the slice that our slicing algorithm computes when given erEX,
i.e., we compute sl(strdecEX, lEX).
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Figure 8 Result of applying toTree to strdecEX

〈〈strdec, strdecStr〉, l1, 〈X, 〈〈strexp, strexpSt〉, l2, 〈tree1, tree2, tree3, tree4〉〉〉〉
where
tree1 = 〈〈strdec, strdecStr〉, l3,

〈S,
〈〈strexp, strexpSt〉, l4,

〈 〈 〈dec, decDat〉, l5,
〈〈〈datname, datnameCon〉, l6, 〈’a, u〉〉, 〈〈conbind, id〉, l7, 〈U〉〉〉〉〉〉〉〉

tree2 = 〈〈dec, decDat〉, l8, 〈〈〈datname, datnameCon〉, l9, 〈’a, t〉〉, 〈〈conbind, id〉, l10, 〈T〉〉〉〉
tree3 = 〈〈dec, decRec〉, l11,

〈〈〈atpat, id〉, l12, 〈f〉〉,
〈〈exp, expFn〉, l13, 〈〈〈atpat, id〉, l14, 〈T〉〉, 〈〈atexp, id〉, l15, 〈T〉〉〉〉〉〉

tree4 = 〈〈dec, decRec〉, l16,
〈〈〈atpat, id〉, l17, 〈g〉〉,
〈〈atexp, atexpLet〉, l18,

〈〈〈dec, decOpn〉, l19, 〈S〉〉,
〈〈exp, app〉, l20, 〈〈〈atexp, id〉, l21, 〈f〉〉, 〈〈atexp, id〉, l22, 〈U〉〉〉〉〉〉〉〉

Fig. 8 shows the tree (which we call treeEX) obtained when applying toTree
to strdecEX. Finally, sl(toTree(strdecEX), lEX) returns the following tree where
tree1 and tree2 are the ones defined above, and tree ′3 and tree ′4, are obtained
from tree3 and tree4 respectively:

〈dotD, 〈tree1, tree2, tree
′
3, tree

′
4〉〉

where tree ′
3 = 〈〈dec, decRec〉, l11,

〈〈〈atpat, id〉, l12, 〈f〉〉,
〈〈exp, expFn〉, l13, 〈〈〈atpat, id〉, l14, 〈T〉〉, 〈dotE, 〈〉〉〉〉〉〉

tree ′
4 = 〈dotE, 〈〈〈dec, decOpn〉, l19, 〈S〉〉,

〈〈exp, app〉, l20, 〈〈〈atexp, id〉, l21, 〈f〉〉, 〈〈atexp, id〉, l22, 〈U〉〉〉〉〉〉

This slice is displayed as follows:

〈..structure S = struct datatype ’a u = U end

..datatype ’a t = T

..val rec f = fn T => 〈..〉

..〈..open S..f U..〉..〉

6. Technical Core of Skalpel

We refer to the system which is defined in this section as the Skalpel core,
comprising, as mentioned in Sec. 4, its constraint generator, constraint solver,
minimizer, enumerator, and slicer which are all defined in this section. Sec. 5
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Figure 9 External labeled syntax: SML’s subset handled by Skalpel core

l ∈ Label (labels)
P ∈ ExtLabSynt = The union of all sets below.
tv ∈ TyVar (type variables)
tc ∈ TyCon (type constructors)

strid ∈ StrId (structure identifiers)
vvar ∈ ValVar (value variables)
dcon ∈ DatCon (datatype constructors)
vid ∈ VId ::= vvar | dcon
ltc ∈ LabTyCon ::= tcl

ldcon ∈ LabDatCon ::= dcon l

ty ∈ Ty ::= tv l | ty1
l→ ty2 | 
ty ltc�l

cb ∈ ConBind ::= dcon l
c | dcon of l ty

dn ∈ DatName ::= 
tv tc�l
dec ∈ Dec ::= val rec pat

l
= exp | openl strid | datatype dn

l
= cb

atexp ∈ AtExp ::= vid l
e | letl dec in exp end

exp ∈ Exp ::= atexp | fn pat
l⇒ exp | 
exp atexp�l

atpat ∈ AtPat ::= vid l
p

pat ∈ Pat ::= atpat | 
ldcon atpat�l
strdec ∈ StrDec ::= dec | structure strid

l
= strexp

strexp ∈ StrExp ::= strid l | structl strdec1 · · · strdecn end

extra metavariables
id ∈ Id ::= vid | strid | tv | tc

term ∈ Term ::= ltc | ldcon | ty | cb | dn | exp | pat | strdec | strexp

illustrates how these algorithms compute on a simple program. The reader
might want to look at that section whenever we introduce a new algorithm.
Also, we sometimes forward reference our design principles presented in Sec. 7
below. Whenever we mention these principles, the reader might want to jump
to that section for more information regarding choices we have made while
designing Skalpel.

6.1. External labeled syntax

Fig. 9 describes a subset of SML, chosen to present Skalpel’s core ideas. We
refer to this language as the external labeled syntax.4 Most syntactic forms have
labels (l), which are generated to track precise blame for errors. We surround
some terms such as function application with � � in order to provide a visually
convenient place for labels.

4We do not enforce all the syntactic restrictions of the SML syntax. For example, in a

recursive declaration such as val rec pat
l
= exp, the expression exp must be an fn-expression,

which we do not enforce in this paper. More details can be found in [49].
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Figure 10 Syntax of constraint terms (internal labeled syntax)

C ∈ IntLabSynt = The union of all sets below and Label.
ev ∈ EnvVar (environment variables)
δ ∈ TyConVar (type constructor variables)
γ ∈ TyConName (type constructor names)
α ∈ ITyVar (internal type variables)

μ ∈ ITyCon ::= δ | γ | arr | 〈μ, l〉
τ ∈ ITy ::= α | τ μ | τ1 � τ2 | 〈τ, l〉
ts ∈ ITyScheme ::= ∀v . τ
tcs ∈ ITyConScheme ::= ∀v . μ
es ∈ EnvScheme ::= ∀v . e
c ∈ EqCs ::= μ1 = μ2 | e1 = e2 | τ1 = τ2

bind ∈ Bind ::= �tc=tcs | �strid=es | �tv=ts | �vid=ts
acc ∈ Accessor ::= �tc=δ | �strid=ev | �tv=α | �vid=α

e ∈ Env ::=  | ev | bind | acc | c | poly(e) | ∃a.e | e2;e1 | 〈e, l〉
extra metavariables
ct ∈ CsTerm ::= τ | μ | e
σ ∈ Scheme ::= ts | tcs | es

v ∈ Var ::= α | δ | ev
a ∈ Atom ::= v | γ | l

dep ∈ Dependent ::= 〈ct , l〉

In Fig. 9, value identifiers (vid) are subscripted to disambiguate rules for
expressions (vid l

e), datatype constructor definitions (dcon l
c), and pattern (vid l

p)
occurrences. The non-ambiguous (hence non-subscripted) value identifiers occur
at unary positions in patterns and datatype declarations.

Although SML distinguishes value variables and datatype constructors by
assigning statuses in the type system, we distinguish them by defining two
disjoint sets ValVar and DatCon. As opposed to the Skalpel core, for fully
correct minimal error slices, [49, Sec.14.1] handles identifier statuses. Also, to
simplify the presentation of the Skalpel core, datatypes have one constructor
and one type argument.

6.2. Constraint syntax

Fig. 10 defines our constraint syntax for the Skalpel core. In our constraint
based approach, we use constraints to compute the static semantics of programs
using our constraint generator defined in Sec. 6.4, and we use our constraint
solver defined in Sec. 6.5 to check whether constraints are solvable, i.e., whether
programs are typable.

Sections 6.2.1 to 6.2.3 explain the various parts of this syntax. Note our
novel hybrid constraint/environment forms e where binders, accessors and com-
position environments interact. The motivation is to build environments that
avoid duplication at initial constraint generation or during constraint solving
(see also design principle DP4 in Sec. 7). Our binders and accessors are also
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novel. Earlier systems (e.g. [48]) are too restrictive to easily represent mod-
ule systems because they only support very limited cases of our binders. With
our constraints, we can easily define a compositional constraint generator (see
Sec. 6.4.2). We use the symbol C to represent either a label or any syntactic
form presented in Fig. 10.

During analysis, a dependent form 〈ct , l〉 depends on the program nodes
with labels in l . For that reason, labels are sometimes called dependencies. For
example, the dependent equality constraint 〈τ1 = τ2, l ∪ {l}〉 might be gener-
ated for the labeled function application �exp atexp�l, indicating the equality
constraint τ1 = τ2 need only be true if node l has not been sliced out (see our
design principle DP2 in Sec. 7). In order to manipulate our labels, we define
the two functions (of type IntLabSynt → IntLabSynt) strip and collapse below,
which respectively allow us to take all outer labels off any given term, and to
union outer nested labels of terms.

strip(C) =
{
strip(ct) if C = 〈ct , l〉
C otherwise

collapse(C) =
{
collapse(〈y, l ∪ l

′〉) if C = 〈(〈y, l〉), l ′〉
C otherwise

Note that we sometimes write 〈ct , l〉 for 〈ct , {l}〉. Given a label or a set of

labels x, we write ctx to abbreviate 〈ct , x〉, and ct1
x
= ct2 for 〈ct1 = ct2, x〉.

6.2.1. Internal types (τ) and their constructors (μ)

The ITy and ITyCon sets contain internal types and internal type constructors
respectively. In order to maintain some simplicity for the core, only unary type
constructors are supported5. We have a special kind of type constructor arr,
which is used to create a constraint in the constraint solving process (rule (S5))
between a unary type constructor and a function type.

6.2.2. Schemes (σ)

There are three kinds of universally quantified schemes: type schemes, type
constructor schemes, and environment schemes. All schemes are subject to
α-conversion (e.g., the schemes ∀{α1}. α1 and ∀{α2}. α2 are equivalent).

5[49, Sec.14.10] presents a solution whereby type constructors can have any arity.
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6.2.3. The constraint/environment form (e)

A constraint/environment e is an hybrid form that should be considered
both as a constraint and as an environment. Constraint/environments can both
specify type semantics and binding semantics of programs and provide an ex-
pressive way to structure constraints. Such a form can be any of the following:

1. The satisfied (true) constraint. This is represented by the symbol �.
Logically, � could be defined as ∃α.α = α, but we chose to have a separate
constraint for simplicity (e.g., � is simpler to solve).

2. An environment variable. An environment variable stands for any
environment. This is especially useful to deal with structures and connect
constraints on environments. (See also our design principle DP7 in Sec. 7)

3. A composition environment. We use the operator ’;’ to compose en-
vironments, which is associative with unit �: we consider e;�, �;e, and
e to be equivalent. In a composition of the form e1;e2, the accessors of
e2 are in the scope of the binders of e1. It acts as a logical conjunction
requiring e1 to be satisfied, and e2 to be satisfied when the bindings of e1
are in scope.

4. A binder/accessor. A binder is of the form �id=σ, and an accessor is
of the form �id=v . Binders represent program occurrences of identifiers
at binding positions, and accessors represent occurrences of identifiers at
bound positions. For example, in the environment

�vid=σ;�vid=α

the internal type variable α is constrained through the binding of vid to be
an instance of σ. In this case, we say that the binder and the accessor of
vid are connected. Moreover, binders and accessors can often be connected
without being next to each other. E.g., in the environment

�vid=σ; . . . ;�vid=α

it is possible that the binder and accessor of vid are connected. Some
environments in the omitted (. . . ) part might disconnect the accessor and
the binder. Sec. 6.3.2 specifies which forms would cause this.
We abbreviate �vid=∀∅. ct by �vid=ct , �vid=∀{v}. ct by �vid=∀v . ct ,
and 〈�vid=ct , y〉 by �vid

y
= ct (and similarly for accessors).

5. An equality constraint. A constraint where two pieces of constraint
syntax are made to be equal.

6. Existential environment. The form ∃a.e, binds all occurrences of a
that occur free in e. We abbreviate ∃a1. · · · ∃an.e by ∃〈a1, . . . , an〉.e.
We write [e] to abbreviate (∃ev .ev = e), where ev does not occur in e.
This is a constraint which enforces the logical constraint nature of e while
limiting the scope of its bindings. Note that the bindings can still have
an effect if e constrains an environment variable.
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7. A polymorphic environment. This promotes the binders in the argu-
ment to poly to be polymorphic.

8. Dependent form. Label-annotated environments act as environments
only when the labels are satisfied.

6.2.4. Atomic forms

Let atoms(C) be the syntactic form set belonging to Var∪Label and occurring
in C. In addition, we define:

vars(C) = atoms(C) ∩ Var
labs(C) = atoms(C) ∩ Label

We also define freevars(C) as the set of free variables occurring in vars(C).

6.3. Semantics of constraints/environments

Checking parts of the program for mismatch requires substitution, unifica-
tion and renaming which are used as part of our constraint solver outlined in
section 6.5. These notions are defined in this section.

6.3.1. Renamings, unifers, and substitutions

We define renamings, unifiers, and substitutions as follows (note that Ren ⊂
Unifier ⊂ Sub):

ren ∈ Ren =

⎧⎨
⎩f |

f ∈ ITyVar → ITyVar
∧ f is injective
∧ dj(dom(f ), ran(f ))

⎫⎬
⎭

u ∈ Unifier =

⎧⎨
⎩f1 ∪ f2 ∪ f3 |

f1 ∈ ITyVar → ITy
∧ f2 ∈ TyConVar → ITyCon
∧ f3 ∈ EnvVar → Env

⎫⎬
⎭

sub ∈ Sub =

{
f1 ∪ f2 | f1 ∈ Unifier

∧ f2 ∈ TyConName → TyConName

}

Δ ∈ Context ::= 〈u, e〉

Environments contain information on external identifiers. We also need in-
formation on internal type variables which we get through our unifiers. Renam-
ings are used to instantiate type schemes. The Unifier set consists of unifiers
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Figure 11 Substitution on constraint terms

a[sub] =

{
x, if sub(a) = x
a, otherwise

(τ μ)[sub] = τ [sub]μ[sub]
(τ1 � τ2)[sub] = τ1[sub] � τ2[sub]

ct l [sub] = collapse(ct [sub]l)
(ct1 = ct2)[sub] = (ct1[sub] = ct2[sub])
(e1;e2)[sub] = e1[sub];e2[sub]
(∀v . ct)[sub] = ∀v . ct [sub] s.t. dj(v , atoms(sub))
(∃a.e)[sub] = ∃a.e[sub] s.t. dj({a}, atoms(sub))

(�id=v)[sub] =

{
(�id=v [sub]), if v [sub] ∈ Var
undefined, otherwise

(�id=σ)[sub] = (�id=σ[sub])
poly(e)[sub] = poly(e[sub])
C[sub] = C, otherwise

Figure 12 Context application

〈u, �id=σ〉(id) = σ

〈u, e l〉(id) = ∀v . ct l , if 〈u, e〉(id) = ∀v . ct

〈u, e1;e2〉(id) =

⎧⎪⎪⎨
⎪⎪⎩

〈u, e2〉(id), if 〈u, e2〉(id) is defined
undefined, if 〈u, e2〉(id) is undefined

and shadowsAll(〈u, e2〉)
〈u, e1〉(id), otherwise

〈u, ev〉(id) =

{ 〈u, e〉(id), if u(ev) = e
undefined, otherwise

generated by our constraint solver (see Sec. 6.5). Fig. 11 defines the substitu-
tion function: it takes a constraint term and a substitution, and produces a
constraint term. In addition, we define another substitution-like function called
build, which, as compared to the substitution function defined in Fig. 11, calls
itself recursively in the atom case (the other cases are the same as in Fig. 11):

build(a, sub) =

{
build(ct , sub), if sub(a) = ct
a, otherwise

A constraint solving context (or just context for short) Δ of the form 〈u, e〉
is the context in which the meaning of constraint/environments is defined w.r.t.
the semantic rules provided below in Sec. 6.3.3. Such forms are also used in
our constraint solver defined in Sec. 6.5 as contexts in which the solvability of
constraint/environments is checked. As mentioned above, in our system, unifiers
and environments are complementary: unifiers contain information on internal
variables and environments on external identifiers.

Fig. 12 presents how to access the semantics of an identifier in a context.
Note that the application of an existential environment to an identifier is unde-
fined because in general it represents incomplete information.
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In general, we allow functions and relations that take an environment e
to take instead a context 〈u, e〉, and functions and relations that take a uni-
fier u to take instead a context 〈u, e〉. For example, let 〈u, e〉(v) = u(v), let
〈u, e〉;e ′ = 〈u, e;e ′〉, let dom(〈u, e〉) = dom(u), let 〈u, e〉 ∪ u′ = 〈u∪ u′, e〉, and
let build(ct , 〈u, e〉) = build(ct , u).

6.3.2. Shadowing

Finding the source of errors in a program is all about accessing and getting
to know every bit of the program, so that any mismatches are identified. Error
finding is elusive because in a context it may be the case that some parts are
shadowed and so inaccessible. Consider the context 〈u, bind1;ev ;bind2〉. When
ev /∈ dom(u), we say that ev shadows bind1 because ev could potentially be
constrained to be an environment that rebinds bind1. We define shadowsAll by:

shadowsAll(〈u, e〉) ⇐⇒⎧⎪⎪⎨
⎪⎪⎩

(e = ev ∧(shadowsAll(〈u, u(ev)〉) ∨ ev �∈ dom(u)))
∨ (e = (e1;e2) ∧(shadowsAll(〈u, e1〉) ∨ shadowsAll(〈u, e2〉)))
∨ (e = 〈e ′, l〉 ∧shadowsAll(〈u, e ′〉))
∨ (e = ∃a.e ′ ∧shadowsAll(〈u, e ′〉) ∧ a �∈ dom(u))

shadowsAll(e) ⇐⇒ shadowsAll(〈∅, e〉)

If shadowsAll(e) then it means that some of the binders in e might be shadowed,
and especially it means that in e;ev , the environment ev shadows the entire
environment e (no binder from e is accessible in e;ev). In the rest of this paper
we will use shadowsAll as a function that returns a Boolean—it is decidable.

6.3.3. Semantic rules

We now present the semantics of our constraint/environments. First, we
define two instance relations, which we use to instantiate type schemes as follows:

∀v . ct , sub −instance−−−−→ ct [sub] if dom(sub) = v

σ −instance−−−−→ ct if ∃sub.σ, sub −instance−−−−→ ct

Semantic judgements are of the form:

Φ ∈ SemanticJudgement ::= u, e � e1 ↪→ e2

Fig. 13 defines the semantics of our constraint/environments, ignoring de-
pendencies at first. This figure uses the function toPoly which is formally defined
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Figure 13 Semantics of constraint/environments, ignoring dependencies

u, e � ↪→  ()
u, e � ev ↪→ ev (evar)

∀i ∈ {1, 2}.u, e � ct i ↪→ ct ′i ct ′1[u] = ct ′2[u]

u, e � (ct1 = ct2) ↪→  (eq)

e(id) −instance−−−−→ ct u, e � ct = v ↪→ 
u, e � (�id=v) ↪→  (acc)

e(id) undefined

u, e � (�id=v) ↪→  (acc′)

u, e � (�id=ct) ↪→ (�id=ct [u])
(bind)

u, e � e ′ ↪→ e ′′

u, e � poly(e ′) ↪→ toPoly(〈u, e〉, e ′′)
(poly)

u, e � e1 ↪→ e ′
1 u, (e;e ′

1) � e2 ↪→ e ′
2

u, e � (e1;e2) ↪→ (e ′
1;e

′
2)

(comp)

u+ u′, e � e1 ↪→ e2 dom(u′) = {a}
u, e � ∃a.e1 ↪→ e2

(exists)

below in Fig. 17 in Sec. 6.3.4, and which transforms monomorphic environments
into polymorphic ones. We say that an environment e is satisfiable iff there exist
u and e ′ such that u,� � e ↪→ e ′. For example, let us consider the following
environments:

e0 = (�vid=α2);(α2 = αγ);(α1 = α3 � α4)
e1 = ∃〈α1, α2〉.poly(�vid=α0);e0

We show that e1 is satisfiable by deriving Φ = ∅,� � e1 ↪→ e ′, where

e ′ = (�vid=∀α0. α0)
u1 = {α1 �→ (α3 � α4), α2 �→αγ}
Φ1 = u1, e

′ � e0 ↪→ 

Fisst, we derive Φ1 as follows:

α2[u1] = α2[u1]

u1, e
′ � (α2 = α2) ↪→ 

u1, e
′ � (�vid=α2) ↪→ 

α2[u1] = (αγ)[u1]

u1, e
′ � (α2 = αγ) ↪→ 

α1[u1] = (α3 � α4)[u1]

u1, e
′ � (α1 = α3 � α4) ↪→ 

u1, e
′ � (α2 = αγ);(α1 = α3 � α4) ↪→ 

Φ1

Then, we derive Φ as follows:
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{α1 �→α3 � α4, α2 �→αγ}, � �vid=α0 ↪→ �vid=α0

{α1 �→α3 � α4, α2 �→αγ}, � poly(�vid=α0) ↪→ e ′ Φ1

{α1 �→α3 � α4, α2 �→αγ}, � poly(�vid=α0);e0 ↪→ e ′

{α1 �→α3 � α4}, � ∃α2.poly(�vid=α0);e0 ↪→ e ′

Φ

Let us mention an issue regarding the semantics of our constraint/environments
and our constraint solver defined below in Sec. 6.5. Let us consider the following
environment, similar to e1, which we call e2:

poly(�vid=α1);(�vid=α2);(α2 = αμ);(α1 = α3 � α4)

The environment e2 only differs from e1 by the replacement of α0 by α1. There
are now two occurrences of α1 in e2 that are used at two separate unrelated
places. Because of these two occurrences of α1, the environment e2 fails to be
satisfiable w.r.t. the rules defined in Fig. 13. However, e2 is satisfiable w.r.t. our
constraint solver defined below in Sec. 6.5. The issue is that our constraint solver
considers the two occurrences of α1 to be different when with the semantics
defined in this section, these two occurrences are considered to be the same.
Note that e2 cannot be generated by our initial constraint generation algorithm
defined below in Sec. 6.4, so this bug is not triggered. (To overcome this issue,
our semantic rules and constraint solver could be modified to fail on e2 by
(1) keeping track of the generalized type variables, and by (2) failing when
dealing with a constraint in which occurs a generalized type variable.)

Let us now consider dependencies. We define semantic judgements consid-
ering dependencies as follows:

ds ∈ DepStatus ::= keep | drop | keep-only-binders
de ∈ DepEnv = Label → DepStatus
Ψ ∈ SemanticJudgementDep ::= u, e, de � e1 ↪→ e2

We define the application of dependency environments to dependency sets
as follows:

de(l) = {de(l) | l ∈ l}

Let us add dependencies to the rules defined in Fig. 13. Semantic judgements
are now of the form u, e, de � e1 ↪→ e2. Except for these additions, the rules
defined in Fig. 13 do not differ and are therefore not repeated. In addition,
Fig. 14 defines three new rules: (keep), (drop), and (keep-only-binders) to deal
with dependencies. Fig. 14 uses the function dum which is formally defined
below in Fig. 23 in Sec. 6.6.2. This function transforms an environment e into
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Figure 14 Semantics of the constraint/environments, considering dependencies

u, e, de � e ′ ↪→ e ′′ de(l) = {keep}
u, e, de � 〈e ′, l〉 ↪→ 〈e ′′, l〉

(keep)
drop ∈ de(l)

u, e, de � 〈e ′, l〉 ↪→ dum(e ′)
(drop)

{keep-only-binders} = de(l) \ {keep}
u, e, de � 〈e ′, l〉 ↪→ 

(keep-only-binders)

a similar dummy environment e ′ which contains dummy versions of the binders
from e that cannot participate in any error.

We say that an environment e is satisfiable w.r.t. the dependency environ-
ment de iff there exist u and e ′ such that u,�, de � e ↪→ e ′. Given a de-
pendency environment de, a dependency l is said to be satisfied if de(l) =
keep, and it is said to be unsatisfied if de(l) = drop. The dependency status
keep-only-binders is more complicated. This status is needed for scoping issues
which are further discussed below in Sec. 6.6.2. If an environment e is annotated
by a dependency which has status keep-only-binders then e’s binders and en-
vironment variables (which could potentially bind any identifier) are turned into
dummy binders and dummy environment variables respectively. Other environ-
ments, such as equality constraints, are discarded. The environment e ′ is the
semantics of e in the context 〈u,�, de〉.

6.3.4. Polymorphic environments

This section shows how to generate polymorphic environments for polymor-
phic functions. It defines the function toPoly which closes environments w.r.t.
their contexts [40, Sec.4.8]. In order to do that and report precise type error
slices, we need to assign precise blames to variables that cannot be generalized.
Because of that, this section is fairly technical and can be skipped all together by
the reader. The main takeaway is that the toPoly function closes environments
w.r.t. their context and is similar to the Clos function defined in [40, Sec.4.8].

The function toPoly is used in rule (poly) in Fig. 13 above and in rule (P1) of
our constraint solver defined below in Sec. 6.5 to generate polymorphic environ-
ments from monomorphic ones by quantifying the type variables not occurring
in the types of the monomorphic binders of the current constraint solving con-
text. Therefore, we need to keep track of the reasons why some variables cannot
be generalized, i.e., quantified over:

m ∈ Monos = ITyVar → P(Label)

These functions are used to associate blames with type variables as to why they
are monomorphic. In that context, a type variable is said to be monomorphic
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Figure 15 Blame computation regarding monomorphic variables

blames(u, α) =

{
blames(u, τ), if u(α) = τ
{α �→∅}, otherwise

blames(u, τ μ) = blames(u, τ)
blames(u, τ1 � τ2) = blames(u, τ1) � blames(u, τ2)

blames(u, τ l) = {α �→ l ∪ l
′ | blames(u, τ)(α) = l

′}
blames(〈u, e〉, τ) = blames(u, τ)

Figure 16 Decoration with blames

decorate(α,m) =

{
αl , if m(α) = l
α, otherwise

decorate(τ μ,m) = decorate(τ,m)μ
decorate(τ1 � τ2,m) = decorate(τ1,m) � decorate(τ2,m)
decorate(�id=σ,m) = (�id=decorate(σ,m))
decorate(∀v . ct ,m) = ∀v . decorate(ct , v �m)

decorate(�id=α,m) = (�id=v)l , if m(v) = l
decorate(ct1 = ct2,m) = (decorate(ct1,m) = decorate(ct2,m))
decorate(poly(e),m) = poly(decorate(e,m))
decorate(∃a.e,m) = ∃a.decorate(e, {a} �m)
decorate(e1;e2,m) = decorate(e1,m);decorate(e2,m)

decorate(ct l ,m) = decorate(ct ,m)l

decorate(ct ,m) = ct , otherwise

if it occurrs in the type of a monomorphic binder such as a fn-binder.

Fig. 15 and fig. 16 define the two functions blames and decorate. The function
blames computes a function m in Monos: blames(u, ct) associates with α the
dependency set occurring in ct on the paths from its root node to any free
occurrence of α, and this for each α occurring free in ct . The function decorate
adds dependencies to constraint terms: decorate(ct ,m) results in the precise
constraining of the free occurrences of α in ct with the dependency set m(α).
The function monos : Context → Monos defined below computes the set of
dependent monomorphic type variables occurring in a given context, i.e., the
type variables occurring in the types of the monomorphic binders:

monos(Δ) = �τ s.t. ∃vid.Δ(vid)=∀∅. τ blames(Δ, τ)

For example, monos(〈{α �→ (αl1
1 �αl2

2 )l0}, �vid=α〉) = {α1 �→ l0∪l1, α2 �→ l0∪l2}.
The type variable α1 occurring in the monomorphic type associated with vid
depends only on l0 ∪ l1 and not on l2 (and similarly for α2).

Finally, using all these functions, we define toPoly in Fig. 17.
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Figure 17 Monomorphic to polymorphic environment

toPoly(Δ, �id=∀∅. ct) = ∀v . ct ′, where

{
v = freevars(〈e, ct〉) \ dom(monos(Δ))
ct ′ = decorate(build(ct ,Δ),monos(Δ))

toPoly(Δ, e l) = e ′l , if e ′ = toPoly(Δ, e)
toPoly(Δ, e1;e2) = e ′

1;e
′
2 if e ′

1 = toPoly(Δ, e1) and e ′
2 = toPoly(Δ;e ′

1, e2)
toPoly(Δ, e) = e, if none of the above applies

Figure 18 Constraint generator (1 of 2) (ExtLabSynt → Env)

Expressions (exp)

(G1) �vid l
e, α� = �vid

l
= α

(G2) �letl dec in exp end, α� = [∃α2.�dec�;�exp, α2�;(α
l
=α2)]

(G3) �
exp atexp�l , α� = ∃〈α1, α2〉.�exp, α1�;�atexp, α2�;(α1
l
=α2 � α)

(G4) �fn pat
l⇒ exp, α� = [∃〈α1, α2, ev〉.(ev = �pat , α1�);ev

l ;�exp, α2�;(α
l
=α1 � α2)]

Labeled datatype constructors (ldcon)

(G5) �dcon l , α� = �dcon
l
= α

Patterns (pat)

(G6) �vvar lp, α� = �vvar
l
= α

(G7) �dcon l
p, α� = �dcon

l
= α

(G8) �
ldcon atpat�l , α� = ∃〈α1, α2〉.�ldcon, α1�;�atpat , α2�;(α1
l
=α2 � α)

Labeled type constructors (ltc)

(G9) �tcl , δ� = �tc
l
= δ

Types (ty)

(G10) �tv l , α� = �tv
l
= α

(G11) �
ty ltc�l , α′� = ∃〈α, δ〉.�ty , α�;�ltc, δ�;(α′ l
=α δ)

(G12) �ty1
l→ ty2, α� = ∃〈α1, α2〉.�ty1, α1�;�ty2, α2�;(α

l
=α1 � α2)

Datatype names (dn)

(G13) �
tv tc�l , α′� = ∃〈α, γ〉.(α′ l
=αγ);(�tc

l
= γ);(�tv

l
= α)

Constructor bindings (cb)

(G14) �dcon l
c, α� = �dcon

l
= α

(G16) �dcon of l ty , α� = ∃〈α′, α1〉.�ty , α1�;(α
′ l
=α1 � α);(�dcon

l
= α′)

6.4. Constraint generation

Fig. 18 and 19 define our constraint generator . As mentioned in Sec. 4,
constraints are not only generated here, but are also generated as part of the
constraint solving process.
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Figure 19 Constraint generator (2 of 2) (ExtLabSynt → Env)

Declarations (dec)

(G17) �val rec pat
l
= exp� =

∃〈α1, α2, ev〉.(ev = poly(�pat , α1�;�exp, α2�;(α1
l
=α2)));ev

l

(G18)�datatype dn
l
= cb� =

∃〈α1, α2, ev〉.(ev = ((α1
l
=α2);�dn, α1�;poly(�cb, α2�)));ev

l

(G19) �openl strid� = ∃ev .(�strid l
= ev);ev l

Structure declarations (strdec)

(G20)�structure strid
l
= strexp�=

∃〈ev , ev ′〉.[�strexp, ev�];(ev ′ = (�strid
l
= ev));ev ′l

Structure expressions (strexp)

(G21)�strid l , ev� = �strid
l
= ev

(G22)�structl strdec1 · · · strdecn end, ev�=

∃ev ′.(ev l
= ev ′);(ev ′ = (�strdec1�; · · · ;�strdecn�))

Let cstgen(P, v) be a function with two arguments: (1) a labeled piece of
user program P, and (2) a set of free variables occurring in P. Let cstgen(P) =
cstgen(P,∅). Each constraint generation rule is written either as �P� = e, which
abbreviates cstgen(P), or as �P, v� = e, which abbreviates cstgen(P, {v}).

As mentioned above, in order to simplify the presentation of Skalpel core,
datatype declarations only have one constructor: see rules (G11) and (G13).
Structure declarations are handled in rule (G20). Again to simplify the presen-
tation of Skalpel core, we do not handle signatures in this paper but we worked
out the theory in [45].

6.4.1. Discussion of some constraint generation rules

Recursive value declarations. In rule (G17), to handle the recursivity of such
declarations, the environment e2 generated for exp must be in the scope of envi-
ronment e1 generated for pat . The binders in e1 are monomorphic. Polymorphic
type schemes are generated at constraint solving when dealing with the poly

constraint. Within the poly environment, binders need to be monomorphic
because SML does not allow polymorphic recursion. Allowing poly constraints
on environments other than just a single binder (such as in poly(bind ;e;acc),
where acc can potentially refer to bind) allows one to delay the generation of
polymorphic types. Therefore, given a recursive function declaration, one can
generate only one binder for the function (in a naive approach two might be
needed: one monomorphic for the function’s body and one polymorphic for the
function’s scope).
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Recursive datatypes. In rule (G18), to handle the recursivity of such declara-
tions, the environment poly(e2) generated for the datatype constructor of the
declared type constructor must be in the scope of e1 generated for the declared
type constructor. For example, in the declaration datatype nat = z | s of nat,
nat’s second occurrence refers to its first occurrence. Note that e1 also binds
explicit type variables in Skalpel. This extends the scope of the bound external
type variable further than needed, but causes no harm here because all type
variables only occur inside datatype constructor bindings. This issue is resolved
in [49] using local environments.

Unlabeled equality constraints. Rules (G4), (G17), (G18), (G20) and (G22) gen-
erate unlabeled environment equality constraints. Given a structure expression
strexp of the form structl strdec1 · · · strdecn end, rule (G22) generates a con-
straint c of the form ev ′ = (e1; · · · ;en). Such a constraint needs to be unlabeled
because each ei does not depend on strexp itself, but only on the corresponding
declaration strdeci which happens to be packed together with other declarations
in strexp. When slicing out the packaging created by strexp (by slicing out l
above), we must not discard the eis, which is what would happen if we were to
label c with l and discard it when slicing out l . The information related only to
strexp, carried by c, is the fact that a sequence of declarations, corresponding to
the composition environment e1; · · · ;en, is packed into a structure. This infor-

mation depends on strexp via the extra labeled equality constraint ev
l
=ev ′ (see

also design principle DP3 in Sec. 7). In rules (G4), (G17), (G18) and (G20), we
use labeled environment variables of the form ev l for this purpose.

Environment variables. Rules (G4), (G17), (G18), (G19) and (G20) label envi-
ronment variables. In rule (G19), we do so to prevent sliced out declarations
from shadowing their context. For example, if ev is unconstrained, it shadows e
in e;ev . In the other rules we do so to be able to disconnect accessors from their
binders. Let us focus on rule (G19). In that rule, ev represents the entire open-
ing declaration, and is labeled with l , the label associated with the declaration.
Without l , ev would be a constraint that always has to be satisfied, even when
the corresponding opening declaration has been sliced out. For example, slic-
ing out open S in structure S = struct end; val x = 1; open S; val y = x 1;

would result in the environment variable generated for open S shadowing its
context, which contains the declaration val x = 1. Failing from labeling ev us-
ing l in rule (G19) would prevent from finding the error that x is declared as an
integer in the piece of code presented above, and is also applied to an argument
in y’s body. With the label, the environment variable is a constraint that has
to be satisfied only when the declaration is not sliced out. (See also our design
principle DP7 in Sec. 7 for more information.)
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6.4.2. Properties

This section discusses some properties of our constraint generator. (1) It
is compositional, i.e., given a piece of code, we can first generate separately
constraints for its various parts and then compose the analysis of these parts
to form a constraint/environment for the larger piece of code. Note that even
though our constraint generator is compositional, this is not true about the
entire Skalpel procedure (see Sec. 4) mainly because of the way schemes are
generated from binders at constraint solving (Haack and Wells’ slicer was inef-
ficient but allowed compositional analysis [25, 26]). (2) It generates constraints
that are linear in the size of the input program. We will show that our program
does not suffer from a constraint explosion the larger the program grows. (3) It
terminates.

Remark 6.1 (Compositionality of constraint generator). The constraint
generator shown in Fig. 18 and 19 is compositional.

Lemma 6.2 (Size of initially generated constraints). Constraints gener-
ated by our constraint generator shown in Fig. 18 and 19 have a size linear in
the input program’s size.

Proof. By inspection of the rules. For a polymorphic (let-bound) function
(rules (G2), (G6) and (G17)) we do not eagerly copy constraints for the function
body. Instead, we generate polymorphic and composition environments, and
binders force solving the constraints for the body before copying its type for
each use of the function. �

Lemma 6.3 (Termination of constraint generator). The constraint gen-
erator shown in Fig. 18 and 19 terminates, i.e., for all strdec, cstgen(strdec)
returns a constraint/environment of the form e.

Proof. This can easily be proved using the size of the input program as mea-
sure. �

6.5. Constraint solving

6.5.1. Syntax

Fig. 20 defines additional syntactic forms used by our constraint solver (it-
self defined in Fig. 21 and 22), where a constraint solving step is defined by
the relation →, and where →∗ is its reflexive (w.r.t. State) and transitive clo-
sure. Given an environment e to solve, our constraint solver starts in the state
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Figure 20 Syntactic forms used by the constraint solver

ek ∈ ErrKind ::= clash(μ1, μ2) | circ
er ∈ Error ::= 〈ek , l〉

istate ∈ InternalState ::= slv(Δ, l , e, e ′)
fstate ∈ FinalState ::= succ(Δ, e) | err(er)
state ∈ State ::= istate | fstate

slv(〈∅, �〉,∅, e,�), and either succeeds with final state succ(Δ, e ′) returning
its current constraint solving context Δ, and e ′, the “solved” version of e, or fails
with final state err(er) returning an error which can either be a type construc-
tor clash or a circularity error6 (see Lem. 6.4). Given a state slv(Δ, l , e, e ′), if
the dependencies in l are satisfied and e is solvable in the context Δ then the
constraint solver succeeds with final state succ(Δ′, e ′;e ′′) for some Δ′ and e ′′.

6.5.2. Algorithm

Fig. 21 and 22 define our constraint solver which can be regarded as a
rewriting system. A finite computation is then a finite sequence of states
〈state1, . . . , staten〉 such that for each i ∈ {1, . . . , n − 1}, the state statei+1

is obtained by applying one of the constraint solving rules as defined in Fig. 21
and 22 to the state statei, i.e., the pair 〈statei, statei+1〉 is obtained by instanti-
ating one of the constraint solving rules, where statei is the instantiation of the
left-hand-side of the rule and statei+1 is the instantiation of the right-hand-side.

Note that rule (A2) in Fig. 22 could be used to report free identifiers. If
slv(Δ, l , �id=v , e) → succ(Δ, e) and ¬shadowsAll(Δ), then it means that there
is no binder for id and so that it is a free identifier. Free identifiers are in any
case important to report, but it is especially vital for structure identifiers in
open declarations. In our approach, a free opened structure is considered as
potentially redefining its entire context. For example, in Skalpel the program
val x = 1; open S; val y = x 1 does not have an error involving x because x’s
first occurrence is hidden by the declaration open S. This could be confusing if
S was not reported as being free. Let us explain how a free opened structure
shadows its context. Given a declaration open S labeled by l , our initial con-

straint generator generates an environment of the form (�S
l
= ev);ev l . Because S

is free, we have to use rule (A2) when solving �S=ev . The environment variable
ev is then unconstrained. Hence, when solving ev , we use rule (V) and e;ev
(from the right-hand-side of rule (V)) results in the shadowing of all the binders
in e by ev .

Let the relations isErr and solvable be defined as follows:

6More error kinds are handled in [49, Ch.14] for example.
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Figure 21 Constraint solver (1 of 2): InternalState → FinalState

equality constraint reversing
(R) slv(Δ, l , ct = ct ′, e) → slv(Δ, l , ct ′ = ct , e),

if (ct ′ ∈ s ∧ ct �∈ s) where s = Var ∪ Dependent

equality simplification
(S1) slv(Δ, l , ct = ct , e) → succ(Δ, e)

(S2) slv(Δ, l , ct l
′
= ct ′, e) → slv(Δ, l ∪ l

′
, ct = ct ′, e)

(S3) slv(Δ, l , τ1 μ1 = τ2 μ2, e) → slv(Δ, l , (μ1 = μ2);(τ1 = τ2), e)

(S4) slv(Δ, l , τ1 � τ2 = τ3 � τ4, e) → slv(Δ, l , (τ1 = τ3);(τ2 = τ4), e),

(S5) slv(Δ, l , τ = τ ′, e) → slv(Δ, l , μ= arr, e),
if {τ, τ ′} = {τ1 μ, τ2 � τ3}

(S6) slv(Δ, l , μ1 = μ2, e) → err(〈clash(μ1, μ2), l〉),
if {μ1, μ2} ∈ {{γ, γ′}, {γ, arr}} ∧ γ �= γ′

unifier access

Rules (U1) · · · (U4) assume: v �∈ {strip(ct)} ∪ dom(Δ) and ct ′ = build(Δ, ct l).

(U1) slv(Δ, l , v = ct , e) → err(〈circ, labs(ct ′)〉), if v ∈ freevars(ct ′) \ Env
(U2) slv(Δ, l , v = ct , e) → succ(Δ ∪ {v �→ ct l}, e), if v �∈ freevars(ct ′) ∪ Env

(U3) slv(Δ, l , v = ct , e) → succ(Δ′ ∪ {v �→ e ′}, e),
if v ∈ Env ∧ slv(Δ, l , ct ,) →∗ succ(Δ′, e ′)

(U4) slv(Δ, l , v = ct , e) → err(er),

if v ∈ Env ∧ slv(Δ, l , ct ,) →∗ err(er)

(U5) slv(Δ, l , v ′ = ct , e) → slv(Δ, l , ct ′ = ct , e), if Δ(v ′) = ct ′

binders/existentials/true/dependent/variables

(B) slv(Δ, l , bind , e) → succ(Δ, e;bind l)

(X) slv(Δ, l , ∃a.e ′, e) → slv(Δ, l , e ′[{a �→ a ′}], e), if a ′ �∈ atoms(〈Δ, e ′〉)
(E) slv(Δ, l ,, e) → succ(Δ, e)

(D) slv(Δ, l , e ′l′ , e) → slv(Δ, l ∪ l
′
, e ′, e)

(V) slv(Δ, l , ev , e) → succ(Δ, e;ev l)

e −isErr−−→ er ⇐⇒ slv(〈∅, 〉,∅, e,) →∗ err(er)
solvable(e) ⇐⇒ ∃Δ.∃e ′.slv(〈∅, 〉,∅, e,) →∗ succ(Δ, e ′)
solvable(strdec) ⇐⇒ ∃e.�strdec� = e ∧ solvable(e)

These relations are used, among other things, to define our minimization and
enumeration algorithms in Sec. 6.6.

6.5.3. Properties

As mentioned above in Sec. 6.5.1, given an environment e, to solve our
constraint solver either succeeds and returns a final success state of the form
succ(Δ, e ′), or fails and returns a final failure state of the form err(er). Let
us make this more formal here by proving that our constraint solver algorithm
terminates in either of these states. Note also that success and failure states
are irreducible, and our constraint solver is confluent, which means that there
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Figure 22 Constraint solver (2 of 2): InternalState → FinalState

composition environments
(C1) slv(Δ, l , e1;e2, e) → succ(Δ2, e;e

′
1;e

′
2),

if slv(Δ, l , e1,) →∗ succ(Δ1, e
′
1) ∧ slv(Δ1;e

′
1, l , e2,) →∗ succ(Δ2;e

′
1, e

′
2)

(C2) slv(Δ, l , e1;e2, e) → err(er),

if slv(Δ, l , e1,) →∗ succ(Δ1, e
′
1) ∧ slv(Δ1;e

′
1, l , e2,) →∗ err(er)

(C3) slv(Δ, l , e1;e2, e) → err(er),

if slv(Δ, l , e1,) →∗ err(er)

accessors
(A1) slv(Δ, l , �id=v , e ′) → slv(Δ, l , ct = v , e ′),

if Δ(id), ren −instance−−−−→ ct ∧ dj(vars(〈Δ, v〉), ran(ren))
(A2) slv(Δ, l , �id=v , e ′) → succ(Δ, e ′),

if Δ(id) undefined

polymorphic environments
(P1) slv(Δ, l , poly(e), e1) → succ(Δ′, e1;toPoly(Δ′, e2)),

if slv(Δ, l , e,) →∗ succ(Δ′, e2)
(P2) slv(Δ, l , poly(e), e1) → err(er),

if slv(Δ, l , e,) →∗ err(er)

is only one (success or failure) final state that a state can reduce to.

Lemma 6.4 (Termination of constraint solver). Either slv(Δ, l , e, e ′) →∗

succ(Δ, e) or slv(Δ, l , e, e ′) →∗ err(er).

Proof. We use the following measure: given a state of the form err(er) or
succ(Δ, e), we return 0, and given a state of the form slv(Δ, l , e, e ′), we return
size(Δ, e) (defined below). We then have to prove that whenever slv(Δ1, l1, e1, e

′
1)

→ slv(Δ2, l2, e2, e
′
2), then size(Δ2, e2) < size(Δ1, e1), and similarity for recur-

sive calls to slv. I.e., we will have to inspect the rules (R), (S2), (S3), (S4),
(S5), (U5), (X), (D), (C1), (C2), (C3), (A1), (P1), and (P2). First, let us define
the size function:
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size(Δ, v) =

{
1 + size(Δ, ct), if Δ(α) = ct
1, otherwise

size(Δ, τ μ) = 3 + size(Δ, μ) + size(Δ, τ)
size(Δ, τ1 � τ2) = 3 + size(Δ, τ1) + size(Δ, τ2)
size(Δ, �id=σ) = 1 + size(Δ, σ)
size(Δ, ∀v . ct) = 1 + size(Δ, ct)
size(Δ, �id=v) = 3 + size(Δ, v)

size(Δ, ct1 = ct2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 + size(Δ, ct1) + size(Δ, ct2),
if ct2 ∈ Var ∪ Dependent
and ct1 �∈ Var ∪ Dependent

1 + size(Δ, ct1) + size(Δ, ct2),
otherwise

size(Δ, poly(e)) = 1 + size(Δ, e)
size(Δ, ∃a.e) = 1 + size(Δ, e)
size(Δ, e1;e2) = 1 + size(Δ, e2) + size(Δ, e1)

size(Δ, ct l) = 1 + size(Δ, ct)
size(Δ, ct) = 1, otherwise

Let us now inspect the above mentioned rules. The only non-trivial ones are (R),
(S3), (S4), (U5), and (A1). We have a 2 + in the definition of size(Δ, ct1 =
ct2) to handle rule (R). We have a 3 + in the definitions of size(Δ, τ μ) and
size(Δ, τ1�τ2) to handle rules (S3) and (S4). We use 3 instead of 2 because these
rules generate new equality constraints, and as mentioned above we sometimes
add 2 instead of 1 when computing the size of equality constraints. Similarity,
we use 3 + in the definition of size(Δ, �id=v) to handle rule (A1). Finally, we
look up inside Δ in the definition of size(Δ, v) in order to deal with rule (U5).
�

6.6. Minimization and enumeration

So far, Skalpel has taken a program, labeled it, and has generated and solved
constraints. If the output of the constraint solver is successful, then the program
is typable and we do not generate an error. Alternatively, if the constraint solver
detects an error, then the error produced from that algorithm contains a set of
labels. However, not all these labels might be responsible for the error. To find
the minimal set responsible for the error, we run our minimization algorithm
which we explain in Sec. 6.6.3. For minimization to take place successfully,
we need to determine precisely which program parts represented in the error
are responsible for the error produced. We do this by experimenting with these
parts, i.e., by automatically adding and removing them, e.g., via dummy binders
or via constraint filtering as given in Sec. 6.6.2. The minimization algorithm
is called by our enumeration algorithm, which is given in 6.6.5 and which is in
charge of enumerating all minimal errors.
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6.6.1. Why is minimization necessary?

Given an environment generated for a piece of code, i.e., given e such that
�strdec� = e for a given strdec, our enumeration algorithm (see Sec. 6.6.5) works
as follows: it selects a filter from its search space, it filters out the constraints
labeled by the filter in the environment and runs the constraint solver on the
filtered environment. If the constraint solver succeeds (terminates in a success
state) then the enumerator keeps searching for type errors using the rest of the
search space. If the constraint solver fails (terminates in an error state) then
the enumerator has found a new error. This new error might not be minimal.
In that case, the enumerator runs the minimizer on the found error and once
a minimal error has been found, keeps searching for other type errors. The
minimizer is necessary because when the constraint solver returns an error at
enumeration, this error might not be minimal. A simple example is as follows:

val rec f = fn x => (x (fn z => z), x (fn () => ()))

val rec g = fn y => y true

val u = f g

This piece of code is untypable and the highlighting of one of the type errors
of this piece of code is as follows:

val rec f = fn x => (x (fn z => z), x (fn () => ()))

val rec g = fn y => y true

val u = f g

The corresponding type error slice (see Sec. 6.7) is (we have adapted the
slice returned by our implementation to the restricted language presented in
this document):

〈..val rec f = fn x => 〈..x (fn () => 〈..〉)..〉
..val rec g = fn y => 〈..y true..〉
..f g..〉

The issue is that because of the first component returned by the function f

(i.e., the application x (fn z => z)) and because of x’s monomorphism, when
the error presented above is first found at enumeration, it is not minimal. The
error first found by the enumerator, before minimization, is as follows:

〈..val rec f = fn x => 〈..x (fn z => 〈..〉)..x (fn () => 〈..〉)..〉
..val rec g = fn y => 〈..y true..〉
..f g..〉

Because x is monomorphic, it is constrained by both z and (). This is
a typical example that shows the necessity of the minimization algorithm. We
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Figure 23 Constraint filtering

filt(e, l1, l2) = filt′

⎛
⎝e,

{l �→ keep | l ∈ l1 \ l2}
∪ {l �→ keep-only-binders | l ∈ l2}
∪ {l �→ drop | l ∈ labs(e) \ (l1 ∪ l2)}

⎞
⎠

filt′(e l , de) =

⎧⎨
⎩

filt′(e, de)l , if de(l) = {keep}
, if drop ∈ de(l)

dum(e), if de(l) \ {keep} = {keep-only-binders}
filt′(e1 = e2, de) = (filt′(e1, de) = filt′(e2, de))
filt′(e1;e2, de) = filt′(e1, de);filt′(e2, de)
filt′(poly(e), de) = poly(filt′(e, de))
filt′(∃a.e, de) = ∃a.filt′(e, de)
filt′(e, de) = e, otherwise

conversion of environments into dummy environments

dum(�vid=ts) = �vid=∀α. α
dum(�tv=ts) = �tv=∀α. α
dum(�tc=tcs) = �tc=∀δ. δ
dum(�strid=es) = �strid=∀ev . ev

dum(ev) = ∃ev .ev
dum(e1;e2) = dum(e1);dum(e2)
dum(poly(e)) = dum(e)
dum(∃a.e) = dum(e)

dum(e l) = dum(e)
dum(c) = 

dum(acc) = 
dum() = 

have not yet found a way to directly obtain the first slice presented above without
the help of the minimizer. The investigation of such a system is left for future
work. (See also design principle DP5 in Sec. 7 for more information.)

6.6.2. Dummy binders and constraint filtering

To determine precisely which program parts are responsible for the error, we
experiment by removing potentially large sections of code, such as structures,
datatype definitions, etc., because we want to deal with the skeletal structure
of the program. We do this by replacing binders with dummy binders. For that
we define the function lBinds, which gathers the labels of all binders in a given
environment e:

lBinds(e) = {l | bind l occurs in e}

The definition of the constraint filtering function filt : Env × P(Label) ×
P(Label) → Env is given in Fig. 23 (where filt′ : Env × DepEnv → Env). This
function is used to check the solvability of constraints in the case that some have
been discarded, and we use label sets to accomplish this. In filt(e, l1, l2), e is the
environment we want to filter, and l1 contains the labels that we want to keep.
Any accessors or equality constraints annotated with a label which is present
in the l2 set, we do not want to keep. If a binder label is in that set l2, then
we turn it into a dummy binder. Any environment labeled with a label which
is not in l1 ∪ l2 is discarded. Note that we distinguish binders that we discard,
i.e., any binder with a label not in l1 ∪ l2, and the binders that we turn into
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Figure 24 Minimization algorithm

(MIN1) 〈e, l1, {l} � l2〉 →test 〈e, l1 ∩ l , l2 ∩ l〉, if filt(e, l1 ∪ l2, {l}) −isErr−−→ 〈ek , l〉
(MIN2) 〈e, l1, {l} � l2〉 →test 〈e, l1 ∪ {l}, l2〉, if solvable(filt(e, l1 ∪ l2, {l}))
(MIN3) 〈e, er〉 −min−−→ er ′,

if lBinds(e) = l

∧〈e, labs(er) \ l , labs(er) ∩ l〉 →∗
test 〈e, l1,∅〉(Phase 1)

∧〈e,∅, l1〉 →∗
test 〈e, l2,∅〉(Phase 2)

∧filt(e, l2,∅) −isErr−−→ er ′

dummy binders, i.e., those in l2, so that when throwing away an environment,
we make sure that accessors in the resulting environment do not get captured
by a different binder with the same name (see Sec. 6.6.4). We use elements of
the sets DepStatus resp. DepEnv defined in Sec. 6.3.3 to keep or drop binders
resp. to map a dependency to a dependency status.

Anticipating Sec. 6.6.4, given a user program P, and constraints e for that

program of the form �vid
l
= σ;e1;�vid

l′
= α, where e1 contains a binder of the

form �vid
l′′
= σ′, we will not filter out the parts of P responsible for e1 and

create e ′ such that the accessor to vid will be connected to a previously existing
binding. That is, α will not be connected to σ by rule (A1) of Fig. 22, and will
instead be connected to a dummy binder created by dum(e1).

6.6.3. Minimization

As mentioned above, the labels attributed to an error discovered by our con-
straint solver may be extraneous. The minimization algorithm given in Fig. 24
removes unnecessary labels. A minimal error is an error which has no extra-
neous labels, i.e., it is untypable and removing any one label from it makes it
typable. The →test relation determines whether a given label can be removed
from the set of labels associated with an error without losing a label crucial to
the error. We separate the process of minimization into two phases:

• (Phase 1) turns binders into dummy binders which can potentially remove
large sections of code.

• (Phase 2) tries to remove labels one at a time until we find the minimal
amount of labels attributed to the error.

In a minimization step 〈e, l1, {l} � l2〉 −test−−→ 〈e, l3, l4〉, it holds that l3 and l4
depend upon the solvability of filt(e, l1 ∪ l2, {l}), which we will call e ′. The full
set of labels for the error the minimizer is working on is the set l1∪ l2∪{l}, and
{l}� l2 is the label set we still have to attempt to discard. The new environment
e ′ is obtained from e by:
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• filtering out the constraints not labeled by l1 ∪ l2 ∪ {l}.
• Filtering out accessors and equality constraints annotated with l .

• Creating dummy binders for binders annotated with l , and similarly,
dummy environment of the form ∃ev .ev for environment variables an-
notated with l .

If e ′ is solvable, then label l must be in the error’s label set for the error to occur,
and so l3 = l1 ∪{l} and l4 = l2, i.e., we keep l (rule (MIN2)). If e ′ is unsolvable
then the solver fails and we obtain a new smaller error, which contains strictly
less labels. This means that l is extraneous, and any environment labeled by l
can be completely filtered out. The label sets l3 and l4 are then restricted to
the newly found error (rule (MIN1)).

The next conjecture says that our minimization algorithm is meant to com-
pute minimal errors, where a minimal error is untypable and such that no re-
maining labels after minimization are extraneous. (This is simply a conjecture
and not a lemma because, as mentioned in the proof sketch below, a full proof
would necessitate several extra lemmas regarding our filtering and minimization
algorithms. Proving these lemmas is left for future work.)

Conjecture 6.5 (Minimal errors). After minimizing 〈e, er〉 min→ 〈ek , l〉, the
two following properties hold:

1. 〈e, 〈ek , l〉〉 is an error: ∃er .filt(e, l ,∅) −isErr−−→ er.

2. 〈e, 〈ek , l〉〉 is minimal: ∀l ∈ l .solvable(filt(e, l , {l})).

Proof Sketch. By definition of the minimization algorithm, we get that there
exists lb, l1, and l2 such that lb = lBinds(e), 〈e, labs(er) \ lb, labs(er) ∩ lb〉 →∗

test

〈e, l1,∅〉, 〈e,∅, l1〉 →∗
test 〈e, l2,∅〉, and filt(e, l2,∅) −isErr−−→ 〈ek , l〉. Note that we

should be able to derive that:

l ⊆ l2 ⊆ l1 ⊆ (labs(er) \ lb) ∪ (labs(er) ∩ lb)

It should be a property of our constraint solver that:

∀e, ek , l .e −isErr−−→ 〈ek , l〉 ⇒ ∃er .filt(e, l ,∅) −isErr−−→ er

Therefore, from filt(e, l2,∅) −isErr−−→ 〈ek , l〉 we should be able to deduce that there

exists er such that filt(filt(e, l2,∅), l ,∅) −isErr−−→ er . Because l ⊆ l2, we would get

filt(e, l ,∅) −isErr−−→ er . Let us now consider the minimality property. Let l ∈ l .
We have to show that solvable(filt(e, l , {l})). By definition of our minimization
algorithm (Phase 2 and rule (MIN2)), there was a minimization state 〈e, l3, {l}�
l4〉 such that solvable(filt(e, l3 ∪ l4, {l})) and 〈e, l3, {l}� l4〉 →test 〈e, l3 ∪{l}, l4〉
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→∗
test 〈e, l2,∅〉. Therefore, we have l ⊆ l3∪l4. As mentioned below in Sec. 6.6.4,

it should be a property of our constraint solver and minimization algorithm that
whenever we apply rule (MIN1) and discard labels, bindings do not get mixed
up. Therefore, it should be the case that if solvable(filt(e, l3 ∪ l4, {l})) then
solvable(filt(e, l , {l})). In addition we should also be able to derive filt(e, l ,∅)

−isErr−−→ 〈ek , l〉. �

6.6.4. Regarding binding discarding during minimization

Let us describe a step of the first phase of our minimization algorithm. Let
P be our original untypable piece of code, let e be the environment generated
for P, and let l ∪ {l} be the label set labeling the slice that is being minimized,
where l is associated with a binder bind from the slice. We test whether we can
remove l (and still obtain a type error slice) by first filtering out the constraints
of P as follows: filt(e, l , {l}), to obtain e ′. In order not to mix up the bindings,
at constraint filtering, the binder bind associated with l is not discarded but is
replaced by a non labelled dummy binder bind ′ (such that bind ′ = dum(bind))
that cannot participate in any error but that still acts as a binder. If we then
solve e ′ and obtain an error then no label labeling an accessor to bind ′ in e ′ will
occur in the found error (we give below an informal argument as why none of
these accessors will be part of the new error). The bindings in this new error are
then not mixed up7. The found error is then the new slice to try to minimize
further and next time the constraints will be filtered w.r.t. this new slice, the
binder bind and its accessors will be completely thrown away (as well as the
other constraints not participating in the new error).

Let us consider the following unsolvable environment, which we call e:

α1
l1= int;α2

l2= unit;�vid
l3= α1;�vid

l4= α2;α3
l5=unit;�vid

l6= α3;α1
l7=α3

The only labels necessary for an error to occur are l1, l5 and l7. Note that vid ’s
accessor refers to vid ’s binder labelled by l4 (second binder) and not to the one
labelled by l3 (first binder). Let us run our minimization algorithm on e and
let the first step be to try to discard l4. First, the filtering function is called
on e as follows: filt(e, {l1, l2, l3, l5, l6, l7}, {l4}), which results in the following
environment, called e ′:

α1
l1=int;α2

l2= unit;�vid
l3= α1;�vid=∀α. α;α3

l5=unit;�vid
l6= α3;α1

l7=α3

Let us run our constraint solver on e ′. When dealing with the accessor �vid
l6=

7Note that bindings can be mixed up in a filtered environment if and only if an accessor
refers to a binder to which it does not refer to in the non filtered environment.
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α3, the dummy binder �vid=∀α. α is accessed and the equality constraint α=α3

is generated by rule (A1), where α is “fresh enough”. Rule (U2) is then used

and a binding of the form α �→αl
3 is added to the current context. Because of

the freshness of α, this binding will never be accessed. In effect the accessor
and its label are discarded at constraint solving and cannot occur in any error.
In our example, the constraint solver terminates in an error state on e ′, which
means that l4 is unnecessary for an error to occur. The error returned by the
constraint solver does not involve l4 or l6 and especially, in the next step of the
minimization process, vid ’s accessor cannot refer to vid ’s first binder.

Note that filtering itself does not prevent bindings to get mixed up because,
e.g., filtering allows one to throw away the binder generated for the second
occurrence of x in fn x => fn x => x while not throwing away the binder gener-
ated for the first occurrence of x and not throwing away its accessor. However,
we give below an informal argument as why we never filter a binder without
filtering its accessor.

Let us now present an informal argument as why when our constraint solver
returns an error, the error does not involve accessors to dummy binders or
accessors without their corresponding binders.

According to rules (A1) and (A2), during constraint solving the label label-
ing an accessor only gets recorded in a constraint solving context Δ of the form
〈u, e〉 if the accessed identifier is in the type environment e stored in Δ in the
current state (the state in which the constraint solving process is when the rule
applies). There are two possible scenarios. In the environment e (1) either (as
mentioned above) the accessed identifier has a dummy static semantics (result-
ing from filtering) of the form ∀v . v , and according to rule (U2) the label of
the accessor gets recorded into the constraint solving context Δ, but will never
be used because of the freshness condition used in rule (A1): given an accessor
�id=v , according to rule (A1), a constraint of the form v ′=v is generated, where
v ′ is “fresh enough”. (2) Or the accessed identifier has a labelled non-dummy
static semantics, and the labels associated with the binder and the label asso-
ciated with the bound occurrence will always occur together in the constraint
solving context. The main point being that in our system if a binder is not a
dummy binder then it is labelled. This is why we strongly believe that an iden-
tifier occurring at a non-binding position in a sliced piece of code (represented
by an accessor in our constraint language) only occurs in a slice if it is bound
and its binder occurs in the slice as well.

This informal argument relies on the fact that our labelled external syntax
together with our constraint generator enforce that each bound occurrence of
an identifier is labelled by a unique label that does not label a larger piece
of code and therefore the label labeling an accessor does not label any other
constraint term (see our design principle DP6 in Sec. 7). Therefore in case (1)
described above, once the accessor and the generated equality constraint have
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Figure 25 Enumeration algorithm

(ENUM1) enum(e) →e enum′(e,∅, {∅})
(ENUM2) enum′(e, er ,∅) →e errors(er)

(ENUM3) enum′(e, er , l � {l}) →e enum′(e, er , l), if solvable(filt(e, labs(e), l))

(ENUM4) enum′(e, er , l � {l}) →e enum′(e, er ∪ {〈ek , l〉}, l ′ ∪ l)

if filt(e, labs(e), l) −isErr−−→ er

∧ 〈e, er〉 −min−−→ 〈ek , l〉
∧ l

′
= {l ∪ {l} | l ∈ l ∧ ∀l0 ∈ l .l0 �⊆ l ∪ {l}}

been dealt with, the label labeling the accessor occurs in the state in which the
constraint solver is but cannot be reached, and therefore cannot be part of any
error. This would not necessarily be the case with a constraint generator that

would generate 〈α, ((α l
= α1 � α2);(�id

l
= α1))〉 for some term. As a matter

of fact, we could imagine a scenario where α is further constrained to, e.g., be
equal to int. We would therefore obtain a type constructor clash between int

and the arrow type constructor that involves l but does not require the accessor
to be resolved. The accessor being kept alive in this error, at the next step of
the minimization algorithm, we would have no guarantee that it does not refer
to a different binder than the one it refers to (if referring to any) in the non
filtered environment.

6.6.5. Enumeration

Our enumeration algorithm filters out those parts of the program which are
irrelevant to the error and attempts to find all distinct errors that exist in the
user program. We have three enumeration states as follows:

EnumState ::= enum(e) | enum′(e, er , l) | errors(er)

The enumeration process describes in Fig. 25 starts in the state enum(e) and
ends in the state errors(er). The enumeration rule (ENUM1) is only used once
to start the enumeration process by creating filters, which form the search space
built when searching for errors. Initially, there is only one filter, which is the
empty filter, causing all constraints to be considered. An intermediate state is

of the form enum′(e, er , l) where er is the collection of minimal errors found so

far, and l is the collection of filters still to try. Finding new minimal errors leads
to new filters being created: after an error has been found and the error has
been minimized, we see in rule (ENUM4) that the labels of the minimized error

are used to build new filters, namely the set l
′
. When a filter leads to a solvable

filtered environment, the filter is discarded using rule (ENUM3). Once there are
no more filters to try, the enumeration process finishes with rule (ENUM2).

After the enumeration algorithm has stopped, the errors that have been
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found are all the minimal type errors in the analyzed piece of code. The next
conjecture says that errors found during enumeration and presented to the user
are meant to be minimal. (This is simply a conjecture and not a lemma because,
as mentioned in the proof sketch below, a full proof would necessitate several ex-
tra lemmas regarding our filtering, minimization, and enumeration algorithms.
Proving these lemmas is left for future work.)

Conjecture 6.6 (Enumeration of minimal errors). Given an enumeration
output errors(er), ∀er ∈ er, it holds that er is a minimal error.

Proof Sketch. When we detect an error er during enumeration (rule (ENUM4)),

we will always perform the step 〈e, er〉 −min−−→ 〈ek , l〉. Conjecture 6.5 says that this
error is meant to be minimal. As 〈ek , l〉 ∈ er , and we do not locate errors in
other enumeration rules nor do we add or remove labels from errors during
enumeration, we retain the property that these errors are minimal. �

6.7. Slicing

After all minimal errors have been enumerated, Skalpel knows exactly those
parts of the program responsible for the error. Next, the user must be informed
of those parts, in the most helpful manner. To do so, we produce a type error
slice (as discussed e.g. in [25] and [50]), which is the program the user submitted
to Skalpel with all irrelevant pieces of code removed and replaced by dot terms.

6.7.1. Dot terms

When Skalpel locates an error 〈ek , l〉 in the user program, it makes a type
error slice from the labels l and the error kind ek . This is done by the slicing
function sl defined below in Sec 6.7.3. Program nodes annotated with labels not
occurring in the set of labels as part of the error are replaced by “dot” terms,
which are used to show that some program nodes have been thrown away as
they do not contribute to the error. Fig. 26 extend our external labeled syntax
and our constraint generator to dot terms. A slice is any syntactic form that
can be produced using the grammar rules defined in Fig. 26 and Fig. 9. A type
error slice is a slice for which the constraint generator (which has been extended
to dot terms) only generates unsolvable constraints. Let us consider the labeled
program �1l1()l2�l3 . This is an error, as 1 is being used as a function and applied
to (). In this case, we do not want to report in our error what 1 is being applied
to, as it is irrelevant. What matters is that the application itself exists. For this
reason we remove the node annotated with label l2, giving the labeled program
�1l1dot-e(∅)�l3 . This is displayed to the user as 1 〈..〉.

Fig. 27 provides an alternative generic definition of our external labeled
syntax. This definition helps defining functions such as our slicing algorithm in
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Figure 26 Constraint syntax/generator for “dot” terms

LabTyCon ::= · · · | dot-e(−−→term)

LabDatCon ::= · · · | dot-e(−−→term)

Ty ::= · · · | dot-e(−−→term)

ConBind ::= · · · | dot-e(−−→term)

DatName ::= · · · | dot-e(−−→term)

Dec ::= · · · | dot-d(−−→term)

AtExp ::= · · · | dot-e(−−→term)

Exp ::= · · · | dot-e(−−→term)

AtPat ::= · · · | dot-p(−→pat)
Pat ::= · · · | dot-p(−→pat)

StrDec ::= · · · | dot-d(−−→term)

StrExp ::= · · · | dot-s(−−→term)

(G24) �dot-d(〈term1, . . . , termn〉)� = [�term1�; · · · ;�termn�]
(G25) �dot-p(〈pat1, . . . , patn〉), α� = �pat1�; · · · ;�patn�
(G26) �dot-s(〈term1, . . . , termn〉), ev� = [�term1�; · · · ;�termn�]
(G27) �dot-e(〈term1, . . . , termn〉), α� = [�term1�; · · · ;�termn�]

Figure 27 Generic definition of our external labeled syntax

class ∈ Class ::= lTc | lDcon | ty | conbind | datname | dec
| atexp | exp | atpat | pat | strdec | strexp

prod ∈ Prod ::= tyArr | tyCon | conbindOf | datnameCon
| decRec | decDat | decOpn | atexpLet
| expFn | strdecDec | strdecStr | strexpSt
| id | app | seq

dot ∈ Dot ::= dotE | dotP | dotD | dotS
node ∈ Node ::= 〈class, prod〉
tree ∈ Tree ::= 〈node, l ,−−→tree〉 | 〈dot ,−−→tree〉 | id

a compact way. A node in a tree tree can either be a labeled node of the form
〈node, l ,−−→tree〉, an unlabeled “dot” node of the form 〈dot ,−−→tree〉, or a leaf of the
form id . Fig. 28, defines the function toTree : ExtLabSynt → Tree, which takes
a piece of external labeled syntax and produces a generic tree form.

We now define getDot : Class × Prod → Dot, which generates terms in Dot
from nodes. This function is used in our slicing algorithm to generate dot nodes
from labeled nodes.

getDot(〈x, prod〉)=dotE, if x ∈ {lTc, lDcon, ty, conbind, datname, atexp, exp}
getDot(〈x, prod〉)=dotD, if x ∈ {dec, strdec}
getDot(〈x, prod〉)=dotP, if x ∈ {atpat, pat}
getDot(〈x, prod〉)=dotS, if x ∈ {strexp}
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Figure 28 From terms to trees

toTree(tv l) = 〈〈ty, id〉, l , 〈tv〉〉
toTree(dcon l) = 〈〈lDcon, id〉, l , 〈dcon〉〉
toTree(tcl) = 〈〈lTc, id〉, l , 〈tc〉〉
toTree(vid l

p) = 〈〈atpat, id〉, l , 〈vid〉〉
toTree(dot-e(

−−→
term)) = 〈dotE, toTree(−−→term)〉

toTree(dot-d(
−−→
term)) = 〈dotD, toTree(−−→term)〉

toTree(openl strid) = 〈〈dec, decOpn〉, l , 〈strid〉〉
toTree(vid l

e) = 〈〈atexp, id〉, l , 〈vid〉〉
toTree(dcon l

c) = 〈〈conbind, id〉, l , 〈dcon〉〉
toTree(strid l) = 〈〈strexp, id〉, l , 〈strid〉〉
toTree(dot-p(

−→
pat)) = 〈dotP, toTree(−→pat)〉

toTree(dot-s(
−−→
term)) = 〈dotS, toTree(−−→term)〉

toTree(ty1
l→ ty2) = 〈〈ty, tyArr〉, l , 〈toTree(ty1), toTree(ty2)〉〉

toTree(
ty ltc�l) = 〈〈ty, tyCon〉, l , 〈toTree(ty), toTree(ltc)〉〉
toTree(dcon of l ty) = 〈〈conbind, conbindOf〉, l , 〈dcon, toTree(ty)〉〉
toTree(
tv tc�l) = 〈〈datname, datnameCon〉, l , 〈tv , tc〉〉
toTree(val rec pat

l
= exp) = 〈〈dec, decRec〉, l , 〈toTree(pat), toTree(exp)〉〉

toTree(datatype dn
l
= cb) = 〈〈dec, decDat〉, l , 〈toTree(dn), toTree(cb)〉〉

toTree(letl dec in exp end) = 〈〈atexp, atexpLet〉, l , 〈toTree(dec), toTree(exp)〉〉
toTree(fn pat

l⇒ exp) = 〈〈exp, expFn〉, l , 〈toTree(pat), toTree(exp)〉〉
toTree(
exp atexp�l) = 〈〈exp, app〉, l , 〈toTree(exp), toTree(atexp)〉〉
toTree(
ldcon atpat�l) = 〈〈pat, app〉, l , 〈toTree(ldcon), toTree(atpat)〉〉
toTree(structure strid

l
= strexp)

= 〈〈strdec, strdecStr〉, l , 〈strid , toTree(strexp)〉〉
toTree(structl strdec1 · · · strdecn end)

= 〈〈strexp, strexpSt〉, l , toTree(〈strdec1, . . . , strdecn〉)〉
toTree(〈term1, . . . , termn〉)

= 〈toTree(term1), . . . , toTree(termn)〉

6.7.2. Tidying

In order for the output slice computed by Skalpel not to be cluttered with
extraneous symbols indicating where parts of programs are omitted, we define
two functions flat and tidy that make this output elegant. The function flat
flattens nested dot terms. For example, flattening 〈..1..〈..()..〉..〉 gives 〈..1..()..〉.
Not all nested dot terms are flattened. In order not to mix up bindings in a
slice, we do not let declarations escape dot terms. For example we do not flatten

〈..val x = false..〈..val x = 1..〉..x + 1..〉

to become
〈..val x = false..val x = 1..x + 1..〉

because the semantics has changed: the first is a typable slice and the second is
not. In the first slice, the third occurrence of x is bound by the first, while in
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the second slice it is bound by the second. In order to define our flat and tidy
functions, we define the predicates isClass, declares and pattern, which are used
to check whether a given tree has any binders or is a pattern (in the rest these
predicates are considered as functions returning Booleans—they are decidable):

isClass(tree, {class} ∪ class) ⇐⇒ tree = 〈〈class, prod〉, l ,−−→tree〉
declares(tree) ⇐⇒ isClass(tree, {dec, strdec, datname, conbind})
pattern(tree) ⇐⇒ isClass(tree, {atpat, pat})

With these in place, we define flat : tuple(Tree) → tuple(Tree) as follows:

flat(〈〉) = 〈〉

flat(〈tree〉@−−→
tree) =

⎧⎪⎪⎨
⎪⎪⎩

〈tree1, . . . , treen〉@flat(
−−→
tree),

if tree = 〈dot , 〈tree1, . . . , treen〉〉
∧(∀i ∈ {1, . . . , n}.¬declares(treei) or

−−→
tree = 〈〉)

〈tree〉@flat(
−−→
tree), otherwise

The condition “∀i ∈ {1, . . . , n}.¬declares(treei)” ensures that bindings are not
mixed up as explained above. However, flattening the last dot term (if it actually
is a dot term) cannot mix up the bindings because there is no identifier left
to bind. Therefore, flattening 〈..val x = 1..〈..val x = true..〉..〉 would lead
to 〈..val x = 1..val x = true..〉. We however have not yet found a concrete
example where this situation occurs.

The function tidy merges dot terms containing declarations in structures:

tidy(〈〉) = 〈〉
tidy(〈〈dotD,−−→tree1〉, 〈dotD,−−→tree2〉〉@−−→

tree)

= tidy(〈〈dotD,−−→tree1@
−−→
tree2〉〉@−−→

tree), if ∀tree ∈ ran(
−−→
tree1).¬declares(tree)

tidy(〈〈dotD,∅〉〉@−−→
tree)

= tidy(
−−→
tree), if none of the above applies

tidy(〈tree〉@−−→
tree)

= 〈tree〉@tidy(
−−→
tree), if none of the above applies

6.7.3. Algorithm

Fig. 29 formally defines the slicing algorithm. In this figure, sl(strdec, l)
abbreviates sl(toTree(strdec), l). Note that sl, sl1, sl2 : Tree× l → Tree.

6.7.4. Properties

After sending an erroneous program as input to Skalpel, errors are generated
that show all and only the parts of the program that are responsible for the
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Figure 29 Slicing algorithm

(SL1) sl(〈node, l ,−−→tree〉, l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

〈node, l , sl1(−−→tree, l)〉,
if l ∈ l ∧ getDot(node) �= dotS

〈node, l , tidy(sl1(−−→tree, l))〉,
if l ∈ l ∧ getDot(node) = dotS

〈getDot(node), flat(sl2(−−→tree, l))〉,
otherwise

(SL2) sl1(〈dot , 〈tree1, . . . , treen〉〉, l) = 〈dot , flat(〈sl2(tree1, l), . . . , sl2(treen, l)〉)〉
(SL3) sl2(〈dot , 〈tree1, . . . , treen〉〉, l) = 〈dot , flat(〈sl2(tree1, l), . . . , sl2(treen, l)〉)〉
(SL4) sl1(〈node, l ,−−→tree〉, l) = sl(〈node, l ,−−→tree〉, l)
(SL5) sl2(〈node, l ,−−→tree〉, l) = sl(〈node, l ,−−→tree〉, l)
(SL6) sl1(〈tree1, . . . , treen〉, l) = 〈sl1(tree1, l), . . . , sl1(treen, l)〉
(SL7) sl2(〈tree1, . . . , treen〉, l) = 〈sl2(tree1, l), . . . , sl2(treen, l)〉
(SL8) sl1(id , l) = id

(SL9) sl2(id , l) = 〈dotE, 〈〉〉

error to the user. Given a user program, Skalpel labels it producing P and runs
cstgen(P) to produce the constraint/environment e. Skalpel then runs enum(e)
to find all the distinct errors by generating filters of the form l . Given a filter l ,

if filt(e, labs(e), l) −isErr−−→ er , then Skalpel computes a minimal error by running:

〈e, er〉 min→ 〈ek , l ′〉. Eventually, Skalpel computes the minimal error set er , and
performs slicing on each error in er to present them clearly to the user.

Note that using the slicing algorithm presented in Fig. 29, only those parts
of the program which they wrote and contribute to an error are shown to the
user, that is, syntax (apart from dots) is not shown which was not written by
the user and which does not contribute to the error.

7. Design Principles

While developing Skalpel we discovered, developed, and followed the follow-
ing principles.

DP1: Variables. Each syntactic sort of constraint terms should have a
case ranging over an infinite variable set. This allows incomplete information
everywhere, which allows one to consider every possible way of slicing out parts
of the program. This is essential to get precise slices that include all relevant
details and exclude the irrelevant. Thus, the sorts μ, τ , and e have the variable
cases δ, α, and ev .

DP2: Dependencies. Each syntactic sort of constraint terms should sup-
port dependencies. This allows precise blame, enabling precise slicing. Thus,
sorts μ, τ , σ, and e have dependency cases 〈μ, d〉, 〈τ, d〉, 〈σ, d〉, and 〈e, d〉.
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DP3: Connections. Our constraint generator returns an environment used
for constraints and bindings. The generated constraints may connect informa-
tion from the results for a program node’s subtrees to the other subtrees or to
the node’s results.

The principle is that these connections should generally be via constraints
that carry the syntax tree node’s label and that are “shallow”, i.e., contain only
connection details and not constraints from program subtrees. Fresh variables
should be used as needed. This allows a program syntax node to be “discon-
nected” for type errors that depend on the node’s details, while still keeping
type errors that arise solely due to connections between environment accessors
and bindings that pass through the node.

For example, rule (G22) of our constraint generator defined in Fig. 19 in
Sec. 6.4 builds the unlabeled constraint ev ′ = (e1; · · · ;en). This “deep” un-
labeled constraint packs together a sequence of environments generated from
the declarations in the corresponding structure. The resulting environment is

connected to the main result by the labeled shallow constraint ev
l
= ev ′.

DP4: Irredundant. Duplicating constraints should be unnecessary. This
seems obvious, but some previous formalisms seem too weak for the needed
sharing. For example, rule (G22) of our constraint generator defined in Fig. 19
in Sec. 6.4 builds a structure’s environment as the sequential composition of its
component declarations’ environments: e1; · · · ;en. Here, the first declaration’s
environment e1 is available for subsequent declarations and also in the result
(if its bindings are not shadowed) which avoids duplicating it. A previous ver-
sion of our system had a weaker constraint system with let-constraints similar
to those of Pottier and Rémy [48], and the best solution we could find dupli-
cated the constraints for each declaration’s bindings, causing severe performance
problems.

DP5: Propagation. Dependencies must be propagated during solving ex-
actly where needed. If dependencies are not propagated where they “should”,
minimization could over-minimize yielding non-errors. This can be detected.
More insidiously, propagating dependencies where they are unneeded can keep
alive unneeded parts of error slices much longer during minimization, resulting
in severe slowdowns. Because correct results happen eventually, detecting such
bugs is harder so this requires great care. For example, an earlier version of our
solver copied dependencies from declarations in a structure to the structure’s
main result. The minimizer had to remove declarations one at a time. Debug-
ging this was hard because only speed suffered. Furthermore, the system should
yield error slices (before minimization) that are as close to minimal as can be
reasonably achieved. If constraint solving yields a non-minimal error slice, then
solving steps must have annotated a constraint with a location on which it does
not uniquely depend.
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DP6: Bindings. Sec. 6.6.4 already mentioned this principle. In the labeled
external syntax, identifiers which can occur at bound positions must be labeled
by a unique label that does not label a piece of code larger than the identifier
itself. Moreover, for those labeled identifiers, the constraint generator should in
general generate no more than a labeled accessor. (Note that to simplify the
presentation of Skalpel we do otherwise for structure openings (see constraint
generation rule (G19) in Fig. 19) but this is in general unsafe.) The risk of not
following this principle is that during minimization, a bound occurrence of an
identifier can be kept in a slice while its binding occurrence is discarded. This
can then result in the identifier at a bound position being bound to a different
binding occurrence than the one to which it is originally bound in the original
piece of code. This can then lead to generating wrong identifier bindings and
finding false errors.

DP7: Environment variables. Environment variables, when not gener-
ated as part of a shallow environment in an equality constraint (e.g., as the direct
left or right-hand-side of an equality constraint), should always be labeled. An
unlabeled environment variable is a constraint that can never be filtered out and
has to always be satisfied, independently from any program location. Because
an environment variable shadows its context (e.g., in (ev ;e), the environment
variable ev shadows e), if such an environment variable is unlabeled and is not
constrained to be equal to anything, it always shadows its context whatever
filtering is applied to it. This behaviour is undesirable because the shadowing
of an environment should in general be dependent on a program location (see,
e.g., constraint generation rule (G19) in Fig. 19 for open declarations).

In our constraint generator, most of the environment variables not gener-
ated as part of a shallow environment in an equality constraint cannot shadow
their environments. It is the case for rules (G4), (G17) and (G18). Note
that in these rules, each generated environment variable has to be labeled
to carry the dependency on the program point responsible for its generation.
Each of these rules generates an environment variable that is constrained by
an unlabeled equality constraint on the environment variable itself (these un-
labeled equality constraints cannot be filtered out). If these equality con-
straints were labeled, but the environment variables were not, the equality
constraints could be filtered out and the environment variables could then be
unconstrained and therefore shadow their contexts. Given a piece of code con-
taining a recursive value declaration dec, for rule (G17) for example this would
mean that filtering out the constraints associated with dec would allow this
declaration to shadow its entire context in the analyzed piece of code, which is
undesirable. For example, when slicing out the recursive value declaration in
val x = 1 val rec f = fn x => x val y = x x, we do not want it do shadow
val x = 1, i.e., we do not want the environment generated for the declara-
tion val rec f = fn x => x to shadow the environment generated for val x = 1

when the label associated with val rec f = fn x => x is sliced out in the en-
vironment generated for the entire piece of code. Rule (G19) stands out by
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generating environment variables that are constrained by labeled accessors. If

this rule was generating ((�strid
l
= ev);ev) instead ((�strid

l
= ev);ev l), where

the environment variable is unlabeled, ev would then be totally unconstrained
when filtering out the accessor. This would prevent one to slice out open dec-
larations. Worse, this could lead to finding typable type error slices. Let us
illustrate this last point with the following example:

structure S = struct end

val x = 1

open S

val y = x 1

Because the structure S is empty, open S does not do anything, and espe-
cially x is not rebound. Let e be the environment generated by our constraint
generator for this sequence of declarations. Our enumeration algorithm finds
the following slice:

〈..val x = 1

..x 〈..〉..〉

Assuming that unlabeled environment variables are generated for open decla-
rations instead of labeled environment variables as we currently do, filtering out
the constraints in e w.r.t. this slice would lead to an environment e ′ where the
unlabeled environment variable generated for open S shadows the environment
generated for x’s declarations. This environment e ′ would then be solvable.

8. Related Work

8.1. Related constraint systems

Our constraint system has evolved over the years. An earlier version had
constraints similar to Pottier and Rémy’s let-constraints [48, 47], which we dis-
cuss here first.8

Pottier and Rémy. Pottier and Rémy define a constraint system [48] that
reduces “type inference problems for HM(X) to constraint solving problems”.
Their HM(X) is similar to Odersky, Sulzmann, and Wehr’s HM(X) constraint
system [43]. This system is a “general framework for Hindley/Milner style type
systems with constraints”. Sulzmann, Odersky and Wehr say about their system

8Technically, the let-constraints of Pottier and Rémy are based on their more primitive
def-constraints.
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that “particular type systems can be obtained by instantiating the parameter
X to a specific constraint system” and that “the Hindley/Milner system itself is
obtained by instantiating X to the trivial constraint system”. Variants of this
system have been proposed over the years, for example in [55, 56]. Similarly,
in order to deal with Haskell’s rich type system, Vytiniotis et al. developed
the parameterized OutsideIn(X) constraint-based type inference algorithm [59].
Using these let-constraints Pottier and Rémy “achieve the desired separation
between constraint generation, on the one hand, and constraint solving and
simplification, on the other hand, without compromising efficiency” [48]. Pottier
defines a very similar system in [47]. In our discussion, we will collectively
refer to these two systems as PR (Pottier/Rémy) and ignore their technical
differences, although our presentation will follow more closely the presentation
of Pottier and Rémy [48].

PR has let-constraints, subtyping constraints, type scheme instantiation con-
straints, conjunction constraints, and the satisfied true constraint. A PR let-
constraint looks like: let id :σ̇ in C , where σ̇ ranges over type schemes, and C
ranges over constraints. In PR, type schemes are of the form ∀X [C ].T where
X is a type variable set, C is a constraint, and T is a type. We borrow for our
discussion two of Pottier and Rémy’s abbreviations: (1) ∀X .T stands for the
type scheme ∀X [true].T , and (2) let id :T in C stands for let id :∀∅.T in C .

The idea of let-constraints is that a constraint of the form

let id :∀X [C ].T in (id = T1 ∧ id = T2 )

is (roughly) equivalent to a constraint of this form:

(∃X .(C ∧ T = T1 )) ∧ (∃X .(C ∧ T = T2 )) ∧ (∃X .C )

The key point is that one can get the effect of making the appropriate number
of copies of C and T while keeping the size of the constraint proportional to the
program size by eagerly simplifying C and calculating T as much as possible
before making any copies.

Informally, a let-constraint of the form let id :∀X [C1].T in C2 generated
for an SML recursive let-binding would be represented in Skalpel by (using a
combination of rules (G2) and (G17) in Fig. 18 and 19):

[poly((�id=τ);e1);e2]

where Ci is represented by ei and T is represented by τ . (Let-constraints
generated for other SML forms would not necessarily be modeled this way.)
There is no explicit representation of X in Skalpel; instead the correct set of
type variables that can be quantified over is calculated by toPoly which generates
type schemes when it handles environments of the form poly(e) (see Fig. 17).

We now analyze the different parts of a let-constraint: let id :∀X [C1].T in C2

(1) assigns static semantics to the identifier id (thanks to id :σ̇), (2) quantifies
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the static semantics associated with id over a set of variables (generates a poly-
morphic type), (3) makes the access to id ’s semantics local to C2, and (4) de-
fines an order in which the constraints have to be solved (C1 before C2). Such
a constraint can then be seen as the combination of (at least) four primitive
constraints. The first one is a binder in Skalpel, the second one is a poly envi-
ronment, the third one is an environment of the form [e] (defined in Sec. 6.2.3),
and the fourth one is an environment of the form e1;e2.

Let us now compare PR and Skalpel through the following example (a re-
cursive value SML declaration):

let val rec f = fn z => exp1 in exp2

where exp1 and exp2 are two sub-expressions. PR generates:

let f:∀XY [let f:X → Y in let z:X in C1].X → Y in C2

where X and Y are internal type variables, XY is PR’s notation for the set
{X ,Y }, Ci (for i ∈ {1, 2}) is the constraint generated for expi, and Y is the
result type of exp1. Due to the way let-constraints declare a local environment,
PR needs two binders for f: the outer one polymorphically binds f’s occurrences
in exp2, and the inner one monomorphically binds f’s occurrences in exp1.

Skalpel generates9 the following constraint (technically, an environment):

[poly(�f=α1 � α2;[(�z=α1);e1]);e2]

In contrast to how PR handles this example, Skalpel only needs one binder for f.
Two Skalpel features interact to allow this. First, in a composition environment
(e1;e2), the bindings from e1 are available in e2, but also form part of the result
(except when shadowed by bindings in e2). Second, we use environments of the
form poly(e) to change the status of binders. In our example, f’s binder is
monomorphic within the scope of poly (in e1) and polymorphic outside (in e2).

Hage and Heeren [34, 32, 27, 29]. Their approach is as follows: given a piece
of code, first a constraint tree is generated, then this constraint tree is converted
into a list (many conversions are possible resulting in different lists), and finally
constraints are solved. Because different tree-to-list conversions are allowed,
their system can emulate algorithms such as W [18], M [36] or UAE [64].

In their system, a constraint tree can among other things (we only present
some of their constructs) be a strict node T1 � T2 where T1 and T2 are

9We have omitted labels and simplified a bit. Still omitting labels Skalpel actually gener-
ates: [(ev2=poly(�f=α1;[(ev1=(��z=α2));ev1;e1;c1];c2));ev2;e2;c3] where c1 = (α3=α2�α4),
c2 = (α1 = α3), c3 = (α5 = α6), 〈α4, e1〉 is generated for exp1, 〈α6, e2〉 is generated for exp2,

and α5 is the type of the entire let-expression. See [49, 14.1] for the meaning of ��z=α2.
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constraint trees. A constraint can be attached to a tree using, for example, c�T ,
which makes the constraint c “part of the constraint associated with the root of
T” [29]. A tree can also pack together trees as follows: [•T1, . . . ,Tn•]. A constraint
itself can among other things be: an equality constraint τ1 ≡ τ2, a generalisation
constraint σ:=GEN(M , τ), where M is a (monomorphic) type variable set and σ
is a scheme variable, or an instantiation constraint τ � σ. Hage and Heeren [29]
say about their generalisation and instantiation constraints: “The reason we
have constraints to explicitly represent generalization and instantiation is the
same as why, e.g., Pottier and Rémy do [48]: otherwise we would be forced to
(make a fresh) duplicate of the set of constraints every single time we use a
polymorphically defined identifier”. The same goes for our system.

Trees are sophisticated constraints that provide extra structure on constraint
sets. In Skalpel a single equality constraint can be an environment. Similarly,
in their system a single constraint can be a tree. A strict node of the form
T1 � T2 can be seen as a restricted version of a composition environments of
the form e1;e2. Environments of the form e1;e2 also enforce that e1 has to be
solved before e2. A major difference is that in Skalpel, in an environment e1;e2,
not only the environment e1 has to be solved before e2 but also e2 has access to
e1’s binders. Also a major difference between trees and constraint/environments
is that in their system trees do not act as environments, they do not associate
static semantics with identifiers. We do not allow non-strict nodes (such as their
nodes of the form [• T1, . . . ,Tn •]) because Skalpel does not reorder constraints.
Their constraint rearrangement mechanism can be seen as a restriction of our
enumeration algorithm.

Enforcing to solve some constraints before others introduces a bias. One of
our early design principle was to build an unbiased type error slicer10. Skalpel is
unbiased thanks to our enumeration algorithm, which, given an environment e,
runs our constraint solver on the different environments that can be obtain from
e using our filtering function. Hage and Heeren opted for ordering strategies
instead.

The main difference between their transformation of a type inference prob-
lem into a constraint solving problem and ours (and so the main difference
between our constraint systems) is that bindings are solved at constraint solv-
ing in Skalpel (using binders and accessors) while they are solved at constraint
generation in Hage and Heeren’s system. We moved from a binding resolution
at initial constraint generation to a binding resolution at constraint solving in
order to handle SML features such as open. Thanks to our binders and acces-
sors, we can generate a “faithful” (used loosely here) representation of an SML
program that uses intricate features such as open.

10[49, 16.2] explains how Skalpel meets Yang et al.’s list of criteria for good type error
reports [66]
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Digression on the generation of “faithful” program representations using
constraints. In addition to the motivation of generating “faithful” program
representations in our constraint language, we believe that binders and acces-
sors are necessary to distinctly separate the constraint generation and constraint
solving phases of a constraint based type inference algorithm for SML. To illus-
trate this point let us consider the following typable SML program:

structure S = struct val c = fn () => () end

structure T = S

structure U = T

open U

val d = c ()

Without binders and accessors, one needs to use type environments at con-
straint generation to access identifiers’ static semantics when analyzing identi-
fiers at bound positions. To generate a proper environment for open U so that it
can be used when dealing with val d = c () at constraint generation, one needs
to resolve the chain of structure equalities. This means that solving structures’
static semantics at constraint generation becomes necessary which goes against
a clear separation between constraint generation and constraint solving.

Müller [41]. Müller designed the ρdeep calculus to “implement the classical
Damas-Milner polymorphic type inference algorithm”. This calculus allows one
to generate constraints of linear size. It does so by generating identifier binders
with which are associated static semantics. The semantics attached to an iden-
tifier binder can then be simplified before being “used”, i.e., before instantiating
the polymorphic type. Müller considers the λ-calculus extended with polymor-
phic let-expressions. His constraint language is as follows, where φ and ψ are
called constraints, and E and F are called (constraint) expressions:

φ, ψ ::= � | ⊥ | ∃α φ | φ ∧ ψ | α = β | α = β � γ
E ,F ::= φ | E ∧ F | ∃α E | x :α/E | �M �α

where M is a λ-expression and α, β and γ are type variables. � is the satisfied
(or true) constraint, and ⊥ is the unsatisfied (or false) constraint. Constraints
and expressions of the forms ∃α φ and ∃α E introduce fresh variables. Con-
straints and expressions of the form φ∧ψ and E ∧F are conjunctions. The two
last forms of constraints are shallow equality constraints. The most interesting
forms of ρdeep are: x :α/E and �M �α.

An expression x :α/E is called an abstraction. They are similar to Pot-
tier and Rémy’s let-constraints. Such an abstraction associates the constrained
static semantics α, constrained by E , with the identifier x . This is called an
abstraction because x :α/E abstracts the type variable α. The polymorphism of
such forms comes from the existential expressions. For example, one can gener-
ate the following abstraction (binder) for the polymorphic identity function id
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(where some expressions are omitted for clarity): id:γ/∃β γ = β � β. A bound
occurrence of id with which is associated the static semantics α will result in
the application of the above abstraction α: ∃β α = β � β. A particularity of
ρdeep is that computation can occur inside abstractions allowing one “to sim-
plify the abstractions encoding polymorphic types before application” [41]. We
believe that an abstraction of the form x :α/E would be modeled in Skalpel by
an environment of the form poly(e;�x=α), where E is represented by e.

An expression of the form �M �α is called a proof obligation and it “represent
the constraint α = τ for the principal type τ of M ”, where τ is an internal type
in ρdeep. A constraint expression of the form �M �α is used to analyse (infer a
type for) the λ-expression M .

Müller’s constraint based type inference algorithm does not distinguish be-
tween constraint generation and constraint solving and no specific constraint
solving strategy is presented (constraint generation and solving interleave).

Gustavsson and Svenningsson [24]. In their system, solutions can be found
in cubic time. Their constraint syntax is based on: the satisfied constraint �,
inequality constraints on variables of the form a ≤ b, conjunctions of constraints
of the form M ∧ N , and existential constraints of the form ∃a.M . In addition,
they also have abstractions, applications, and let-constraints.

Abstractions are inspired by let-expressions and are of the form: f �a = M ,
where f is a constraint abstraction variable (the name of an abstraction), �a is a
set of variables, and M is a constraint. Abstractions are used in let-constraints
of the form: let {�F} in M , where �F is a set of abstractions and M is a
constraint. Abstractions in a let-constraint are mutually recursive. Therefore,
in a let-constraint let {�F} in M ′, if f �a = M is a constraint abstraction in �F ,

then the uses of f in �F and M ′ all refer to this occurrence of f .

We believe that a let-constraint of the form let {f1 �a1 = M1, . . . , fn �an =
Mn} in M would be represented in Skalpel by an environment of the form
[poly(�f1=α1; · · · ;�fn=αn;e1; · · · ;en);e], where Mi would be represented by ei
for each i ∈ {1, . . . , n}, where M would be represented by e, and where �ai, for
each i ∈ {1, . . . , n}, would be computed when dealing at constraint solving with
the poly constraint. Abstractions are applied thanks to application constraints
of the form f �a. An application of the form f �a would be represented in Skalpel
by an accessor of the form �f=α.

Gustavsson and Svenningsson define a constraint solving algorithm and
prove it to be of cubic complexity. Such a result is obtained by enforcing that
abstractions are simplified before being applied.
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8.2. Methods making use of slices

Tip and Dinesh [57]. They report type error slices for a Pascal-like language
called CLaX, which is an explicitly typed language (where explicit types are en-
forced, e.g., on function parameters). CLaX’s type checker is a rewriting system,
which rewrites a piece of code either into a type if the piece of code is typable, or
into a list of error messages if the piece of code is untypable. To compute slices
they use “dependence tracking” [21, 22]. Tip and Dinesh explain that “Depen-
dence tracking is a method for computing term slices that relies on an analysis
of rewriting rules to determine how the application of rewriting rules causes
creation of new function symbols, and the residuation (i.e., copying, moving
around, or erasing) of previously existing subterms” [57]. Developments (w.r.t.
a sequence of rewriting steps on a piece of code) are trimmed to retain only
the necessary symbols of a piece of code, i.e., the ones responsible for an error
to occur. Tip and Dinesh also applied their techniques to Mini-ML, “a simple
typed λ-calculus with constants, products, conditionals, and recursive function
definitions” [17]. Because they do not use any minimization algorithm, Tip and
Dinesh faced some minimality issues when applying their method to Mini-ML:
“in some cases slices are computed that seem larger than necessary” [57].

Neubauer and Thiemann [42]. They use flow analysis to compute type de-
pendencies for a small ML-like language and report type errors. Their system
uses discriminative sum types and can analyze any term. In a first “collecting”
phase, they label terms and infer type information. This analysis generates a
set of program point sets. These program points are directly stored in the dis-
criminative sum types. A conflicting type (“multivocal”) is then paired with
the locations responsible for its generation. A second“reporting” phase consists
in generating error reports from the conflicts generated during the first phase.
Slices are built from which highlighting are produced. An interesting detail is
that a type derivation can be viewed as the description of all type errors in an
untypable piece of code, from which another step computes error reports.

Chameleon. Similar to ours is work by Stuckey, Sulzmann and Wazny [54, 61]
(based on earlier work without slices [52, 53]). They do type inference, type
checking and report type errors for the Chameleon language (a modified Haskell
subset). Chameleon includes algebraic data types, type-class overloading, and
functional dependencies. They code the typing problem into a constraint prob-
lem and attach labels to constraints to track program locations and highlight
parts of untypable pieces of code. First they compute a minimal unsatisfiable
set of generated constraints from which they select one of the type error loca-
tions, and finally they provide a highlighting and an error message depending
on the selected location. Their slice highlighting strategy is different from ours.
They focus on explaining conflicts in the inferred types at one program point
inside the error location set. To the best of our knowledge, they do not intend to
exactly (no more and no less) highlight code fragments as to provide complete
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explanations of type errors. For example, they do not highlight applications
because “they have no explicit tokens in the source code”. The authors further
explain: “We leave it to the user to understand when we highlight a function
position we may also refer to its application”. Skalpel highlights all the pro-
gram locations responsible for an error even if these are white spaces. Also,
they do not appear to highlight the parts of datatype declarations relevant to
type errors.

When running on a translation of the code presented in Sec. 3.2 into Haskell,
ChameleonGecko outputs the error report partially displayed below (the rest of
the output seems to be internal information from their solver).

ERROR: Type error; conflicting sites:

y = (trans x1, x2)

This highlighting identifies the same location as SML/NJ and would not
help solve the error.

Gast [23]. Gast generates “detailed explanations of ML type errors in terms of
data flows” in three steps: (1) generation of subtyping constraints annotated by
reasons for their generation; (2) gathering of reasons during constraint solving;
(3) transformation of the gathered reasons into explanations by data flows. He
provides a visually convenient display of the data flows with arrows in XEmacs.
Gast’s method (which seems to be designed only for a small portion of OCaml)
can be considered as a slicing method with data flow explanations.

Braßel [13]. Braßel presents a generic approach (implemented for the Curry
language) for type error reporting that consists of two procedures. The first
one tries to replace portions of code by dummy terms that can be assigned any
type. If an untypable piece of code becomes typable when one of its subtrees
has been replaced by a dummy term then the process goes on to apply the same
strategy inside the subtree. The second procedure consists in using of a heuristic
to guide the search of type errors. The heuristic is based on two principles: it
will always “prefer an inner correction point to an outer one” and will always
“prefer the point which is located in a function farther away in the call graph
from the function which was reported by the type checker as the error location”.
Braßel’s method does not seem to compute proper slices but instead singles out
different locations that might be the cause of a type error inside a piece of code.

Weijers, Hage, and Holdermans [62, 63]. In these papers, the authors present
an error diagnosis tool for security label errors that combines a type error slicer
as in by Haack and Wells’ approach, with heuristics as used in Helium (dis-
cussed below in Sec. 8.3). The language they consider, called sFun++, is a
let-polymorphic applied λ-calculus extended with declassify and protect secu-
rity constructs. They first generate minimal error slices and then prune even
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further these slices using various kinds of heuristics that are meant to pinpoint
likely sources of errors. Their current system purposely report a single error
message and they mention that reporting a collection of error diagnoses “is only
a matter of engineering”. Also, their system only reports security errors but
could presumably be generalized to support other kinds of errors.

8.3. Significant non-slicing type explanation methods

Let us now present some non-slicing type explanation methods. We believe
that all of these could be combined with Skalpel to provide better error reports.
This is left for future work.

Helium [33, 31, 34, 28]. Heeren et al. designed a method to provide error
messages for the Helium language (a subset of Haskell), relying on a constraint-
based type inference algorithm. First, a constraint graph is generated from a
piece of code. Given an ill-typed piece of code, a conflicting path called an
inconsistency is extracted from the constraint graph. A conflicting path is a
structured unsolvable set of type constraints. A trust value is associated with
each type constraint and depending on these values and the other heuristics,
some constraints are discarded until the inconsistency is removed. They also
provide “program correcting heuristics” used to search for a typable piece of code
from an untypable one. Such a heuristic is, e.g., the permutation of parameters,
which is a common mistake in programming. Their approach is, among other
things, meant to help students learn functional programming. Using pieces of
code written by students and their expertise of the language they refined their
heuristics. They also designed a system of “directives”, which are commands
specified by the programmer to constrain the set of types derivable from a type
class. This approach differs from ours by privileging locations over others by the
use of some heuristics. They do not compute minimal slices and highlightings.

We present below the most interesting part of the error report obtained using
Helium on a translation of the code presented in Sec. 3.2 into Haskell. It comes
with some warnings (not displayed here) about identifiers’ bindings such as the
binding of y in trans (some of these warnings explain, e.g., that y’s declaration
at the end of the code does not bind any of the y’s in trans’s definition).

(16,6): Type error in application

expression : trans x1

term : trans

type : T a a a -> T a a a

does not match : T Int Int Bool -> T Int Int Bool

Compilation failed with 1 error

It is reported that x1 and trans do not have the expected types. The appli-
cation at the end of the code is blamed when our programming error is at the
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very beginning of the code.

They have also tackled the task to report type errors for Java [11, 12]. Error
reports provided by standard compilers can be of little help, especially in the
presence of generics. El Boustani and Hage try to do better by keeping track
of more information during type checking, allowing a more “global view” of
type errors, and therefore leading to more informative error reports. The main
difference between type error reporting for SML and Java is that in Java “types
are instantiated based on local information only and not through a long and
complicated sequence of unifications” [11].

More recently, Chen, Erwig, and Smeltzer studied the combination of Helium
with another of their tool called Lazy Typing (that aims at pinpointing type
errors and that suggests fixes) [14], making use of the fact that different error
reporting tools have their own strengths and weaknesses.

SEMINAL [37, 38]. Lerner, Flower, Grossman and Chambers designed algo-
rithms that search for type errors by replacing code fragments by an expression
that type-checks in any context, such as raising a dummy exception: raise

Foo. The same method is used by Schilling to compute type error slices in the
context of Haskell [50]. They then present type error messages by construct-
ing well-typed programs from ill-typed ones using techniques such as switching
parameters (like Heeren et al. [28]). Automatically generated modifications of
ill-typed pieces of code are checked for typability. They target Caml, and also
developed a prototype for C++. The new typable generated code is presented
as possible code that the programmer might have intended.

Chitil. Chitil developed several tools to understand and debug type errors. For
example, Typeview [16] is an interactive tool that can show the type of any
identifier in a Haskell program. When a program is not typable, “it is possible
to query the types of all expressions that were inferred so far”. In [15] Chitil
describes a type explanation and debugging tool for Haskell. This tool allows
programmers to explore how unexpected types are inferred in order for them
to fix their errors. This is done by interactive navigation through a type expla-
nation graph. (More recently, Tsushima and Asai developed a similar tool for
OCaml [58], and Plociniczak, Miller, and Odersky for Scala [46].) In [51], Silva
and Chitil explore the combination of two debugging techniques: algorithmic
debugging and program slicing. The way algorithmic debugging works is that,
given a program, it automatically produces series of questions regarding the
execution behavior of the program and processes the programmer’s answer to
try and locate errors. However, as mentioned by Silva and Chitil, questions can
be numerous and arbitrarily long and complex. Their solution is to combine
algorithmic debugging with program slicing in order to reduce the number of
questions needed to locate errors.
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Zhang and Myers [67]. As in [62, 63], Zhang and Myers’ also aim at diagnosing
security errors. Their error diagnosis tool is motivated by two languages: OCaml
and Jif [35] (a “security-typed programming language that extends Java with
support for information flow control and access control, enforced at both compile
time and run time”). They are therefore aiming at a system that is general
enough to deal with, not only type errors, but various other kinds of static errors
such as failures of security label checking. Their method, also constraint based,
relies on solving constraint graphs. They use a Bayesian posterior distribution to
try and pinpoint programming errors, and suggests missing hypotheses. Their
constraint language does not feature let-constraints. Instead they use Haack
and Wells’ approach [25, 26] of duplicating constraint sets when dealing with
let-expressions, which, as mentioned above, could lead to an exponential growth
of the number of generated constraints. The authors acknowledge this issue and
report that they “find performance is still reasonable with this approach” [67].
They then showed that their method scales up to more expressive type systems
such as Haskell’s type system [68]. There, let-expressions are annotated by user
defined constrained type schemes, which in practice results in a smaller number
of generated constraints than when using Haack and Wells’ approach.

Pavlinovic, King, and Wies [44]. Their approach is also based on constraint
solving. Their tool try to pinpoint type errors (for a subset of OCaml) by com-
puting “minimum” sets of untypable portions of programs, where minimum is
a compiler dependent property. As the authors mention, a “compiler may only
be interested in those error causes that require the fewest changes to fix the
program”. Their approach consists in generating weighted constraints, and re-
ducing the search for minimum error sources to an optimization problem that
they formulate in terms of weighted maximum satisfiabiity modulo theories. Fi-
nally, they use SMT solvers to solve these problems. Their constraint generator
is similar to Haack and Wells’. It can lead to an exponential growth of the
number of generated constraints.

9. Conclusion

In this paper we presented Skalpel, which takes a program written in core
SML (see Sec. 9), and returns exactly the erroneous parts of the program.
Skalpel automatically achieves this by first labeling all parts of the program
generating constraints annotated with these labels, solving these constraints
and if errors are found, minimizing the errors to produce a small and elegant
program slice that is passed to the user showing them exactly those parts of the
program that contribute to the error.

Skalpel is based on a novel constraint syntax, generator and solver which is
terminating and avoids a combinatorial explosion in the number of constraints.
We retain a compositional generation of constraints but solve constraints in a
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strict left-to-right order. Furthermore, in order to scale constraints while also
handling module system features, we introduced a novel representation of hybrid
constraint/environments. This allows for environments that avoid duplication
at constraint generation and during constraint solving.

In the future, we wish to perform some analysis as a result of this work to
allow us to determine interesting information such as how much faster software
developers can develop their SML programs using the Skalpel tool, or on which
kind of errors the Skalpel tool is particularly effective.

To our knowledge, no work exists that returns minimal type error slices
for the entirety of a powerful programming language such as SML (we only
present the core of our approach in this paper, more details about Skalpel can
be found in [49, 45] and on the Skalpel webpage [2]). We believe that with
further research, techniques such as the ones presented in this paper can be
applied to larger languages with more sophisticated type systems and wider
user bases such as Haskell, and combined with other techniques such as the
ones presented in the related work section.
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